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 Pre-vision & Low-level vision. 

 Cameras 

 Projective geometry 

 Calibration 

 Early vision 

Today 

 Low-level vision. 
 



.. and, while we are at it: 

What is Marr’s “vision system” 
and how does this course follow 
that? 

First of all, what is ‘low-level’ and 
‘high-level’ vision? 



Low-level     High-level 

Low-level High-level 

• Dense 
• Raw 
• Local 
• Not interpretable 

• Sparse 
• Abstract 
• Global 
• Explicit, interpretable 



 

The environment and what we get 
from it as images. 



The structure of ambient light 

Slide: A. Torralba 



The structure of ambient light 

Slide: A. Torralba 



The Plenoptic Function 

 Q: What is the set of all things that we can ever see? 

 A: The Plenoptic Function (Adelson & Bergen) 

 

Figure by Leonard McMillan 

Slide: A. Efros 



Grayscale snapshot 

 intensity of light  
 Seen from a single view point 

 

P(q,f) 

Slide: A. Efros 



Color snapshot 

is intensity of light  
 Seen from a single view point 

 At a single time 

 As a function of wavelength 

 

P(q,f,l) 

Slide: A. Efros 



A movie 

is intensity of light  
 Seen from a single view point 

 Over time 

 As a function of wavelength 

P(q,f,l,t) 

Slide: A. Efros 



is intensity of light  
 Seen from ANY viewpoint 

 Over time 

 As a function of wavelength 

P(q,f,l,t,VX,VY,VZ) 

Slide: A. Efros 



Vision is to estimate  
the Plenoptic Function. 

I(x,y)                            P(q,f,l,t,VX,VY,VZ) 



Cameras 



The pinhole camera only allows rays from one point in the 
scene to strike each point of the paper. 

Light rays from many different 

parts of the scene strike the same 

point on the paper. 

Forsyth & Ponce 

Slide: A. Torralba 



Construct your own camera 

http://www.pinhole.org/make/index.cfm 



Effect of pinhole size 

Wandell, Foundations of Vision, Sinauer, 1995 Slide: A. Torralba 



Effect of pinhole size 

Wandell, Foundations of Vision, Sinauer, 1995 

 

Slide: A. Torralba 



 

Extending Cameras 

Slide: L. Davis, R. Duraiswami, D. DeMenthon, and C. Fermüller 



 

Extending Cameras 

Slide: L. Davis, R. Duraiswami, D. DeMenthon, and C. Fermüller 



 

Slide: L. Davis, R. Duraiswami, D. DeMenthon, and C. Fermüller 



 

Slide: L. Davis, R. Duraiswami, D. DeMenthon, and C. Fermüller 



 

World  
Coordinates 

Image/Film 
Coordinates 

Camera 
Coordinates 

Pixel 
Coordinates 

f 

Slide: R. Collins 



 

Slide: R. Collins 



Basic Perspective Projection 

Slide: R. Collins 



 

How to represent this as a matrix 
equation? 

Homogeneous Coordinates 

Slide: R. Collins 



 Add another dimension to the existing 
coordinate. 
 2D case: (x,y)   (x’, y’, z’) 

 3D case: (x, y, z)  (x’, y’, z’, w’) 

 such that: 
 2D case: x = x’ / z’   and  y = y’ / z’ 

 3D case: x = x’ / w’  and  y = y’ / w’  and  z = z’ / w’ 

 So, (x, y)  (x, y, 1) = (2x, 2y, 2) = (3x, 3y, 3) … 
 

What is a ‘homogeneous coordinate’? 
Sounds fishy… 



 

Slide: R. Collins 



 

Slide: R. Collins 



 

Example: A simple stereo system 

Slide: R. Collins 



 

Slide: R. Collins 



 

Slide: R. Collins 



 

Slide: R. Collins 



 

Intrinsic Camera Parameters: 
Affine Transformation 

Slide: R. Collins 



 

Intrinsic Camera Parameters 

Slide: R. Collins 



 

Intrinsic Camera Parameters 

Slide: R. Collins 



 

Intrinsic Camera Parameters 

Slide: R. Collins 



 

Slide: R. Collins 



 

Slide: R. Collins 



 

Slide: R. Collins 



 

Slide: R. Collins 



 

Slide: R. Collins 



 

Slide: R. Collins 



 

Slide: R. Collins 



 

Slide: R. Collins 



 

Slide: R. Collins 



 

Slide: R. Collins 



 

Slide: R. Collins 



 

Slide: R. Collins 



 

Slide: R. Collins 



 

Slide: R. Collins 



 

Slide: R. Collins 



 

Slide: R. Collins 



 

Slide: R. Collins 



 Euclidean geometry keeps objects/shapes as they are 

 Projective geometry describes things as they appear 

Euclidean Geometry vs  
Projective Geometry 



 

Picture: http://www.nlm.nih.gov/medlineplus/ency/imagepages/1094.htm 



Camera Calibration 



 Determine: 

 Focal length 

 Position of the image center 

 Scaling for the row and the column pixels 

 Skew 

 Lens Distortion 

 Why important? 

 For 3D reconstruction. 

 Hand-eye coordination  robotic manipulation. 

Camera Calibration 



 

Camera Calibration 



Camera calibration 
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So for each feature point, i, we have: 
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From before, we had these equations relating image positions, 
u,v, to points at 3-D positions P (in homogeneous coordinates): 

W. Freeman 



Camera calibration 
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Stack all these measurements of  i=1…n points  
 
 
 
 
into a big matrix: 
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W. Freeman 
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Showing all the elements: 

In vector form: 
Camera calibration 

W. Freeman 



Once you have the M matrix, can recover the 
intrinsic and extrinsic parameters as in 
Forsyth&Ponce, sect. 3.2.2. 

Camera calibration 

W. Freeman 



 

 What did I skip? 

 Image formation: 

 Light, Energy, Color 

End of  
Cameras & Projective Geometry & 

Calibration 



 That is just the beginning… 

We have the image… so, what? 



 

Slide: M. J. Black 



 

A Crash Tutorial on  
Filtering, Convolution, The Universe and 

everything 



Filtering 

g [m,n] f [m,n] 

Slide: A. Torralba 



Linear filtering 
g [m,n] f [m,n] 

 

f [m,n]  h[m,n,k,l]g[k,l]
k,l


For a linear system, each output is a linear combination of all the input values: 

F = H G 

c = c 

In matrix form: 

Slide: A. Torralba 



Linear filtering 
g [m,n] f [m,n] 

 

f [m,n]  I  g  h[m  k,n  l]g[k,l]
k,l



= 

Slide: A. Torralba 



Linear filtering 
g [m,n] f [m,n] 

 

f [m,n]  I  g  h[m  k,n  l]g[k,l]
k,l



 


-1 2 -1 

-1 2 -1 

-1 2 -1 

g[m,n] 

h[m,n] 
f[m,n] 

= 

111 115 113 111 112 111 112 111 

135 138 137 139 145 146 149 147 

163 168 188 196 206 202 206 207 

180 184 206 219 202 200 195 193 

189 193 214 216 104 79 83 77 

191 201 217 220 103 59 60 68 

195 205 216 222 113 68 69 83 

199 203 223 228 108 68 71 77 

m=0  1  2  … 
? ? ? ? ? ? ? ? 

? -5 9 -9 21 -12 10 ? 

? -29 18 24 4 -7 5 ? 

? -50 40 142 -88 -34 10 ? 

? -41 41 264 -175 -71 0 ? 

? -24 37 349 -224 -120 -10 ? 

? -23 33 360 -217 -134 -23 ? 

? ? ? ? ? ? ? ? 

Slide: A. Torralba 



Impulse 

 



0 0 0 0 0 

0 0 0 0 0 

0 0 1 0 0 

0 0 0 0 0 

0 0 0 0 0 

 

f [m,n]  I  g  h[m  k,n  l]g[k,l]
k,l



g[m,n] 

h[m,n] 

f[m,n] 

= 

Slide: A. Torralba 



Shifts 

 



0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 1 

0 0 0 0 0 

0 0 0 0 0 

 

f [m,n]  I  g  h[m  k,n  l]g[k,l]
k,l



g[m,n] 

h[m,n] 

f[m,n] 

= 

2pixels 

Slide: A. Torralba 



Rectangular filter 

 



g[m,n] 

h[m,n] 

= 

f[m,n] 

Slide: A. Torralba 



Rectangular filter 

 



g[m,n] 

h[m,n] 

= 

f[m,n] 

Slide: A. Torralba 



Rectangular filter 

 



g[m,n] 

h[m,n] 

= 

f[m,n] 

Slide: A. Torralba 



Sharpening example 

c
o
e
ff
ic

ie
n
t 

-0.35 
original 

8 

Sharpened 

(differences are 

accentuated;  constant 

areas are left untouched). 

1.7 

filter 

11.2 

-0.25 

8 

result 

Slide: A. Torralba 



Sharpening 

before after 

Slide: A. Torralba 



Gaussian filter 

s=1 

s=2 

s=4 

Slide: A. Torralba 



Global to Local Analysis 

Dali 

Slide: A. Torralba 



[-1 1] 

 



g[m,n] 

h[m,n] 

= 

f[m,n] 

[-1, 1] 

Slide: A. Torralba 



[-1 1]T 

 



g[m,n] 

h[m,n] 

= 

f[m,n] 

[-1, 1]T 

Slide: A. Torralba 



Test it yourselves!! 

• I will upload this piece of code to the webpage. 



 

Test it yourselves!! 



Editing the edge image 

[1 -1] 

[1 -1]T 

Slide: A. Torralba 



 Unfortunately, we don’t have a concrete definition. 

 Here is a try: 

 The first representation/impression extracted from 
‘images’. 

 Involves edges, corners, textures, optic flow, disparity. 

 Local processing!! 

 Incomplete, ambiguous information. 

Early Vision 



 

Picture: http://articles-and-essays.blogspot.com/2010/09/new-finding-on-blindsight.html 



What is an edge? 

Slide: A. Torralba 



What is an edge? 

96 

Depth 

discontinuity 

Material change 

Texture boundary 

Paint 

Slide: A. Torralba 



Edges 

Slide: A. Torralba 



98 

Human boundaries Gaussian gradient 

boundaries 

Slide: A. Torralba 



What is an edge? 



My previous investigations… 

Range Image 

Color Image 
(a) Gap discontinuity map. 

(b) Orientation discontinuity map. 

(c) Irregular gap discont. map. 

(d) Combination of (a), (b) and (c). 

(e) Local image structures. 

 

Kalkan et al., IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2006. 



 

Kalkan et al., IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2006. 



Slide: A. Torralba 
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Scale 

Slide: A. Torralba 



The scale of the smoothing filter affects derivative estimates, and also 

the semantics of the edges recovered. 

1 pixel 3 pixels 7 pixels 

Forsyth, 2002 
Slide: A. Torralba 
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Magnitude:  

 

hx(x,y)
2hy(x,y)

2

Angle: 

 

arctan
hy (x,y)

hx (x,y)

 

 
 

 

 
 

Edge strength 

Edge normal 

Slide: A. Torralba 



Issues: 

   1) The gradient magnitude at different scales is different; which should 

       we choose? 

   2) The gradient magnitude is large along thick trail; how 

        do we identify the significant points? 

   3) How do we link the relevant points up into curves? 

   4) Noise. 

Forsyth, 2002 

Gradient magnitudes at scale 1 Gradient magnitudes at scale 2 

The scale of the smoothing filter affects derivative estimates, and also 

the semantics of the edges recovered. 
Slide: A. Torralba 



We wish to mark points along the curve where the magnitude is biggest. 

We can do this by looking for a maximum along a slice normal to the curve 

(non-maximum suppression).  These points should form a curve.  There are 

then two algorithmic issues: at which point is the maximum, and where is the 

next one? 

Forsyth, 2002 
Slide: A. Torralba 



Non-maximum 

suppression 

 

At q, we have a 

maximum if the 

value is larger 

than those at 

both p and at r. 

Interpolate to 

get these 

values. 

Forsyth, 2002 



Examples:  
Non-Maximum Suppression 

courtesy of G. Loy 

Original image Gradient magnitude 
Non-maxima  
suppressed 

Slide credit: Christopher Rasmussen  



Predicting 

the next 

edge point 

Assume the 

marked point is an 

edge point.  Then 

we construct the 

tangent to the edge 

curve (which is 

normal to the 

gradient at that 

point) and use this 

to predict the next 

points (here either 

r or s).  

Forsyth, 2002 
Slide: A. Torralba 



Closing edge gaps 

 Check that maximum value of gradient value is 
sufficiently large 

 drop-outs?  use hysteresis 

 use a high threshold to start edge curves and a low 
threshold to continue them. 

G
ra

d
ie

n
t 
m

a
g
n
it
u
d
e

 

t1 

t2 

Labeled as edge 
Pixel number in 

linked list along 

gradient maxima 

Not an edge 

Slide: A. Torralba 



Example: Canny Edge Detection 

courtesy of G. Loy 

gap is gone 

Original 
image 

Strong 
edges 

only 

Strong + 
connected 
weak edges 

Weak 
edges 



edges 

 Issues:   

 isn’t it way too early to be thresholding, based on local, 
low-level pixel information alone? 

Slide: A. Torralba 



 

Slide: A. Torralba 



 

115 
Slide: A. Torralba 



 

Effect of thresholding 

Kalkan et al., Int Conf. on Computer Vision Theory and Applications, 2008. 



 

Effect of thresholding 

Kalkan et al., Int Conf. on Computer Vision Theory and Applications, 2008. 





  119 

Slides credit: Jitendra Malik 
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Slides credit: Jitendra Malik 



  121 

Slides credit: Jitendra Malik 



Martin et al., PAMI, 2004. 



 

Gabor Filters, Efficient Encoding and 
Edges 



Sensory Coding 

 Efficient Coding Hypothesis  
 “The goal of early vision (or, early visual 

processing) is to provide an efficient 
representation of the incoming visual 
signal” 

 (Field, 1987; Hateren, 1998; Bell & 
Sejknowski, 1996, 1997; Olshausen & 
Field, 1996; Hyvarinen, 2010) 

 For a review & critics: 
 (Simoncelli & Olshausen, 2001; 

Simoncelli, 2003) 

(Olshausen & Field, 1996) 

(Kalkan et al., 2008) 

(Hyvarinen, 2010) 

Independent Component Analysis: 



Gabor Filter 



 

Gabor Filters vs.  
Cortical Receptive Fields  



Retinal Receptive Fields 

Receptive field structure in ganglion cells: 

On-center Off-surround  

Stimulus condition Electrical response 

Time

Response

© Stephen E. Palmer, 2002 



Receptive field structure in ganglion cells: 

On-center Off-surround  

Stimulus condition Electrical response 

Time

Response

Retinal Receptive Fields 

© Stephen E. Palmer, 2002 



Receptive field structure in ganglion cells: 

On-center Off-surround  

Stimulus condition Electrical response 

Time

Response

Retinal Receptive Fields 

© Stephen E. Palmer, 2002 



Receptive field structure in ganglion cells: 

On-center Off-surround  

Stimulus condition Electrical response 

Time

Response

Retinal Receptive Fields 

© Stephen E. Palmer, 2002 



Receptive field structure in ganglion cells: 

On-center Off-surround  

Stimulus condition Electrical response 

Time

Response

Retinal Receptive Fields 

© Stephen E. Palmer, 2002 



Receptive field structure in ganglion cells: 

On-center Off-surround  

Stimulus condition Electrical response 

Time

Response

Retinal Receptive Fields 

© Stephen E. Palmer, 2002 



RF of On-center Off-surround cells  

Receptive FieldNeural Response

Center

Surround

On      Off

Response Profile

on-center

off-surround

Horizontal Position

Firing
Rate

Retinal Receptive Fields 

© Stephen E. Palmer, 2002 



RF of Off-center On-surround cells  

Receptive Field

Horizontal Position

on-surround

off-center

Response Profile

Firing
Rate

Retinal Receptive Fields 

© Stephen E. Palmer, 2002 

Center

Surround

On      Off

Neural Response

Surround 

  Center   



Cortical Receptive Fields 

Simple Cells: “Line Detectors” 

B.  Dark Line Detector

   Horizontal Position

Firing
Rate

© Stephen E. Palmer, 2002 



Cortical Receptive Fields 

Simple Cells: “Edge Detectors” 

C.  Dark-to-light Edge Detector

 Horizontal Position

Firing
Rate

D.  Light-to-dark Edge Detector

   Horizontal Position

Firing
Rate

© Stephen E. Palmer, 2002 



So, what does it say? 

 The early ‘low-level filtering’ achieves efficient 
encoding by finding intensity changes. 

 With Gabor-like filters. 

 This is one of the important evidence for the 
hypothesis that our visual system is tuned to 
the statistical regularities in the environment. 



Summary of this week 

Topics 

 Cameras, projective 
geometry, 
calibration 

 Filtering 

 Edges 

 

Problems 

 Scale for filtering 

 Thresholding 

 Noisy, incomplete, 
ambiguous 
information 



 Ch1 & Ch2 from “Computer Vision: A Modern 
Approach” 

 

Reading 



1. Close your left 
eye. 

2. Stare at the red 
spot. 

3. Move towards 
the image until 
the white spot 
disappears. 

Illusion of the week 
 

http://www.vonrechenberg.ch/blindspots.html 


