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Abstract— In this paper, we describe a vision of human-robot
collaboration on assembly lines, where a collaborative robotic
manipulator, a.k.a. cobot, operates as a work-mate for the
worker. Specifically, the cobot, referred to as the ‘“apprentice”
since it lacks the ability to replace the worker, can only aid the
worker by observing his status during the assembly process,
and handing over (and stowing away when done) the tools and
the parts. Towards this end, we first describe the vision, and
outline the challenges involved in developing an ‘“apprentice”
cobot and share the current state of the work done.

I. INTRODUCTION

Collaborative robotic manipulators (a.k.a. cobots), de-
signed to work safely alongside humans, are envisioned to
take industrial automation to the next level, to increase the
efficiency of a human worker. With the projected worldwide
cobot market size to grow 5 times between 2020 and
2025 [1], these cobots are expected to take part in frequently
changing tasks, mainly in medium and small businesses. This
brings in many challenges pertaining to (i) how easily such
robots can be used and how much programming and design
they require, (ii) how user-friendly and helpful they are, and
(iii) how appealing they are as co-workers.

II. THE APPRENTICE VISION FOR HUMAN-ROBOT
COLLABORATION

The CIRAK and its successor KALFA (Apprentice and
Journeymen in Turkish) projects are based on the observation
that human workers are superior to cobots in the tasks
involving manipulation. Carrying out the versatile manipu-
lation tasks of an assembly-line worker at the same speed
and finesse is likely to remain beyond the reach of cobots
in the near future. In our projects, we propose to develop
technologies towards an “apprentice cobot”, an under-skilled
robotic helper that can track the state of the worker, the
assembly process and hand over (and stow away when done)
the necessary tools and the parts to the worker for the current
state of the process. Such a system would only require
limited manipulative capabilities given that it is coupled with
a cognitively intelligent interaction with the human worker.

The “apprentice cobot” vision can be seen in its trailer
video (Figure [T) where the human assembles an IKEA chair
with a cobot as his apprentice. In the snapshots of this video
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apprentice cobot is; (a) waiting attentively with breathing
animation (can be seen in video and is not captured in the
snapshot) for the start of the assembly, (b) handing over
the screwdriver to the worker, (c) attentively following the
worker’s assembly through mutual gaze, (d) leaning back and
waving (can be seen in the video and is not captured in the
snapshot) to refuse to stow away the screwdriver since the
worker still has work to do with the screwdriver, (e) reaching
out to take the screwdriver once current job involving a
screwdriver is completed, (f) stowing away the screwdriver.
The realization of such an apprentice cobot requires;
« improved human-robot interaction skills through the use
of non-verbal behaviors,
o perception abilities to track (1) human body pose and
gaze direction, (2) tools and parts in the workspace,
« awareness of the status of the assembly process,
« ability to discover assembly sequences,
« real-time motion planning in free space, and
o guarantees on safety.

In the rest of the paper, we will discuss the challenges
towards implementing these capabilities and report briefly
our results.

III. HUMAN-ROBOT INTERACTION USING NON-VERBAL
BEHAVIORS

Drawing on the character animation principles Appeal,
Arcing, and Secondary Action, we designed a set of social
cues for a commercially popular cobot platform, a URS
robot arm (Universal Robots, Odense, Denmark) equipped
with a 2F-140 two-finger gripper (Robotiq, Lévis, Canada)
(see Figure [I) that included giving it a head-on-neck look
by augmenting its appearance and implementing gaze and
posture cues (Appeal), generating smooth motion trajectories
for the arm (Arcing), and introducing breathing motions to
the robot during its idle operation (Secondary Action).

In the CIRAK project, it was shown that applying some
of Disney’s animation principles to a Cobot improves the
quality of human-robot interaction (HRI) [2]. The KALFA
project will advance these proof-of-concept works in three
directions to develop a full non-verbal communication ability
in cobots: (1) After evaluating how all of Disney’s animation
principles can be applied to improve the quality of HRI,
these principles will be formally defined and integrated
into cobots as parameterized “HRI filters”. (2) Methods for
detecting non-verbal communication cues of the workers in
the assembly scenarios will be developed. (3) Non-verbal
communication cues from workers will be associated with
HRI-filters in order to increase the harmony between cobot



Fig. 1.

and the worker. The effects of these methods on the quality
of HRI will be measured by human-robot experiments.

A. Related work

Nonverbal communication, allowing transfer of informa-
tion via social clues via facial expressions, gestures, body
language etc., is very essential for human-robot interaction
[3]. Its importance has been identified in many studies. For
example, Salem et al. stated that regardless of the gesture
congruence, arm gestures lead to a more sympathetic, lively,
active and engaged interpretation of a robot [4]. Moreover,
extroverted and abrupt gestures increase engagement and
human awareness [5], [6]. Arm gestures are also investigated
under synchronization congruence in human-robot interac-
tions. Shen et al. reported adaptive robot velocity with respect
to interacting participants increases gesture recognition, task
performance and social interaction [7]. In other studies, it
is found that participants synchronize their frequency of
gestures to the robot’s gesture frequency, unlike their phase
difference [8], [9]. Gaze has a major effect in Kinesics.
Stanton and Stevens revealed the impact of gaze to be

(f)

Snapshots from the apprentice trailer video (at https://youtu.be/CsV363jeuds). See the text for description.

task-dependent [10]. Proxemics studies the usage of the
interaction space. Interactions with closer distance than the
human-human cases were observed [11], [12], [13]. Time
perception and manipulation of perceived time studied by
Komatsu and Yamada [14]. Song and Yamada analyzed
color, sound, vibration and their combinations [15] in social
robotics.

IV. PERCEPTION

A robotic co-worker needs to be able to perceive humans,
their gaze (and intention), objects parts, tools, and other
utilities in the environment. This requires locating such
objects in the camera frames in general by placing bounding
boxes around them using deep object detectors. However,
this is often insufficient as robotic control takes place in 3D.
Therefore, perception of humans, objects, parts, tools, etc.
needs to finally provide 3D information in the robot’s 3D
coordinate frame.

Perception incurs many challenges: (i) Obtained 3D in-
formation needs to be very precise since, otherwise, the
assembly will fail. (ii) Perception should be robust to clutter,
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An important problem in robotic assembly is perceiving the
environment. However, common workplaces are unstructured and pose
challenges to existing perception methods. [16])

disorganized environment, illumination conditions (e.g. the
challenging conditions in Figure ). (iii) Perception should
be aware of ambiguous cases and should be explainable.

In the project, we constructed a perception pipeline for de-
tecting tools, objects, humans, and their gazes with the help
of deep learning applied on RGB-D video streams. Although
existing object detectors, pose estimation, and human detec-
tion models, gaze estimation networks are very capable, they
are not as robust as advertised on benchmarks and therefore,
they often require tuning or combination with disambiguating
sources of information, e.g. the task knowledge, any other
type of contextual information, temporal consistency etc.
In addition, the learning-based methods which have been
trained on datasets that do not follow the characteristics
of working environments that we consider, and therefore,
the collection of labeled datasets is often necessary. For
instance, in our project, we curated a tool detection dataset
[16] specifically purposed for detecting tools in human-robot
collaboration settings

V. ASSEMBLY

Obtaining a precise assembly plan is a labor intensive,
tedious task. Despite efforts in the literature for learning
how to combine parts to assemble the final object in 3D
[17], [18], [19], these efforts are very limited to toy settings
(in terms of objects and environments) and there remain
crucial open issues: (i) It is still an open issue to assemble
an object by looking at e.g. the IKEA assembly manual. (ii)
Moreover, learning to do the assembly with a human co-
worker and/or other robots has not been addressed. (iii) In
addition, detecting whether there has been an error in the

assembly, predicting the error isolating its source, rectifying
the error are highly necessary for widespread applicability
and acceptance of such robots.

In our project, we are focusing our efforts along two
directions:

Automating assembly plan creation using Deep Reinforce-
ment Learning: In the CIRAK project, a precise assembly
plan was manually prepared for step-by-step execution of
actions. This plan included the parts, the tools and the details
like which tools should be used on what parts at which step
of the assembly sequence. In the KALFA project we pro-
posed to learn the assembly plan using Deep Reinforcement
Learning by interacting with the parts and the tools within
the cobot’s simulation environment, thus facilitating the use
of cobot in assembly scenarios by people with little technical
skills.

Determining the sources of errors using a causality model:
In the CIRAK project and similar studies can detect an error
during the installation by comparing the current state of
the assembly with the previously defined steps in a plan.
However, they cannot detect the source of the errors or
determine the steps that should be taken in order not to
repeat the errors. The KALFA Project proposes to learn a
causal model in the simulation environment from interplay
between parts, tools, factors and assembly stages, and to use
this causal model to determine the sources of errors when
an anomaly is detected.

A. Related work

An important problem in robotic assembly is the precise
generation of the assembly plan, which necessitates 3D
perception of object parts and how those parts should be
manipulated to perform the assembly. Advances in machine
learning have paved the way for addressing this tedious task
by directly learning the assembly from the 3D models of
the parts and the target object, e.g. for furniture assembly
problem [17], [18], [19]. For example, Li et al. [17] proposed
two network modules to extract information from the image
of the assembled furniture and part point clouds. Moreover,
Huang et al. [18] introduced a dynamic graph learning
framework to make predictions only from the part point
clouds. In a similar line of approach, in Li et al.’s work
[19], learned relationships are used to predict the position
and the scale of parts instead of their poses (position and
orientation).

For an assembly task, another important challenge is
precise manipulation, which is hard to achieve using stan-
dard controllers. To this end, the trending approach is us-
ing Reinforcement Learning (RL) to learn adaptive control
strategies. Due to the complexity of the assembly task, RL
algorithms can get stuck at local minima and yield sub-
optimal controllers. To overcome this issue, recent studies
[20], [21] propose guiding RL with additional information.
For example, Thomas et al. [21] use CAD data to extract a
geometric motion plan and a reward function that tracks the
motion plan. Luo et al. [20] utilizes the force information
obtained by the robot’s interaction with the environment.



VI. SAFETY AND MOTION PLANNING

The cobot needs to perceive the occupied space (which is
varying due to the movement of the worker and the parts and
tools) and should plan and adjust its motions in real-time.
This challenge was not addressed within our projects.

In order to ensure the safety of human worker, we have
implemented a ROS watchdog node that is placed between
the motion control node and the URS, which checked the
desired pose and velocity commands against predefined con-
straints, to ensure the operation of the cobot remain within
a desired volume excluding the worker’s body (but not the
arms) and under predefined velocity thresholds.

VII. CONCLUSION

In this paper, we presented the “apprentice cobot” vision
for human-robot collaboration and described the challenges
involved in accomplishing it, shared our current results and
future research plans.

ACKNOWLEDGMENT

This work is partially supported by TUBITAK through
projects “CIRAK: Compliant Robot Manipulator Support for
Assembly Workers in Factories” (117E002) and “KALFA:
New Methods for Assembly Scenarios with Collaborative
Robots” (120E269).

REFERENCES

[1] Statista.com. Size of the global market for collaborative robots from
2017 to 2025. [Online]. Available: https://www.statista.com/statistics/
748234/global-market-size-collaborative-robots/

[2] Y. Terzioglu, B. Mutlu, and E. Sahin, “Designing social cues for
collaborative robots: the role of gaze and breathing in human-robot
collaboration,” in Proceedings of the 2020 ACM/IEEE International
Conference on Human-Robot Interaction, 2020, pp. 343-357.

[3] S. Saunderson and G. Nejat, “How robots influence humans: A sur-
vey of nonverbal communication in social human-robot interaction,”
International Journal of Social Robotics, vol. 11, no. 4, pp. 575-608,
2019.

[4] M. Salem, K. Rohlfing, S. Kopp, and F. Joublin, “A friendly gesture:
Investigating the effect of multimodal robot behavior in human-robot
interaction,” in 2011 Ro-Man. IEEE, 2011, pp. 247-252.

[5] M. Salem, F. Eyssel, K. Rohlfing, S. Kopp, and F. Joublin, “To err
is human (-like): Effects of robot gesture on perceived anthropomor-
phism and likability,” International Journal of Social Robotics, vol. 5,
no. 3, pp. 313-323, 2013.

[6] L.D. Riek, T.-C. Rabinowitch, P. Bremner, A. G. Pipe, M. Fraser, and
P. Robinson, “Cooperative gestures: Effective signaling for humanoid
robots,” in 2010 5th ACM/IEEE International Conference on Human-
Robot Interaction (HRI). 1EEE, 2010, pp. 61-68.

[7]

[8]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

Q. Shen, K. Dautenhahn, J. Saunders, and H. Kose, “Can real-time,
adaptive human—robot motor coordination improve humans’ overall
perception of a robot?” IEEE Transactions on Autonomous Mental
Development, vol. 7, no. 1, pp. 52-64, 2015.

T. Lorenz, A. Mortl, and S. Hirche, “Movement synchronization fails
during non-adaptive human-robot interaction,” in 2013 8th ACM/IEEE
International Conference on Human-Robot Interaction (HRI). 1EEE,
2013, pp. 189-190.

E. Ansermin, G. Mostafaoui, X. Sargentini, and P. Gaussier, “Unin-
tentional entrainment effect in a context of human robot interaction:
An experimental study,” in 2017 26th IEEE International Symposium
on Robot and Human Interactive Communication (RO-MAN). 1EEE,
2017, pp. 1108-1114.

K. L. Koay, D. S. Syrdal, M. Ashgari-Oskoei, M. L. Walters, and
K. Dautenhahn, “Social roles and baseline proxemic preferences for
a domestic service robot,” International Journal of Social Robotics,

vol. 6, no. 4, pp. 469-488, 2014.
M. Walters, K. Dautenhahn, R. Boekhorst, K. Koay, C. Kaouri,

S. Woods, C. Nehaniv, D. Lee, and 1. Werry, “The influence of
subjects’ personality traits on personal spatial zones in a human-robot
interaction experiment,” vol. 2005, 09 2005, pp. 347 — 352.

D. Shi, E. G. Collins Jr, B. Goldiez, A. Donate, X. Liu, and D. Dunlap,
“Human-aware robot motion planning with velocity constraints,” in
2008 International Symposium on Collaborative Technologies and
Systems. 1EEE, 2008, pp. 490-497.

K. L. Koay, D. S. Syrdal, M. Ashgari-Oskoei, M. L. Walters, and
K. Dautenhahn, “Social roles and baseline proxemic preferences for
a domestic service robot,” International Journal of Social Robotics,
vol. 6, no. 4, pp. 469-488, 2014.

T. Komatsu and S. Yamada, “Exploring auditory information to
change users’ perception of time passing as shorter,” in Proceedings
of the 2020 CHI Conference on Human Factors in Computing
Systems, ser. CHI ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 1-12. [Online]. Available:
https://doi.org/10.1145/3313831.3376157

S. Song and S. Yamada, “Expressing emotions through color,
sound, and vibration with an appearance-constrained social robot,”
in Proceedings of the 2017 ACM/IEEE International Conference on
Human-Robot Interaction, ser. HRI *17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 2-11. [Online].
Available: https://doi.org/10.1145/2909824.3020239

F. C. Kurnaz, B. Hocaoglu, M. K. Yilmaz, I. Siilo, and S. Kalkan,
“Alet (automated labeling of equipment and tools): A dataset for tool
detection and human worker safety detection,” in European Conference
on Computer Vision. Springer, 2020, pp. 371-386.

Y. Li, K. Mo, L. Shao, M. Sung, and L. Guibas, “Learning 3d part
assembly from a single image,” 2020.

J. Huang, G. Zhan, Q. Fan, K. Mo, L. Shao, B. Chen, L. Guibas, and
H. Dong, “Generative 3d part assembly via dynamic graph learning,”
2020.

J. Li, C. Niu, and K. Xu, “Learning part generation and assembly for
structure-aware shape synthesis,” 2020.

J. Luo, E. Solowjow, C. Wen, J. A. Ojea, A. M. Agogino, A. Tamar,
and P. Abbeel, “Reinforcement learning on variable impedance con-
troller for high-precision robotic assembly,” 2019.

G. Thomas, M. Chien, A. Tamar, J. A. Ojea, and P. Abbeel, “Learning
robotic assembly from cad,” 2018.


https://www.statista.com/statistics/748234/global-market-size-collaborative-robots/
https://www.statista.com/statistics/748234/global-market-size-collaborative-robots/
https://doi.org/10.1145/3313831.3376157
https://doi.org/10.1145/2909824.3020239

	Introduction
	The Apprentice Vision for Human-Robot Collaboration
	Human-Robot Interaction using non-verbal behaviors
	Related work

	Perception
	Assembly
	Related work

	Safety and Motion Planning
	CONCLUSION
	References

