
CENG 230
Introduction to C Programming

Week 9 – Functions

Sinan Kalkan

Some slides/content are borrowed from Tansel Dokeroglu, Nihan
Kesim Cicekli, and the lecture notes of the textbook by Hanly and

Koffman.

Homework

• Write a program to read in numbers until the number -1
is encountered. The sum, max and min of all numbers
read until this point should be printed out.

CENG 230 - Spring 2015 Sinan Kalkan 2

Modular programming
with functions

CENG 230 - Spring 2015 Sinan Kalkan 3

Modular programming

“Experience has shown that the best way to develop
and maintain a large program is to construct it from
smaller pieces or modules, each of which is more
manageable than the original program.

This technique is called divide and conquer.”

CENG 230 - Spring 2015 Sinan Kalkan 4

Function definition

return_type function_name(parameter declarations)

{

statement-1;

statement-2;

…

}

• if is return_type not void, “return” statement has to
be used:

return expression;

Function declaration

• return_type function_name(list-of-params);

• The parameters have to have the same types as in the
function definition although the names of the
parameters may differ.

• Example:
– int factorial(int N);

– void print_matrix(int matrix[N][M]);

• If a function is used before it is defined, it has to be
declared first.

Function call

function_name(list of arguments)

• Example:
– Function declaration:

int greatest(int A, int B, int C);

– Example function call:

printf(“%d\n”, greatest(10, 20, -10));

Sample 1

Sample 2

Sample 3

Today

• Built-in functions
• Math library (#include<math.h>)

• Stdlib library (#include<stdlib.h>)

CENG 230 - Spring 2015 Sinan Kalkan 14

#include<math.h>

Scope

CENG 230 - Spring 2015 Sinan Kalkan 17

Scope Rules

• File scope
• Identifier defined outside function, known in all

functions

• Used for global variables, function definitions, function
prototypes

• Function scope
• Can only be referenced inside a function body

Scope Rules

• Block scope
• Identifier declared inside a block

• Block scope begins at definition, ends at right brace

• Used for variables, function parameters (local variables
of function)

• Outer blocks "hidden" from inner blocks if there is a
variable with the same name in the inner block

• Function prototype scope
• Used for identifiers in parameter list

Namespaces

• Determines where the definition of variables are
valid!

• Global space.

• main() function space.

• Block structures.

Namespace Example

Output:
a in block structure = 20
a in main() = 10
a in f() = 10
a in g() = 30
a in h() = 0

Storage-based Types of
Variables
Auto vs. register vs. static variables

CENG 230 - Spring 2015 Sinan Kalkan 23

Storage Classes

• Storage class specifiers
• Storage duration – how long an object exists in memory
• Scope – where object can be referenced in program
• Linkage – specifies the files in which an identifier is

known (more in Chapter 14)

• Automatic storage
• Object created and destroyed within its block
• auto: default for local variables

auto double x, y;

• register: tries to put variable into high-speed registers
• Can only be used for automatic variables

register int counter = 1;

Storage Classes

• Static storage
• Variables exist for entire program execution

• Default value of zero

• static: local variables defined in functions.
• Keep value after function ends

• Only known in their own function

• extern: default for global variables and functions
• Known in any function

Parameter passing in
functions

CENG 230 - Spring 2015 Sinan Kalkan 26

Call by Value

• The arguments of the function are just copies of the
passed data!

void f(int a)
{

a = 10 * a;
}
void g(int b)
{

b = 10;
f(b);
printf(“%d”, b);

}

Sample 4

Sample 5

Sample 6

Sample 7

Sample 8

Sample 9

Sample 11

