CEng 583 - Computational Vision

2012 Spring Week – 2

5th of March, 2012

Tentative Schedule:

Week & Date		Торіс		
0	20 th of Feb.	No Lectures		
1	27 th of Feb.	Introduction to the Course & Vision.		
		What is vision? What are its goals and problems? What are		
		the main processing stages?		
2	5 th of March	Low-level Vision.		
		Cameras. Projective geometry. Calibration.		
3	12 th of March	Early Vision.		
		Edges. Corners. Texture. Segmentation. Optic Flow.		
4	19 th of March	3D Vision.		
4		Monocular and binocular cues. 3D reconstruction.		
5	26 th of March	Applications.		
		Video surveillance. Human behaviour understanding. Object		
		recognition. Image/video retrieval. Image annotation.		
6	2 nd of April	Paper presentations with theme: Monocular depth		
		estimation.		
7	9 th of April	Paper presentations with theme: Image annotation.		
8	16 th of April	Paper presentations with theme: Object/shape modelling.		
		Object recognition.		
9	23 rd of April	Paper presentations with theme: Feature Descriptors.		
10	30 th of April	Paper presentations with theme: Context. Saliency.		
		Attention.		
11	7 th of May	Project Presentations		
12	14 th of May	Project presentations		
13	21 st of May	Project presentations		
14	28 th of May	Project presentations		

* Poewieicen &istonv-level vision.

- * Cameras
- * Projective geometry
- * Calibration
- * Early vision

First of all, what is 'low-level' and 'high-level' vision?

 *.. and, while we are at it:
 *What is Marr's "vision system" and how does this course follow that?

Low-level \rightarrow High-level

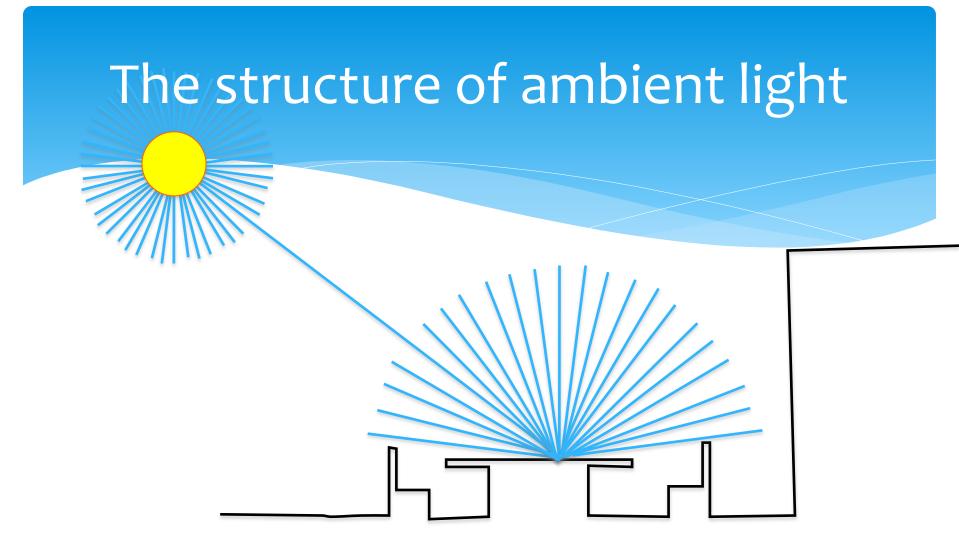
Low-level

- Dense
- Raw
- Local
- Not interpretable

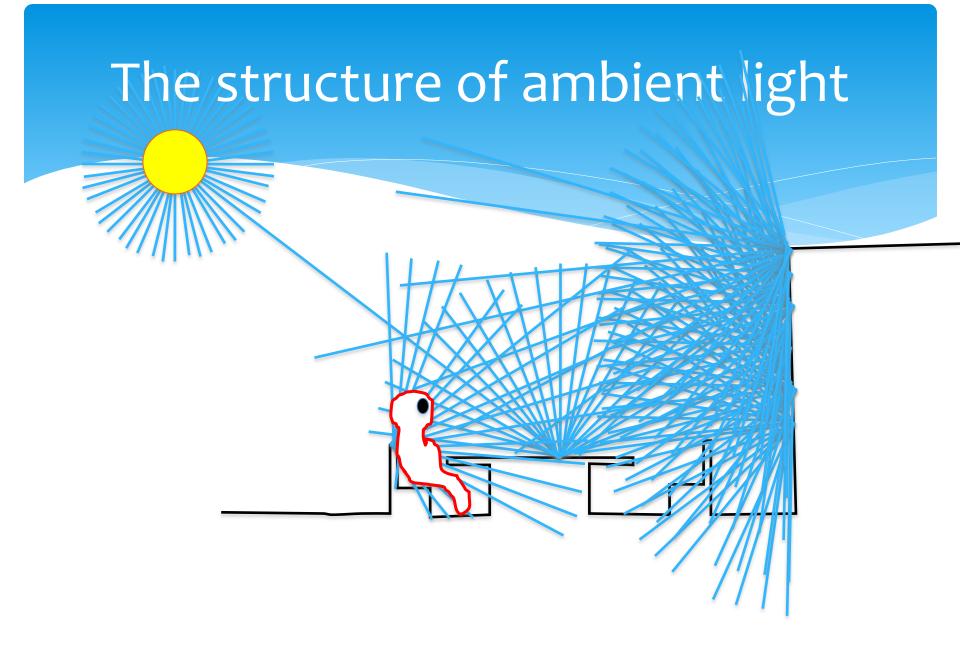
- Sparse
- Abstract
- Global
- Explicit, interpretable

High-level

The environment and what we get from it as images.



Slide: A. Torralba



Slide: A. Torralba

The Plenoptic Function

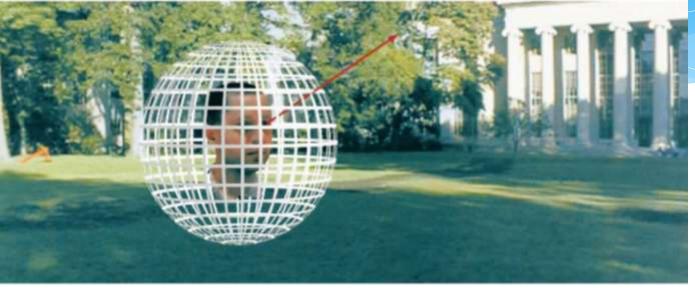
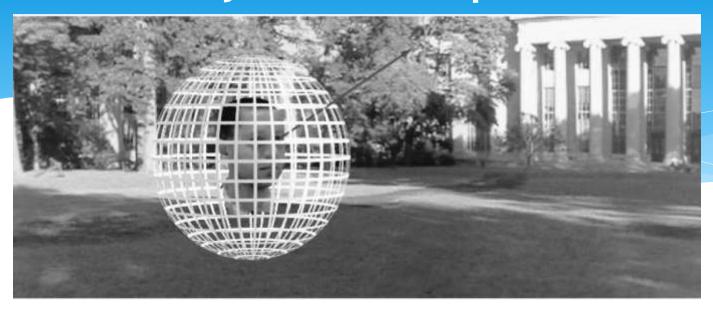


Figure by Leonard McMillan

* Q: What is the set of all things that we can ever see?* A: The Plenoptic Function (Adelson & Bergen)

Grayscale snapshot



 $P(\theta, \phi)$

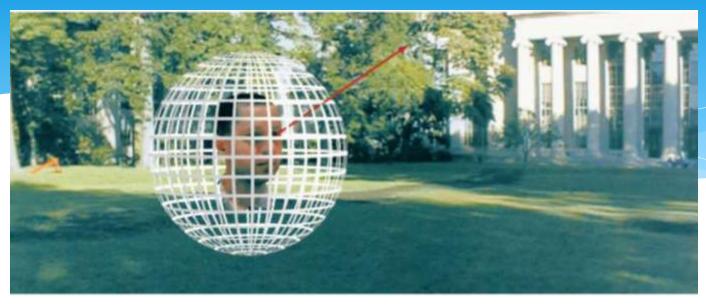
- * intensity of light
 - * Seen from a single view point

Color snapshot

 $P(\theta,\phi,\lambda)$

*is intensity of light

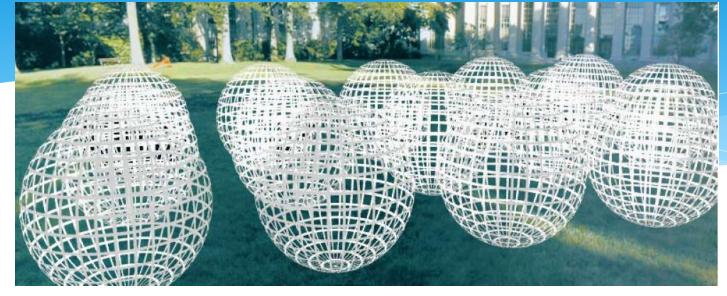
- * Seen from a single view point
- * At a single time
- * As a function of wavelength



 $P(\theta, \phi, \lambda, t)$

*is intensity of light

- * Seen from a single view point
- * Over time
- * As a function of wavelength



$P(\theta,\phi,\lambda,t,V_X,V_Y,V_Z)$

*is intensity of light

- * Seen from ANY viewpoint
- * Over time
- * As a function of wavelength

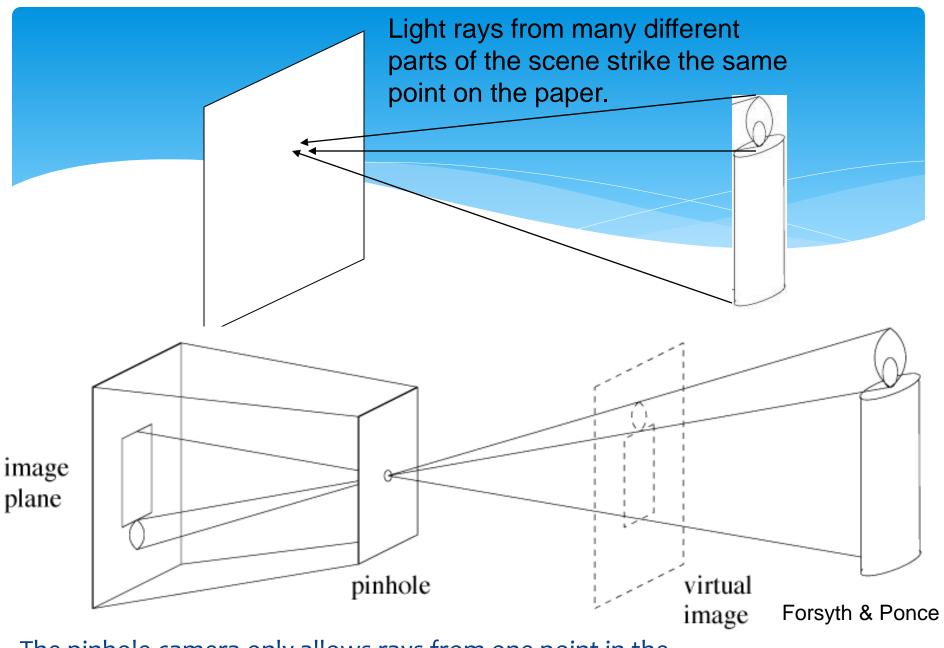
Vision is to estimate the Plenoptic Function.

I(x,y)

 \rightarrow

 $P(\theta, \phi, \lambda, t, V_X, V_Y, V_Z)$

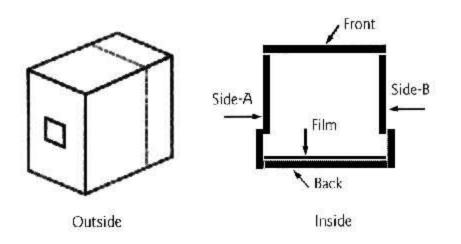
Cameras

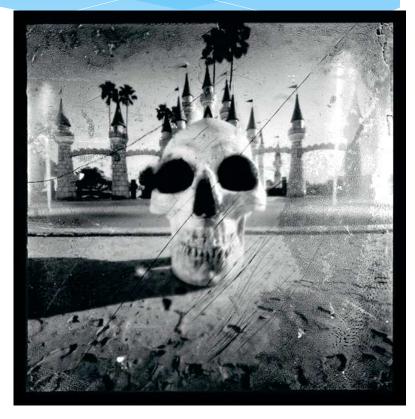


The pinhole camera only allows rays from one point in the scene to strike each point of the paper.

Slide: A. Torralba

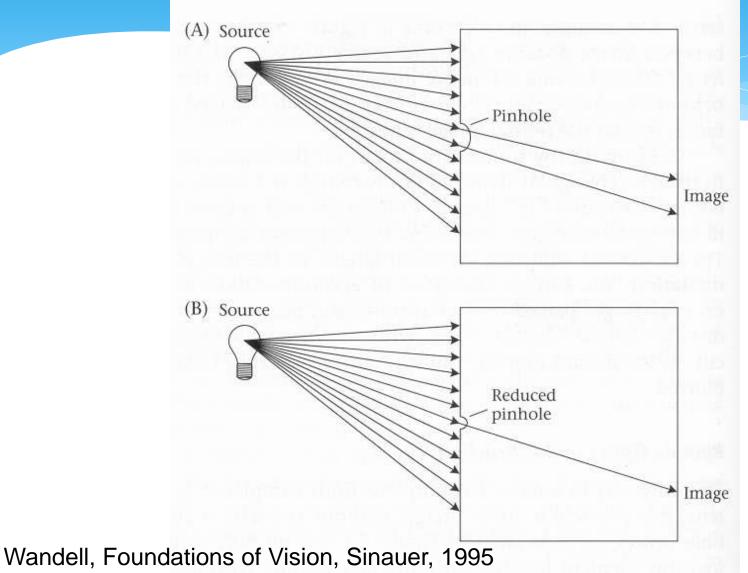
Construct your own camera





http://www.pinhole.org/make/index.cfm

Effect of pinhole size



Slide: A. Torralba

Effect of pinhole size

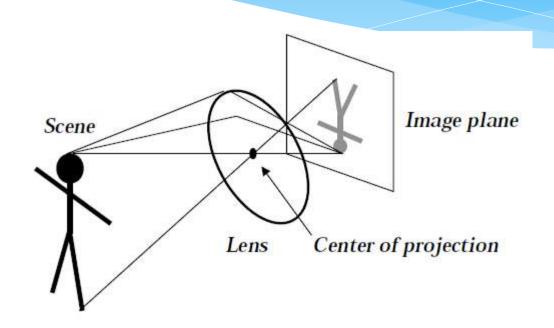
(A)	(B)	(C)
	M	
	11	

2.18 DIFFRACTION LIMITS THE QUALITY OF PINHOLE OPTICS. These three images of a bulb filament were made using pinholes with decreasing size. (A) When the pinhole is relatively large, the image rays are not properly converged, and the image is blurred.
(B) Reducing the size of the pinhole improves the focus. (C) Reducing the size of the pinhole further worsens the focus, due to diffraction. From Ruechardt, 1958.

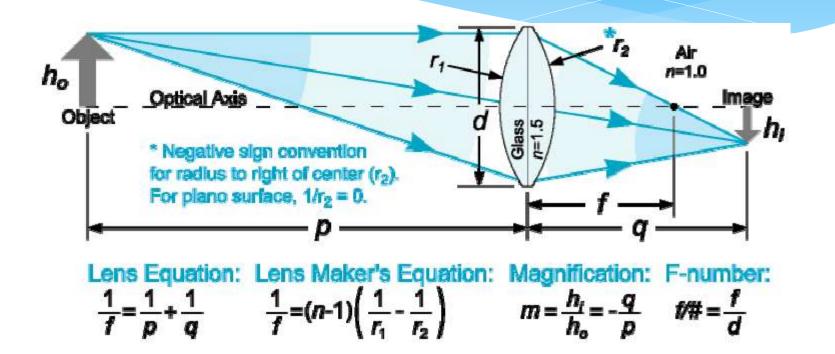
Wandell, Foundations of Vision, Sinauer, 1995

Slide: A. Torralba

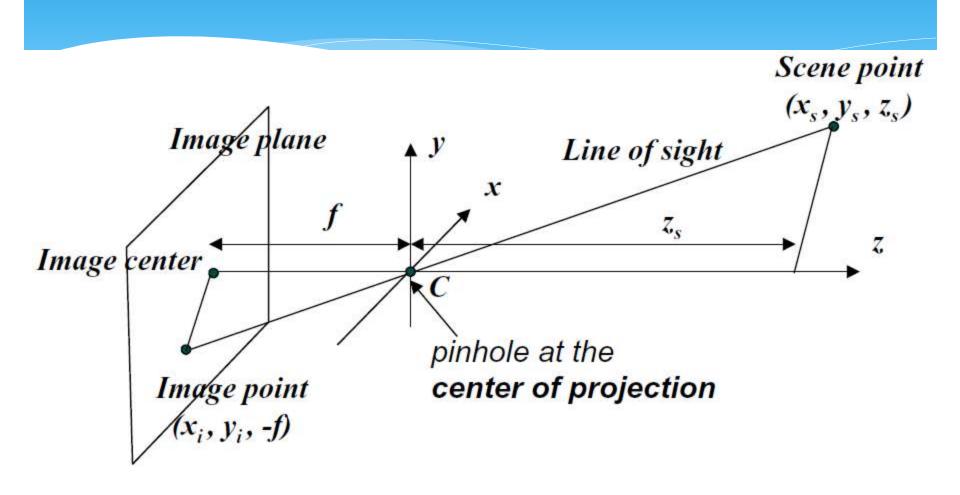
Extending Cameras



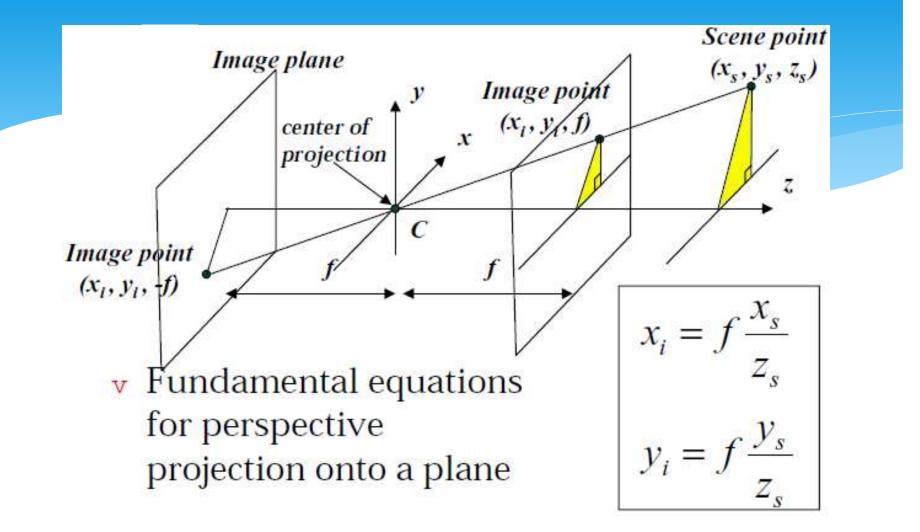
Extending Cameras

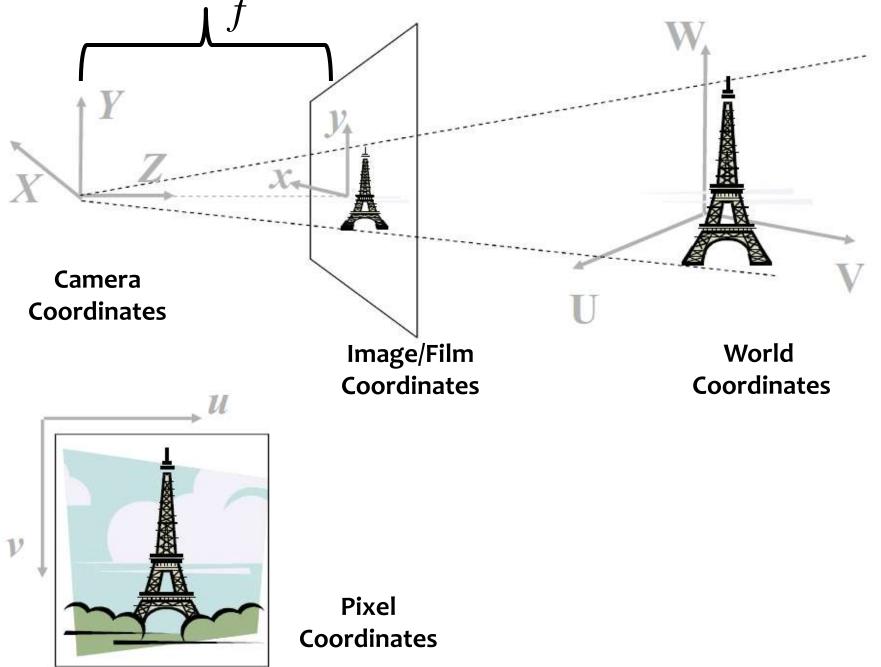


Slide: L. Davis, R. Duraiswami, D. DeMenthon, and C. Fermüller

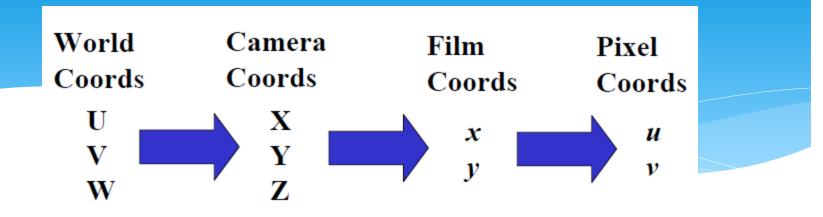


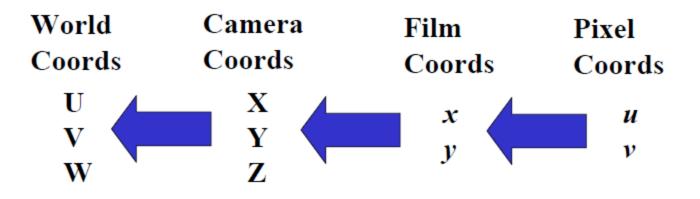
Slide: L. Davis, R. Duraiswami, D. DeMenthon, and C. Fermüller



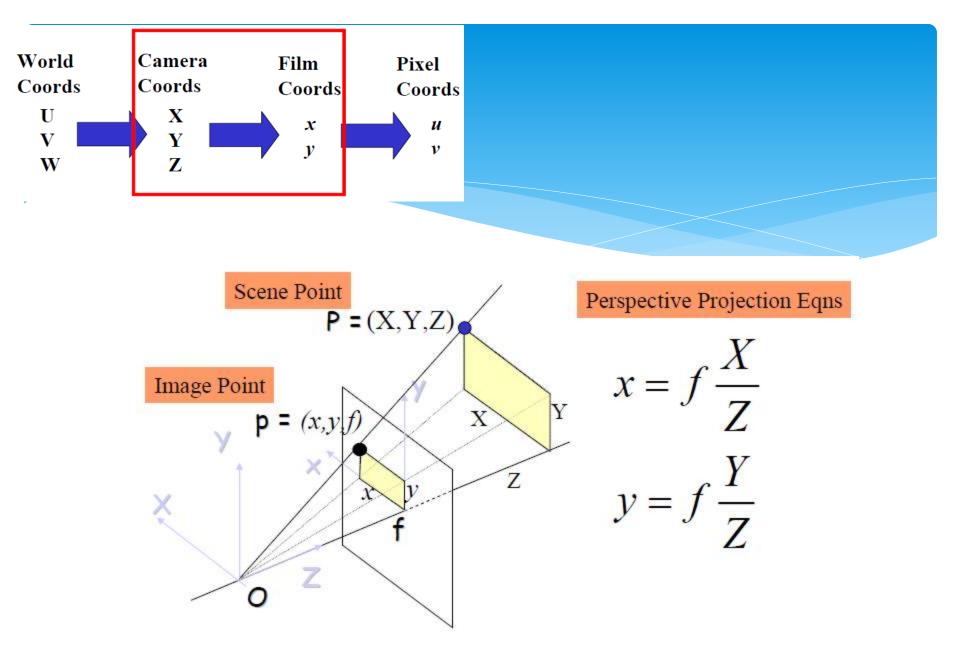


Slide: R. Collins

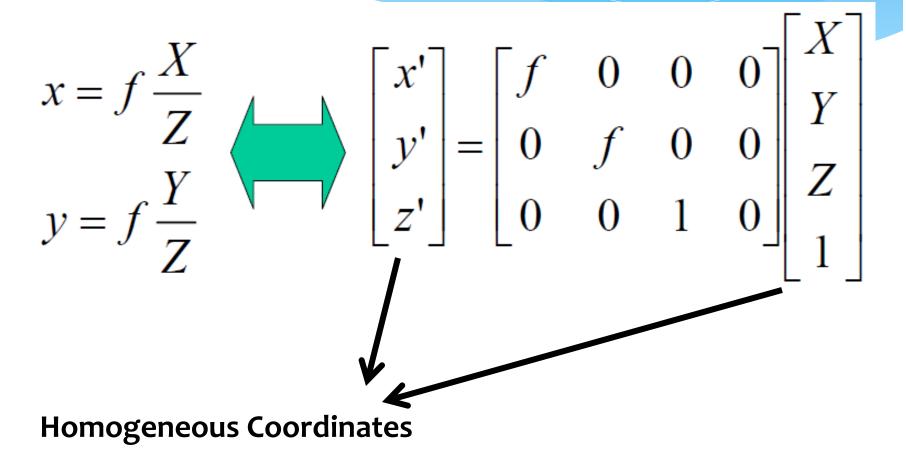




Slide: R. Collins



How to represent this as a matrix equation?



What is a 'homogeneous coordinate'? Sounds fishy...

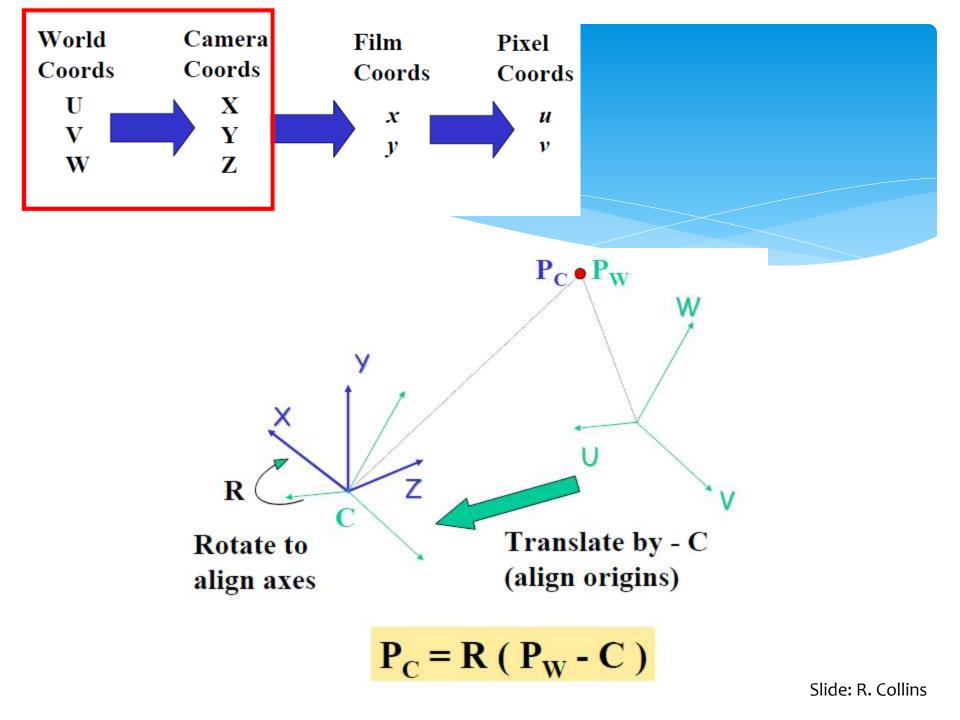
- * Add another dimension to the existing coordinate.
 - * 2D case: $(x,y) \rightarrow (x', y', z')$
 - * 3D case: $(x, y, z) \rightarrow (x', y', z', w')$

* such that:

* 2D case: x = x' / z' and y = y' / z'

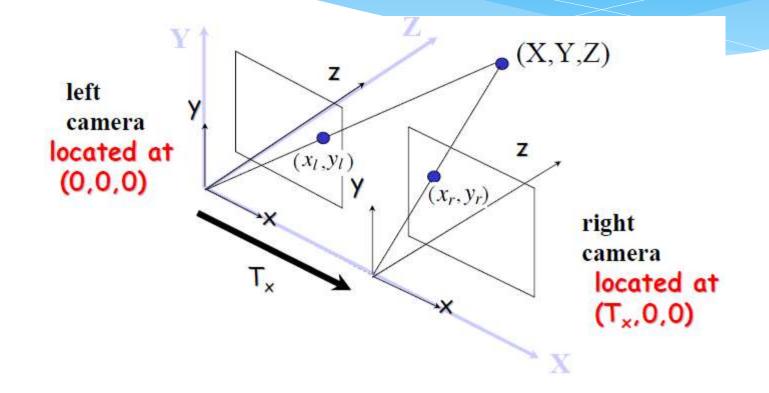
* 3D case: x = x' / w' and y = y' / w' and z = z' / w'

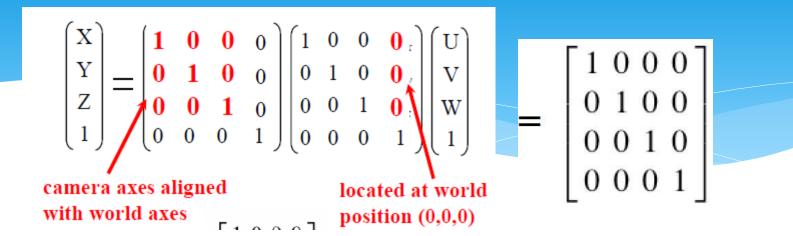
* So, $(x, y) \rightarrow (x, y, 1) = (2x, 2y, 2) = (3x, 3y, 3) \dots$



$$\begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} = \begin{pmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & -c_x \\ 0 & 1 & 0 & -c_y \\ 0 & 0 & 1 & -c_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} U \\ V \\ W \\ 1 \end{pmatrix}$$

Example: A simple stereo system





Left camera $\begin{bmatrix}
x_l \\
y_l \\
1
\end{bmatrix} \sim
\begin{bmatrix}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
X \\
Y \\
Z \\
1
\end{bmatrix}$ $x_l = f \frac{X}{Z} \quad y_l = f \frac{Y}{Z}$

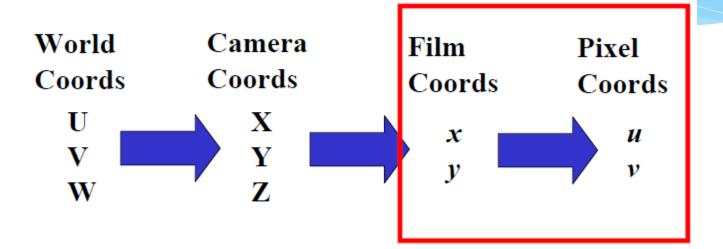
$$\begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 - T_x \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} U \\ V \\ W \\ 1 \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 & -T_x \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
camera axes aligned located at world with world axes
$$\begin{bmatrix} 1 & 0 & 0 & -T_x \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Right camera $\begin{bmatrix}
x_r \\
y_r \\
1
\end{bmatrix} \sim
\begin{bmatrix}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & -T_x \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
X \\
Y \\
Z \\
1
\end{bmatrix}$ $x_r = f \frac{X - T_x}{Z} \quad y_r = f \frac{Y}{Z}$

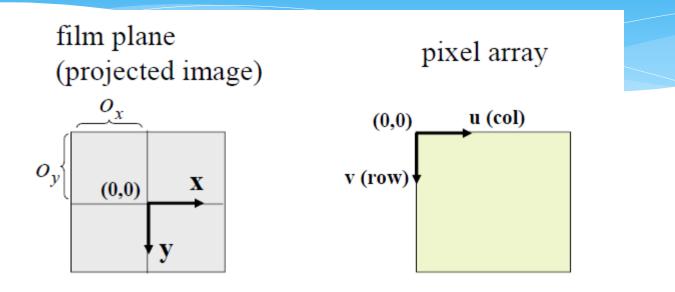
 $\begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} = \begin{pmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & -c_x \\ 0 & 1 & 0 & -c_y \\ 0 & 0 & 1 & -c_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} U \\ V \\ W \\ 1 \end{pmatrix}$ $\begin{pmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$

Slide: R. Collins

Intrinsic Camera Parameters: Affine Transformation



Intrinsic Camera Parameters

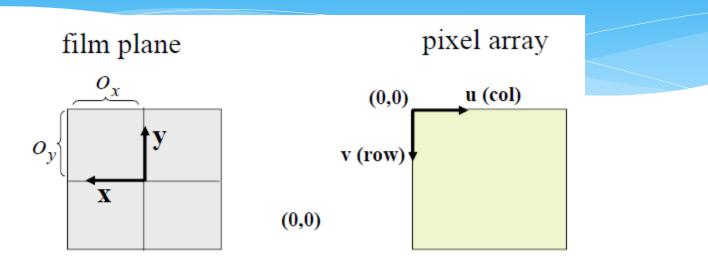


$$u = f\frac{X}{Z} + o_x \qquad v = f\frac{Y}{Z} + o_y$$

 o_x and o_y called image center or principle point

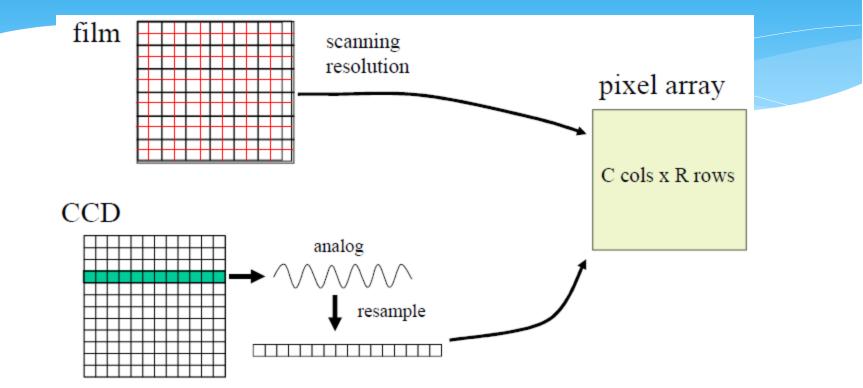
Slide: R. Collins

Intrinsic Camera Parameters



$$u = -f\frac{X}{Z} + o_x \quad v = -f\frac{Y}{Z} + o_y$$

Intrinsic Camera Parameters

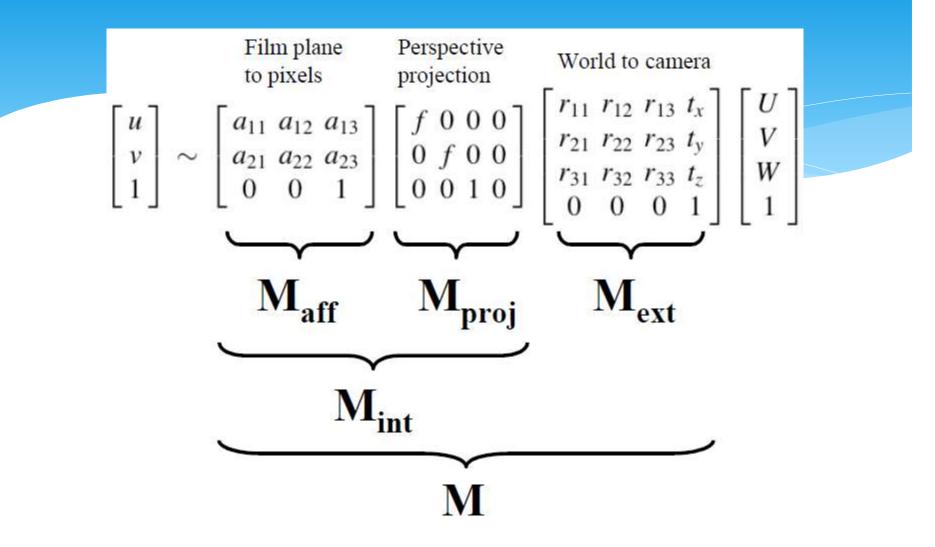


$$u = \frac{1}{\mathbf{s}_{x}} f \frac{X}{Z} + o_{x} \quad v = \frac{1}{\mathbf{s}_{y}} f \frac{Y}{Z} + o_{y}$$

Adding the intrinsic parameters into the perspective projection matrix:

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} f/s_x & 0 & o_x & 0 \\ 0 & f/s_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

 $\begin{bmatrix} \mathbf{v} \end{bmatrix}$



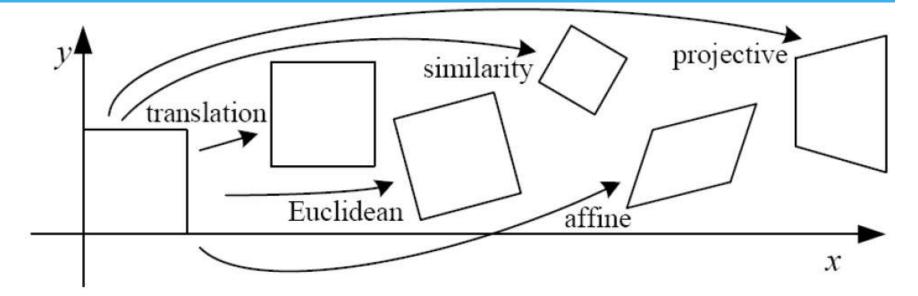
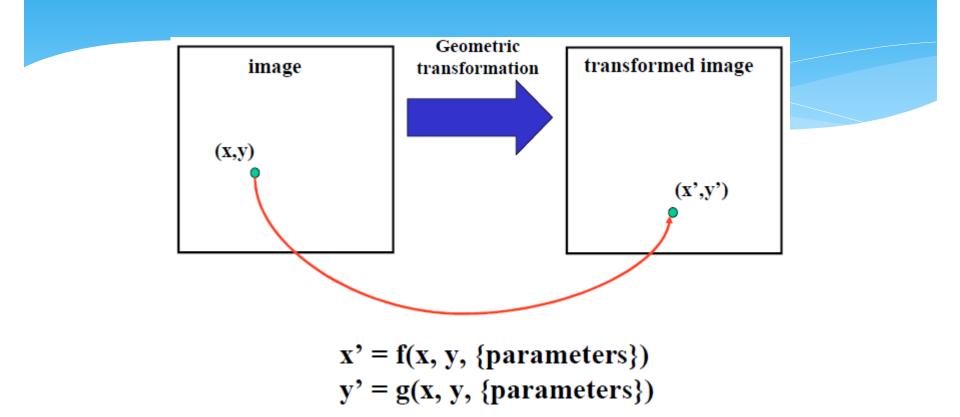
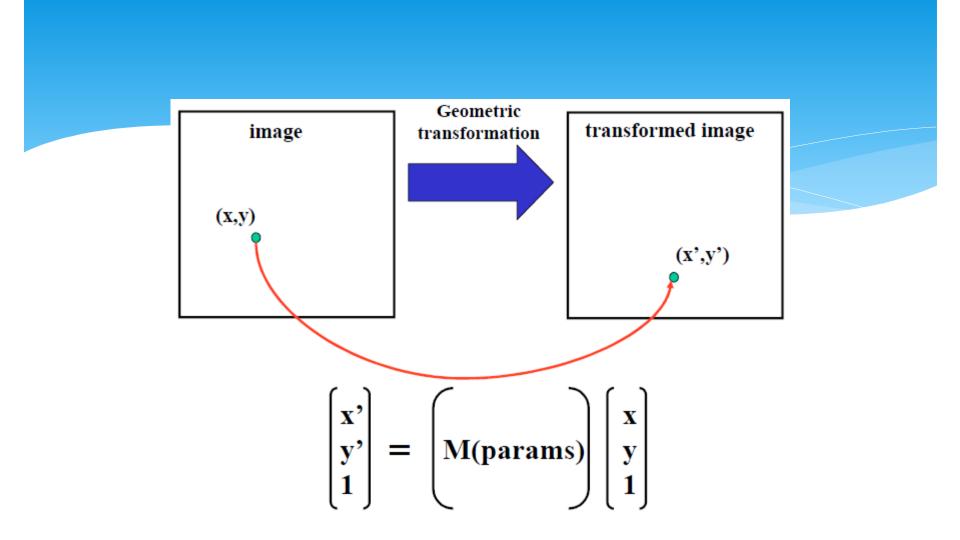
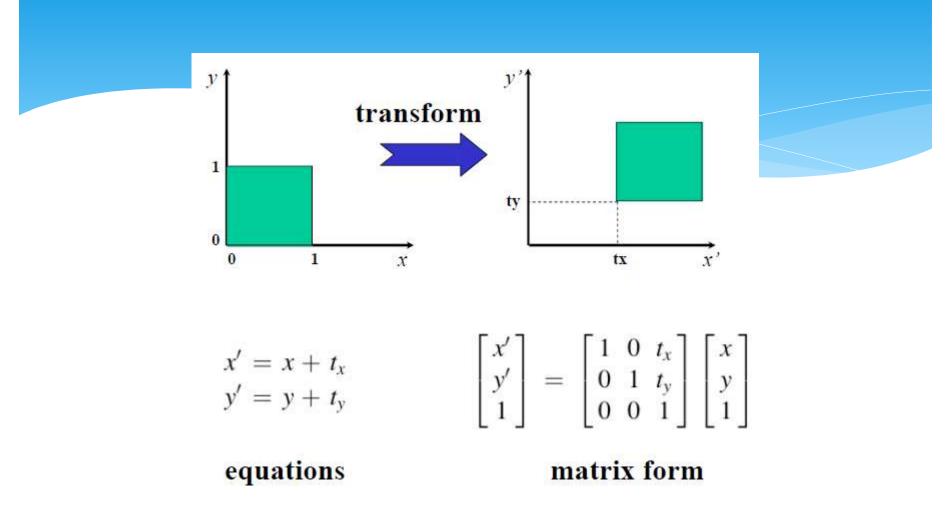


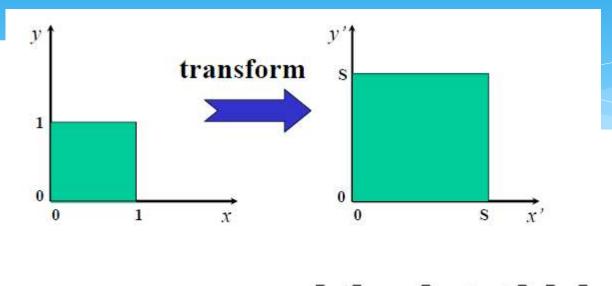
FIGURE 1. Basic set of 2D planar transformations

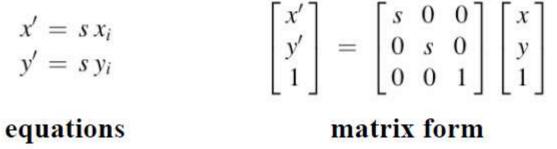
from R.Szeliski

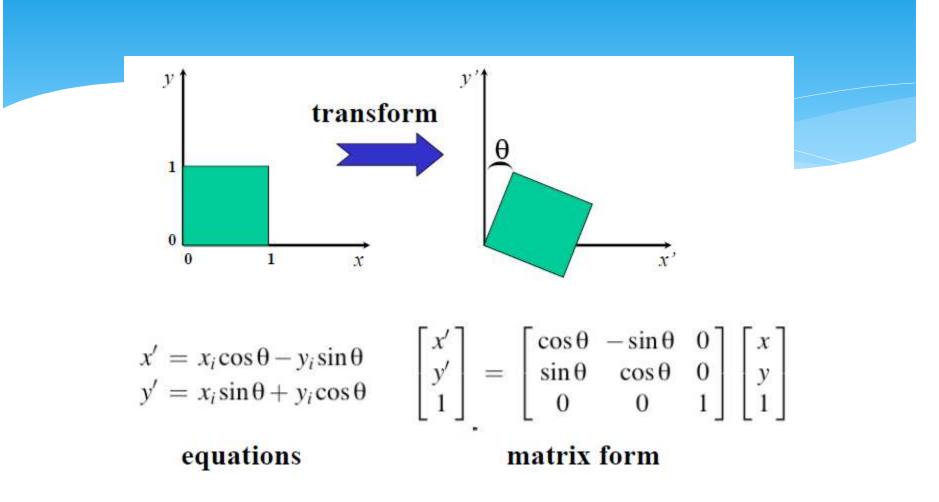


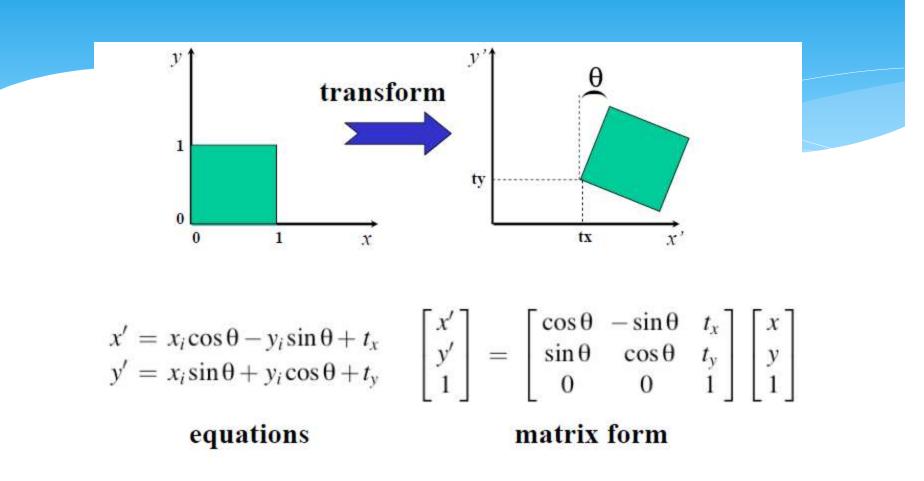


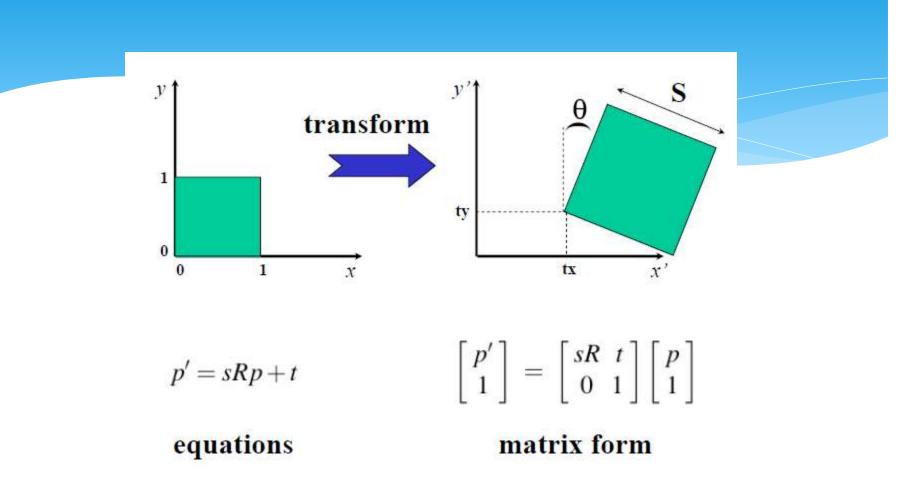


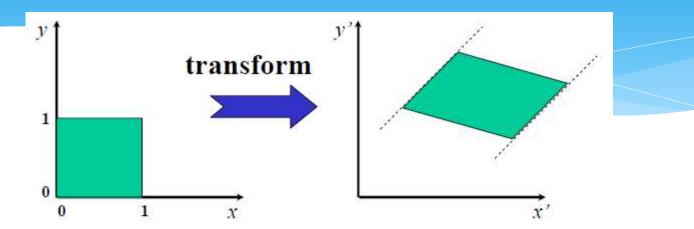








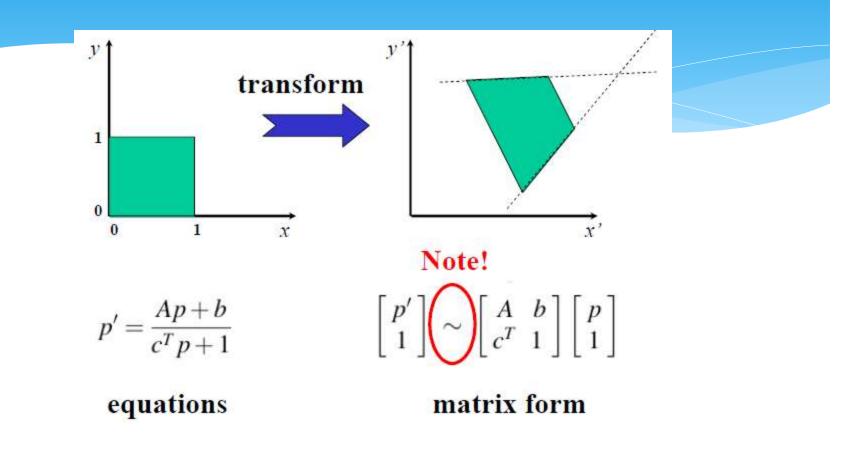


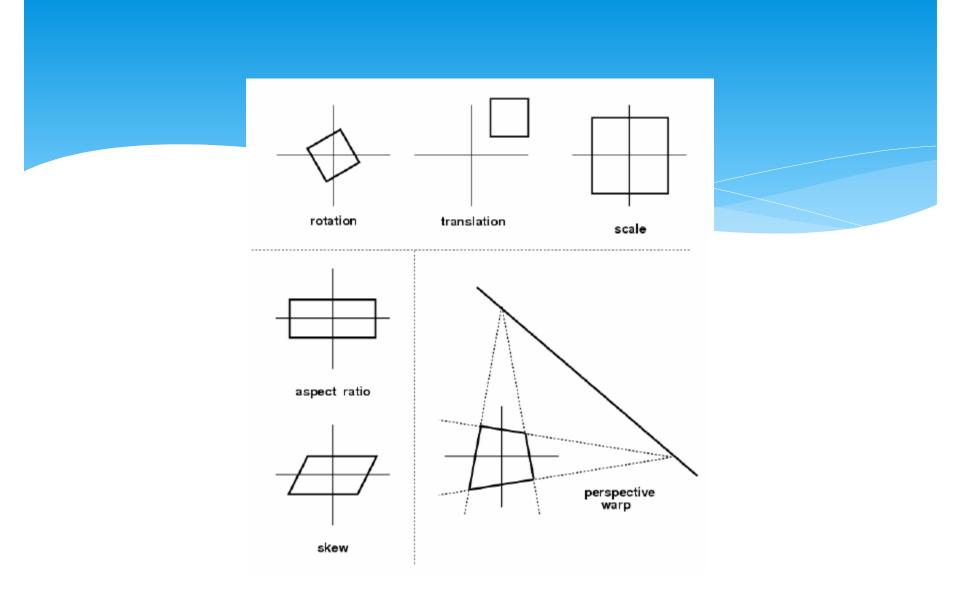


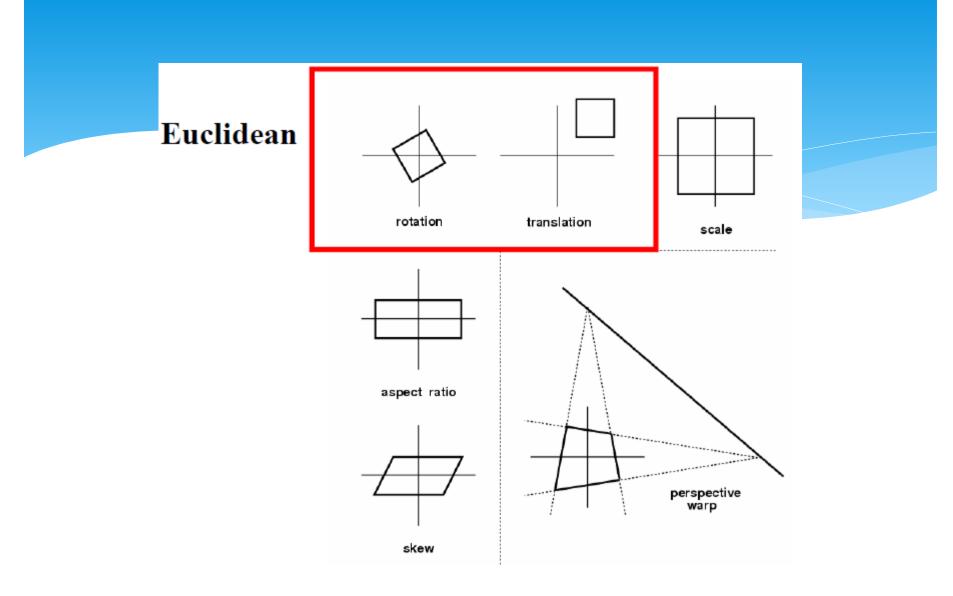
p' = Ap + b	$\left[egin{array}{c} p' \\ 1 \end{array} ight] =$	$\begin{bmatrix} A & b \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} p\\1 \end{bmatrix}$

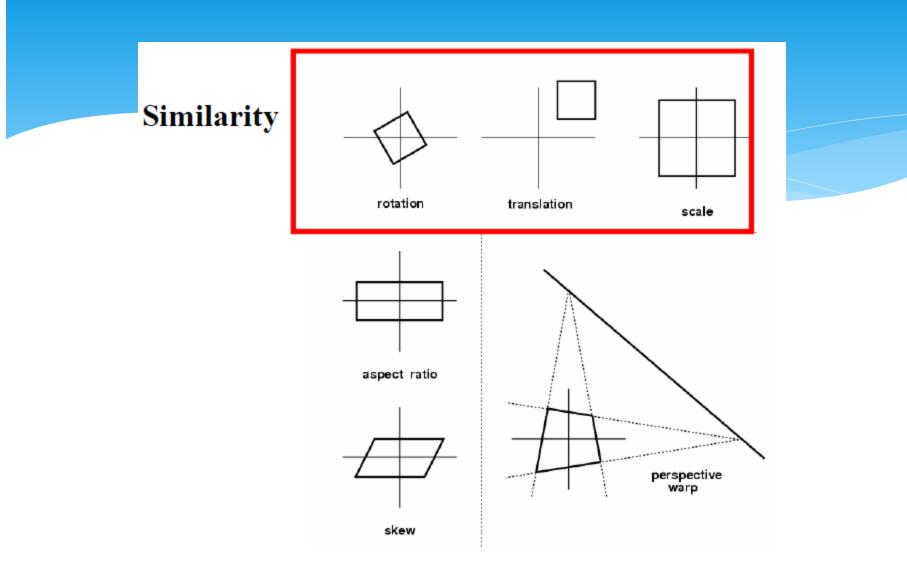
equations

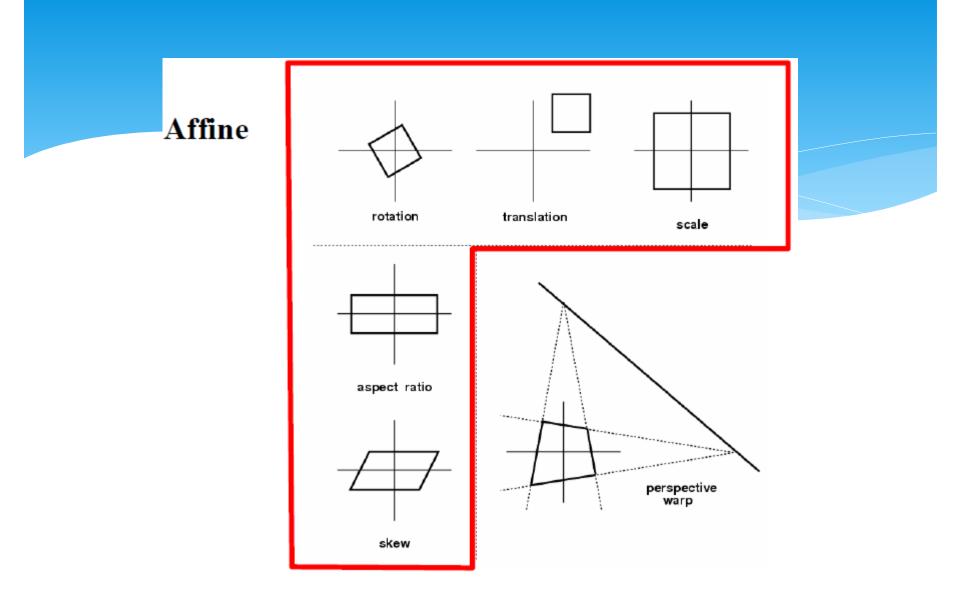
matrix form

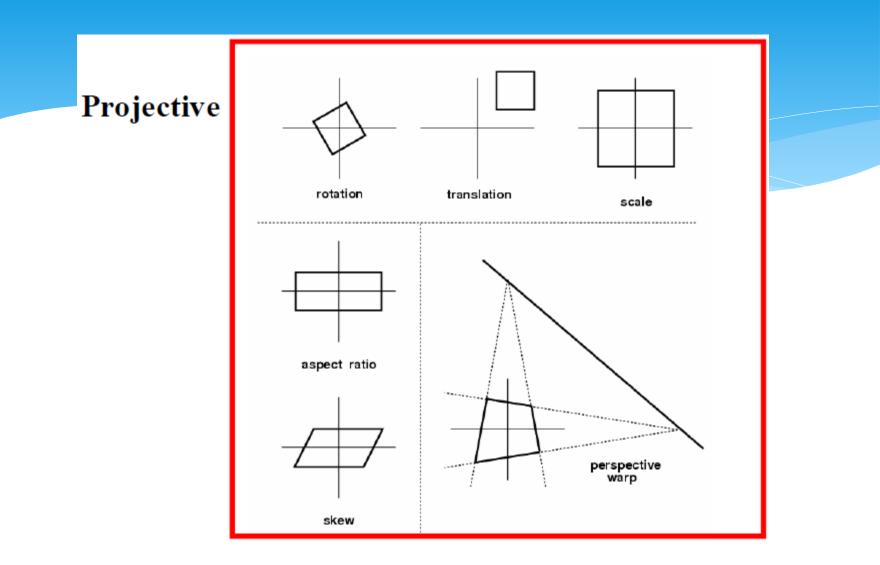






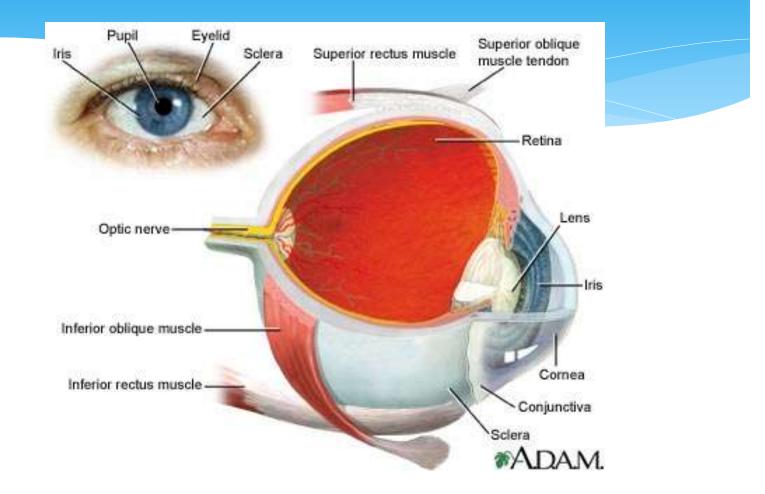






Euclidean Geometry vs Projective Geometry

- * Euclidean geometry keeps objects/shapes as they are
- * Projective geometry describes things as they appear



Picture: http://www.nlm.nih.gov/medlineplus/ency/imagepages/1094.htm

Camera Calibration

Camera Calibration

* Determine:

- Focal length
- Position of the image center
- * Scaling for the row and the column pixels
- * Skew
- * Lens Distortion
- * Why important?
 - * For 3D reconstruction.
 - * Hand-eye coordination \rightarrow robotic manipulation.

Camera Calibration

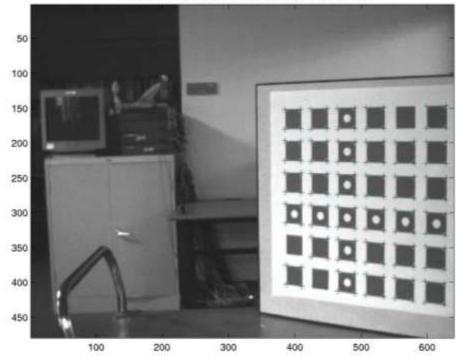


Image 5 - Image points (+) and reprojected grid points (o)

Camera calibration

From before, we had these equations relating image positions, u,v, to points at 3-D positions P (in homogeneous coordinates):

$$u = \frac{m_1 \cdot \vec{P}}{m_3 \cdot \vec{P}}$$
$$v = \frac{m_2 \cdot \vec{P}}{m_3 \cdot \vec{P}}$$

So for each feature point, i, we have:

$$(m_1 - u_i m_3) \cdot \vec{P}_i = 0$$
$$(m_2 - v_i m_3) \cdot \vec{P}_i = 0$$

Camera calibration

Stack all these measurements of i=1... n points

$$(m_1 - u_i m_3) \cdot \vec{P}_i = 0$$

 $(m_2 - v_i m_3) \cdot \vec{P}_i = 0$

into a big matrix:

$$\begin{pmatrix} P_1^T & 0^T & -u_1 P_1^T \\ 0^T & P_1^T & -v_1 P_1^T \\ \cdots & \cdots & \cdots \\ P_n^T & 0^T & -u_n P_n^T \\ 0^T & P_n^T & -v_n P_n^T \end{pmatrix} \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} P_{1}^{T} & 0^{T} & -u_{1}P_{1}^{T} \\ 0^{T} & P_{1}^{T} & -v_{1}P_{1}^{T} \\ \dots & \dots & \dots \\ P_{n}^{T} & 0^{T} & -u_{n}P_{n}^{T} \\ 0^{T} & P_{n}^{T} & -v_{n}P_{n}^{T} \end{pmatrix} \begin{pmatrix} m_{1} \\ m_{2} \\ m_{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad \text{Camera calibration}$$
Showing all the elements:
$$\begin{pmatrix} P_{1x} & P_{1y} & P_{1z} & 1 & 0 & 0 & 0 & 0 & -u_{1}P_{1x} & -u_{1}P_{1y} & -u_{1}P_{1z} & -u_{1} \\ 0 & 0 & 0 & 0 & P_{1x} & P_{1y} & P_{1z} & 1 & -v_{1}P_{1x} & -u_{1}P_{1y} & -u_{1}P_{1z} & -u_{1} \\ \dots & \dots & \dots & \dots \\ P_{nx} & P_{ny} & P_{nz} & 1 & 0 & 0 & 0 & 0 & -u_{n}P_{nx} & -u_{n}P_{ny} & -u_{n}P_{nz} & -u_{n} \\ 0 & 0 & 0 & 0 & P_{nx} & P_{ny} & P_{nz} & 1 & -v_{n}P_{nx} & -v_{n}P_{ny} & -u_{n}P_{nz} & -u_{n} \\ 0 & 0 & 0 & 0 & P_{nx} & P_{ny} & P_{nz} & 1 & -v_{n}P_{nx} & -v_{n}P_{ny} & -v_{n}P_{nz} & -v_{n} \\ \end{pmatrix}$$

W. Freeman

Camera calibration

Once you have the M matrix, can recover the intrinsic and extrinsic parameters as in Forsyth&Ponce, sect. 3.2.2.

$$\mathcal{M} = \begin{pmatrix} \alpha \mathbf{r}_1^T - \alpha \cot \theta \mathbf{r}_2^T + u_0 \mathbf{r}_3^T & \alpha t_x - \alpha \cot \theta t_y + u_0 t_z \\ \frac{\beta}{\sin \theta} \mathbf{r}_2^T + v_0 \mathbf{r}_3^T & \frac{\beta}{\sin \theta} t_y + v_0 t_z \\ \mathbf{r}_3^T & t_z \end{pmatrix}$$

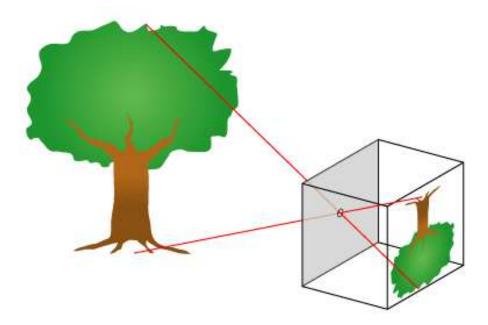
End of Cameras & Projective Geometry & Calibration

* What did I skip?

- * Image formation:
 - * Light, Energy, Color

We have the image... so, what?

* That is just the beginning...



Grayscale Image

		x =														19 L J
		58	59	60	61	62	63	64	65	66	67	68	69	70	71	72
y =	41	210	209	204	202	197	247	143	71	64	80	84	54	54	57	58
	42	206	196	203	197	195	210	207	56	63	58	53	53	61	, 624	51
	43	201	207	192	201	198	213	156	69	65	57	55	52	53	60	50
	44	216	206	211	193	202	207	208	57	69	60	55	77	49	62	-61
	45	221	206	211	194	196	197	220	56	63	60	55	46	97	58	106
	46	209	214	224	199	194	193	204	173	64	60	59	51	62	56	48
	47	204	212	213	208	191	190	191	214	60	62	66	76	51	49	55
	48	214	215	215	207	208	180	172	188	69	72	55	49	56	52	56
	49	209	205	214	205	204	196	187	196	86	62	66	87	57	60	48
	50	208	209	205	203	202	186	174	185	149	71	63	55	55	45	56
	51	207	210	211	199	217	194	183	177	209	90	62	64	52	93	52
	52	208	205	209	209	197	194	183	187	187	239	58	68	61	51	56
	53	204	206	203	209	195	203	188	185	183	221	75	61	58	60	60
	54	200	203	199	236	188	197	183	190	183	196	122	63	58	64	66
	55	205	210	202	203	199	197	196	181	173	186	105	62	57	64	63

Slide: M. J. Black

A Crash Tutorial on Filtering, Convolution, The Universe and everything

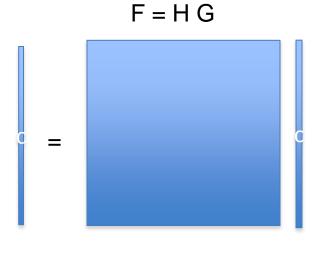
Filtering

Slide: A. Torralba

For a linear system, each output is a linear combination of all the input values:

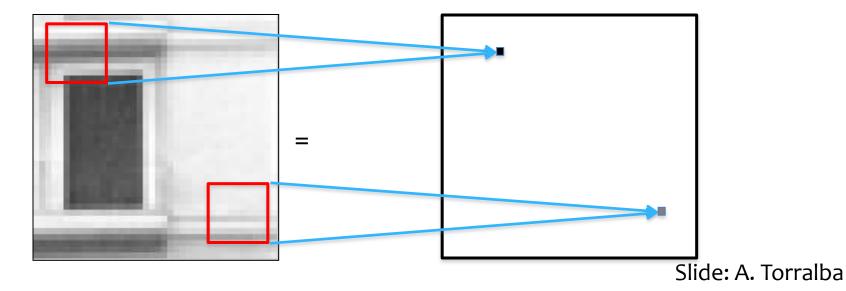
$$f[m,n] = \sum_{k,l} h[m,n,k,l]g[k,l]$$

In matrix form:



Slide: A. Torralba

$$f[m,n] = I \otimes g = \sum_{k,l} h[m-k,n-l]g[k,l]$$



$$f[m,n] = I \otimes g = \sum_{k,l} h[m-k,n-l]g[k,l]$$

=

m=	=0	1	2					
	111	115	113	111	112	111	112	111
	135	138	137	139	145	146	149	147
	163	168	188	196	206	202	206	207
	180	184	206	219	202	200	195	193
	189	193	214	216	104	79	83	77
	191	201	217	220	103	59	60	68
	195	205	216	222	113	68	69	83

199 203 223 228 108 68

-1	2	-1	
-1	2	-1	
-1	2	-1	

h[m,n]

 \otimes

?	?	?	?	?	?	?	?
?	-5	9	-9	21	-12	10	?
?	-29	18	24	4	-7	5	?
?	-50	40	142	-88	-34	10	?
?	-41	41	264	-175	-71	0	?
?	-24	37	349		-120	-10	?
?	-23	33	360		-134	-23	?
?	?	?	?	?	?	?	?

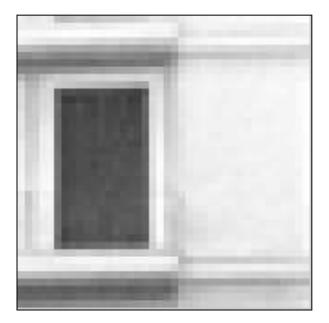
f[m,n]

g[m,n]

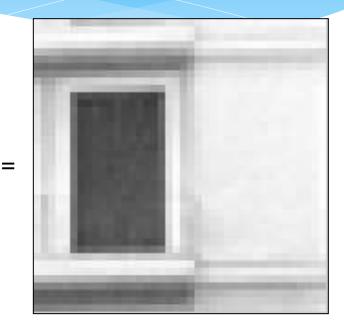
71

Slide: A. Torralba

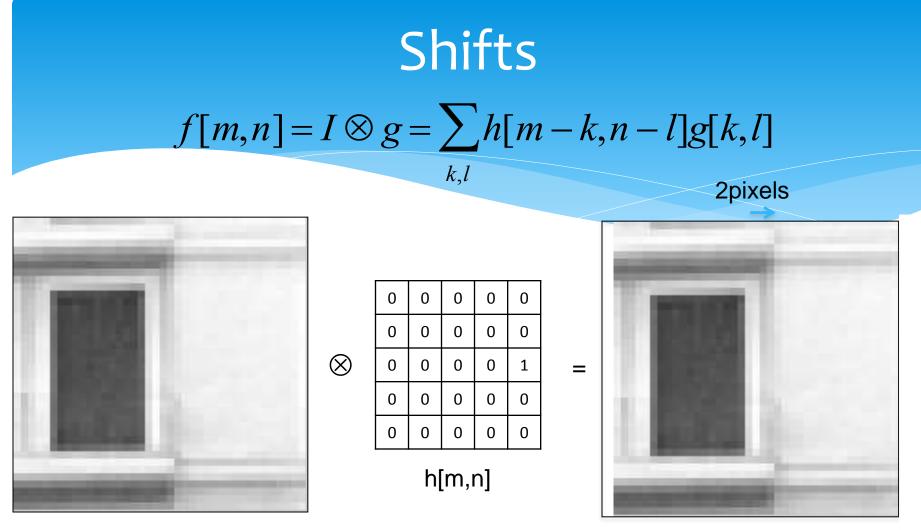
Impulse $f[m,n] = I \otimes g = \sum_{k,l} h[m-k,n-l]g[k,l]$



 \otimes h[m,n]

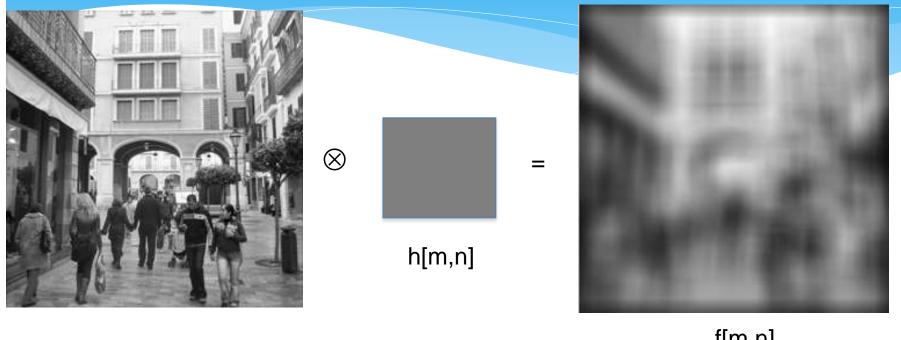


g[m,n]



f[m,n]

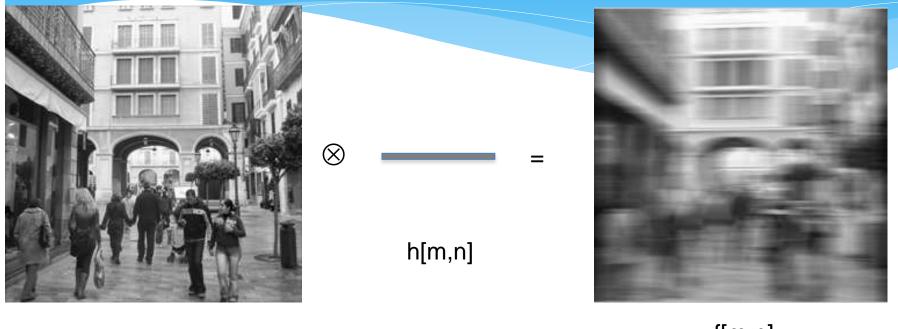
Rectangular filter



g[m,n]

f[m,n]

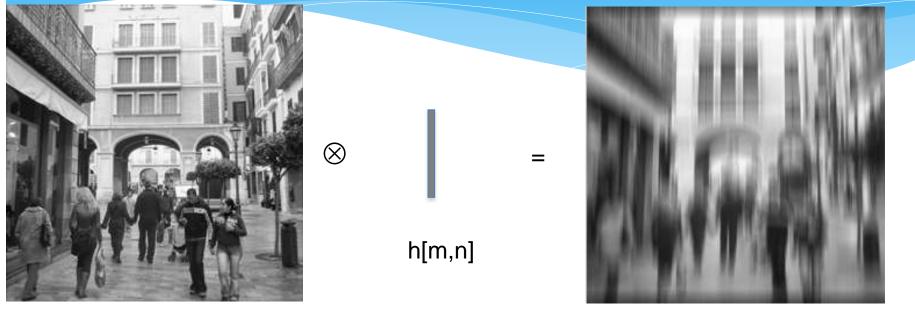
Rectangular filter



g[m,n]

f[m,n]

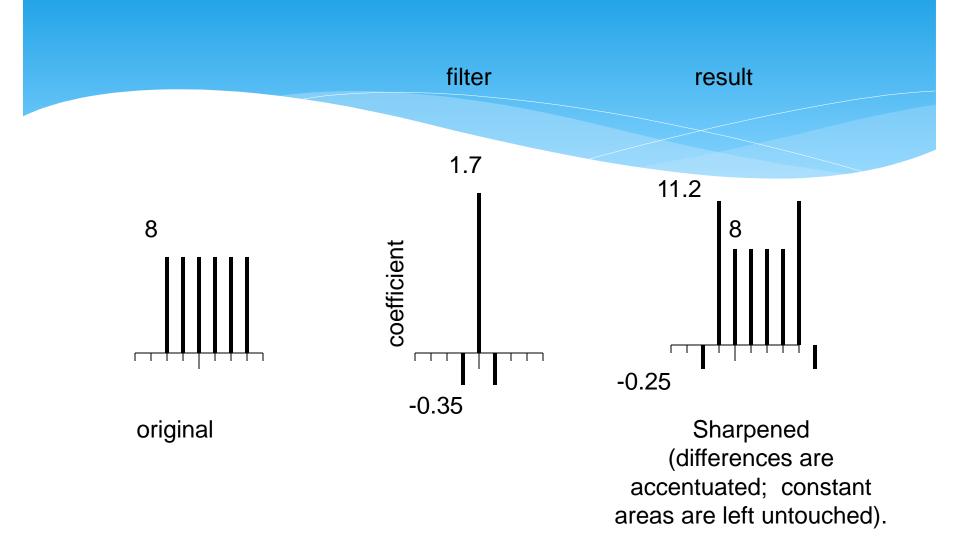
Rectangular filter



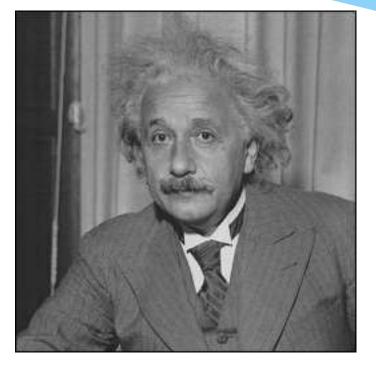
g[m,n]

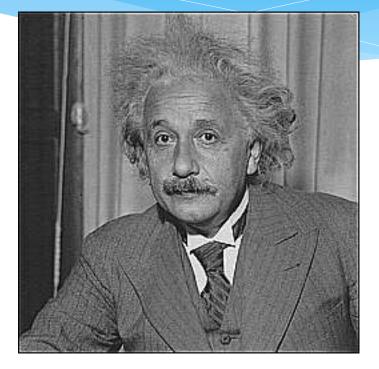
f[m,n]

Sharpening example



Sharpening



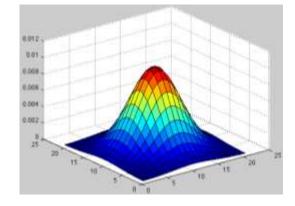


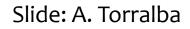
before

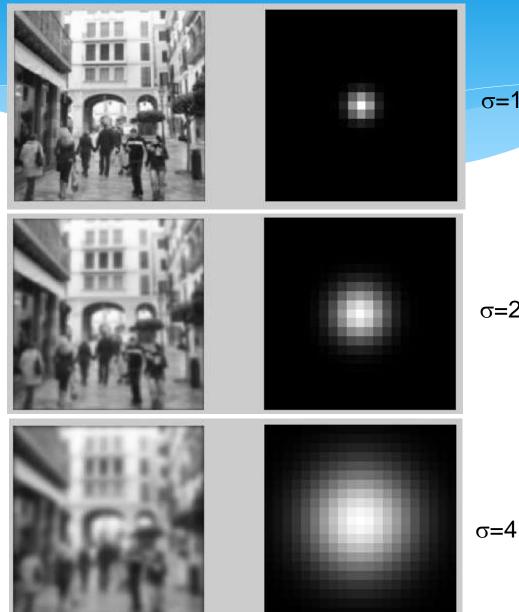
after

Gaussian filter

$$G(x,y;\sigma) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}}$$



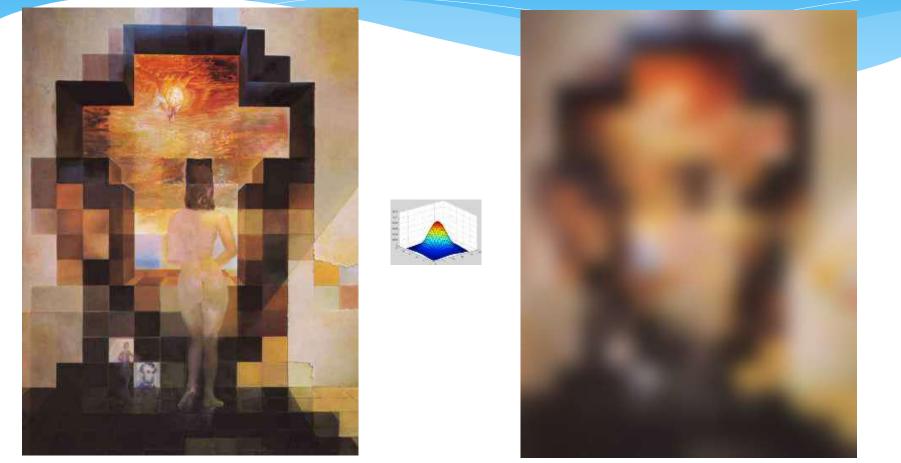




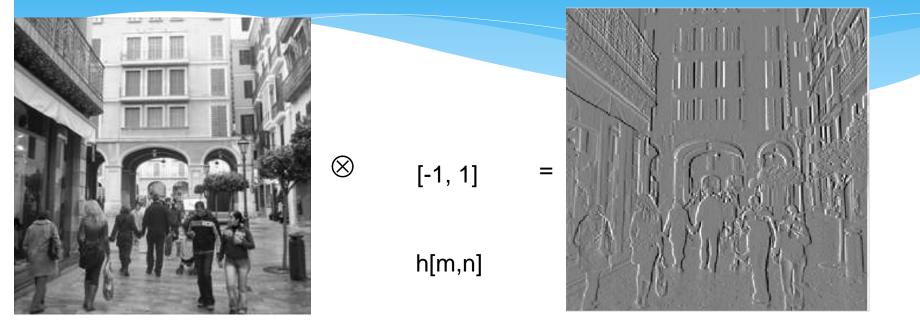
σ=1

σ=2

Global to Local Analysis



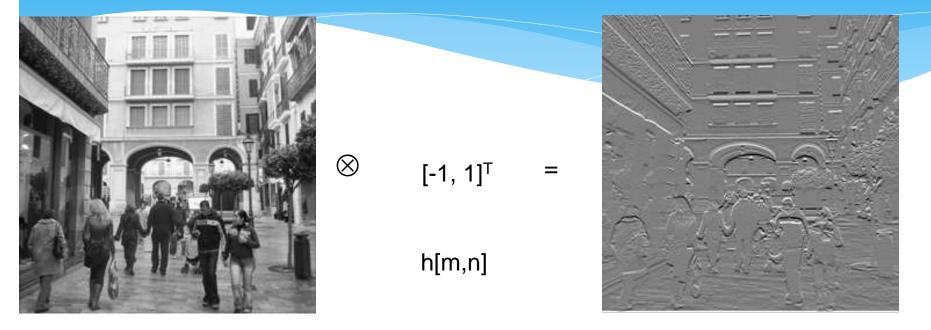
[-1 1]



g[m,n]

f[m,n]

[-1 1]^T



g[m,n]

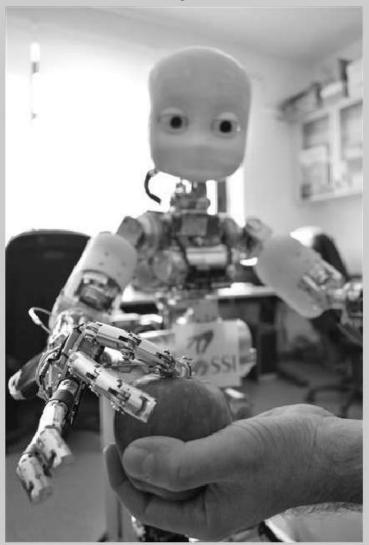
f[m,n]

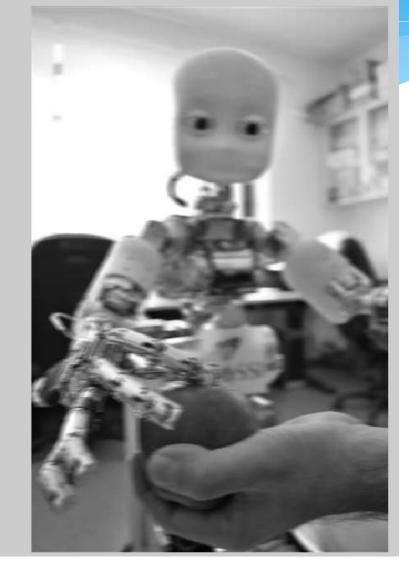
Test it yourselves!!

• I will upload this piece of code to the webpage.

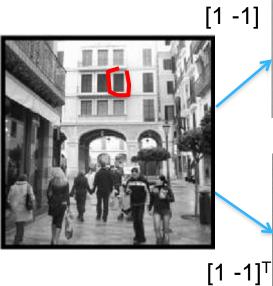
Test it yourselves!!

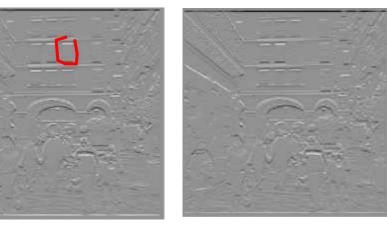
Original





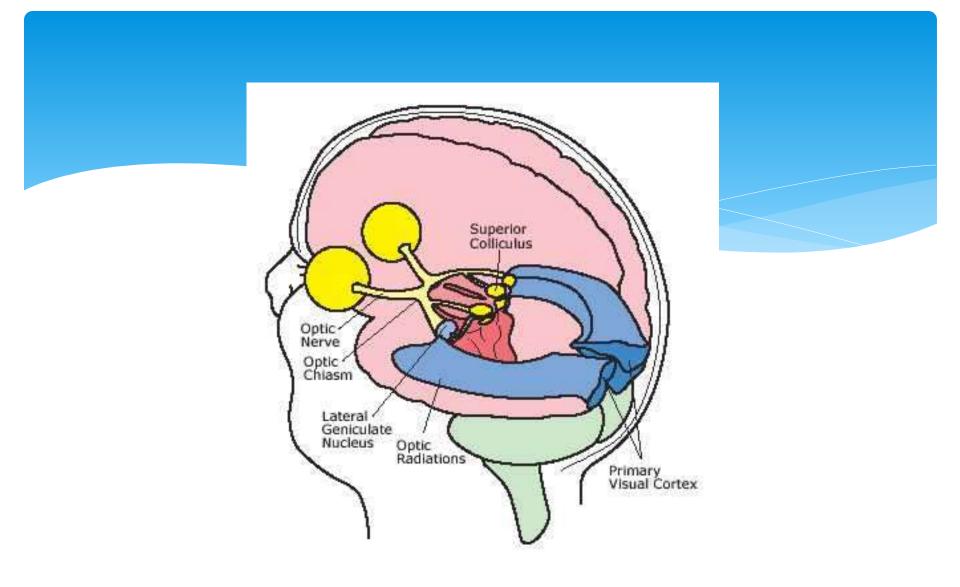
Editing the edge image





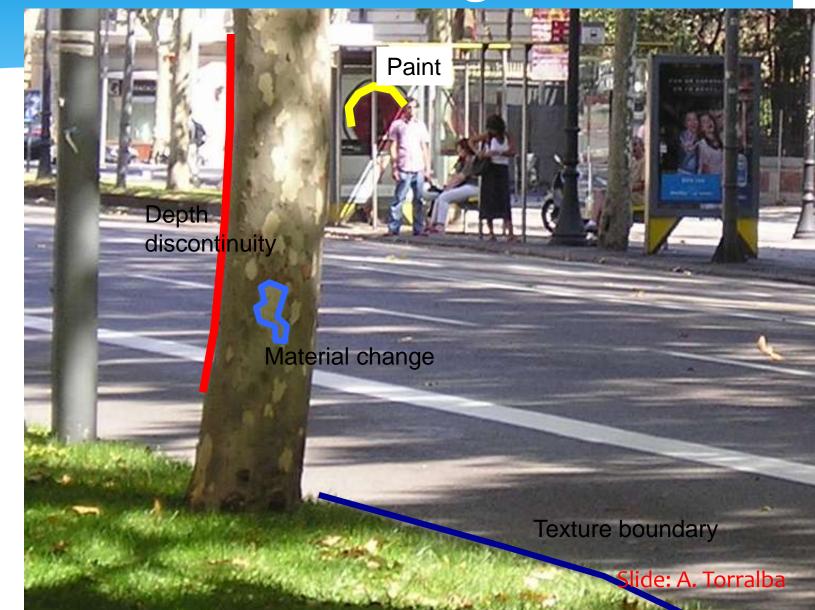
Early Vision

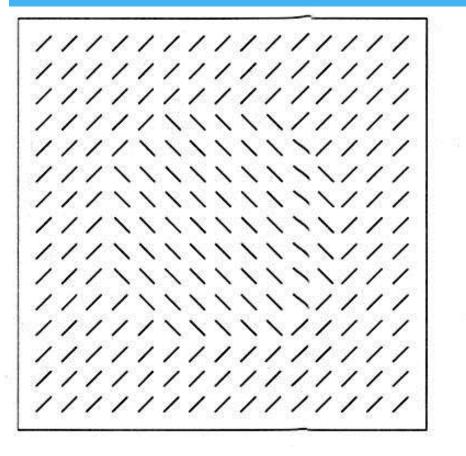
- * Unfortunately, we don't have a concrete definition.
- * Here is a try:
 - The first representation/impression extracted from 'images'.
 - * Involves edges, corners, textures, optic flow, disparity.
 - * Local processing!!
 - * Incomplete, ambiguous information.



What is an edge?

What is an edge?

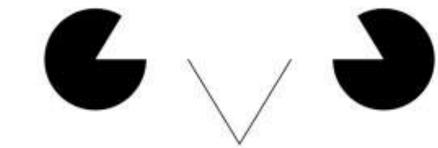




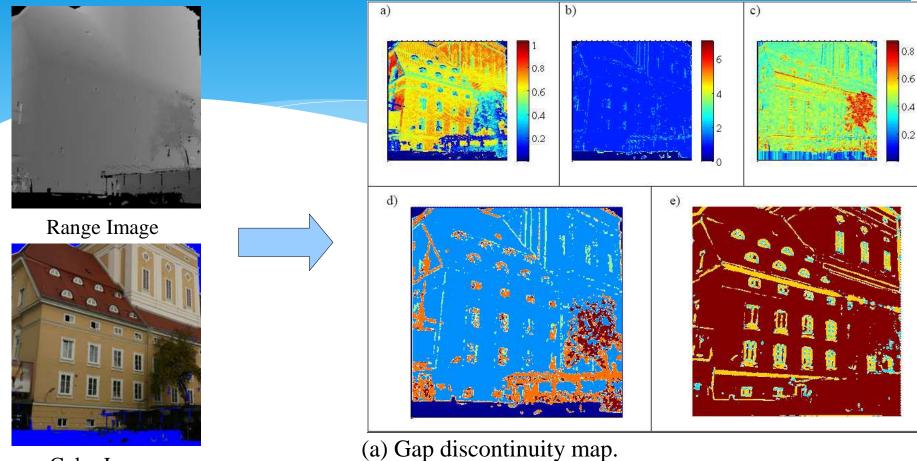
Gaussian gradient boundaries

Human boundaries

What is an edge?



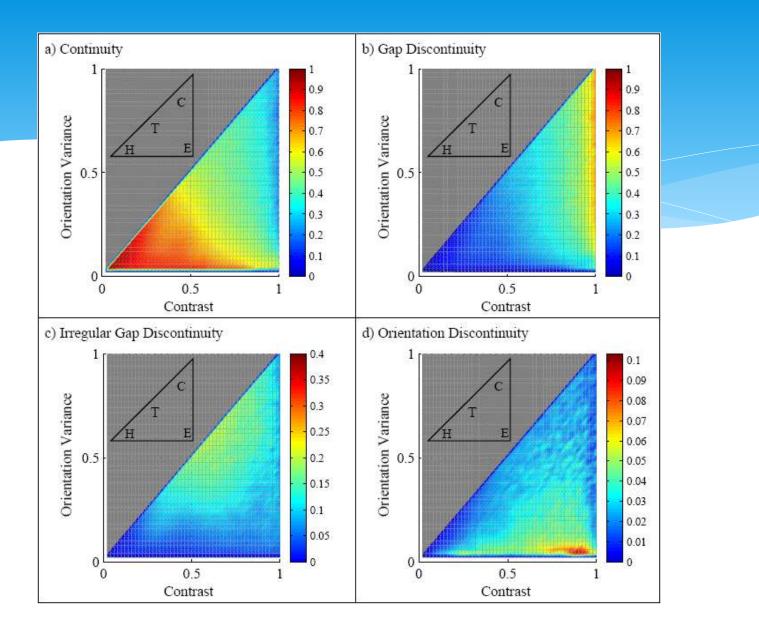
My previous investigations...



Color Image

- (b) Orientation discontinuity map.
- (c) Irregular gap discont. map.
- (d) Combination of (a), (b) and (c).
- (e) Local image structures.

Kalkan et al., IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2006.



Kalkan et al., IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2006.

A Computational Approach to Edge Detection

JOHN CANNY, MEMBER, IEEE

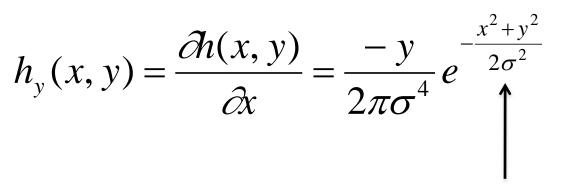


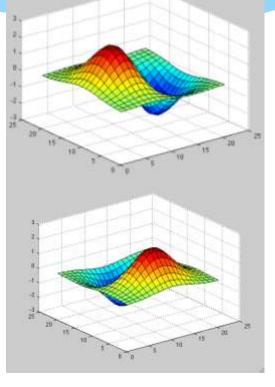
John Canny (S'81-M'82) was born in Adelaide, Australia, in 1958. He received the B.Sc. degree in computer science and the B.E. degree from Adelaide University in 1980 and 1981, respectively, and the S.M. degree from the Massachusetts Institute of Technology, Cambridge, in 1983.

He is with the Artificial Intelligence Laboratory, M.I.T. His research interests include lowlevel vision, model-based vision, motion planning for robots, and computer algebra.

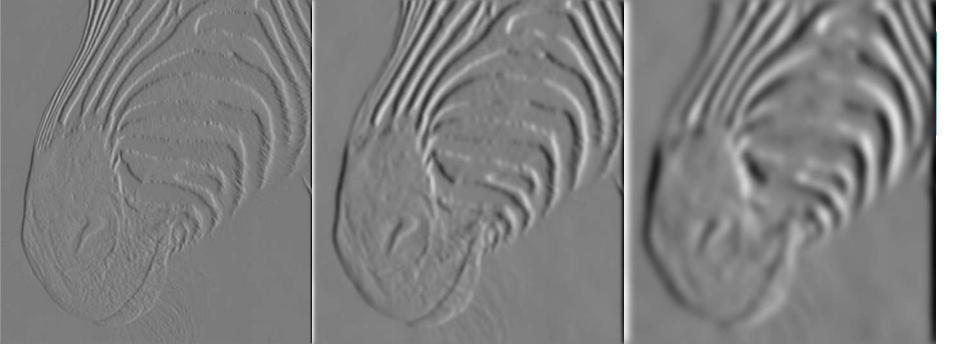
Mr. Canny is a student member of the Association for Computing Machinery.

$$h_x(x,y) = \frac{\partial h(x,y)}{\partial x} = \frac{-x}{2\pi\sigma^4} e^{-\frac{x^2+y^2}{2\sigma^2}}$$





Scale



1 pixel

3 pixels

7 pixels

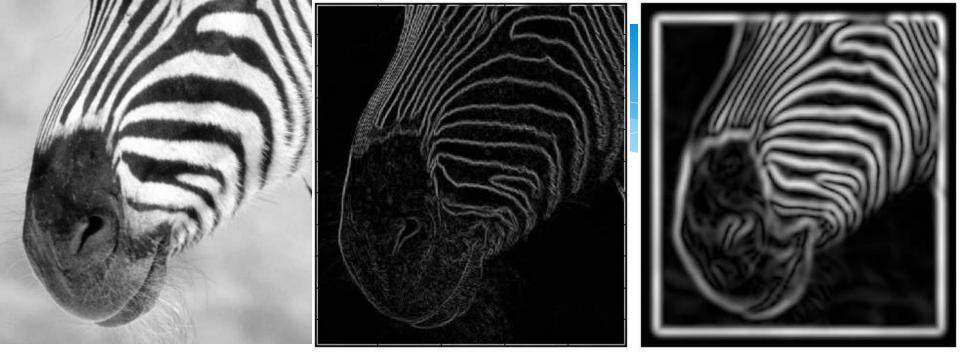
The scale of the smoothing filter affects derivative estimates, and also the semantics of the edges recovered.

Forsyth, 2002

$$h_{x}(x,y) = \frac{\partial h(x,y)}{\partial x} = \frac{-x}{2\pi\sigma^{4}}e^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}}$$

$$h_{y}(x,y) = \frac{\partial h(x,y)}{\partial x} = \frac{-y}{2\pi\sigma^{4}}e^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}}$$

Magnitude:
$$h_x(x,y)^2 + h_y(x,y)^2$$
 Edge strength
Angle: $\arctan\left(\frac{h_y(x,y)}{h_x(x,y)}\right)$ Edge normal



Gradient magnitudes at scale 1

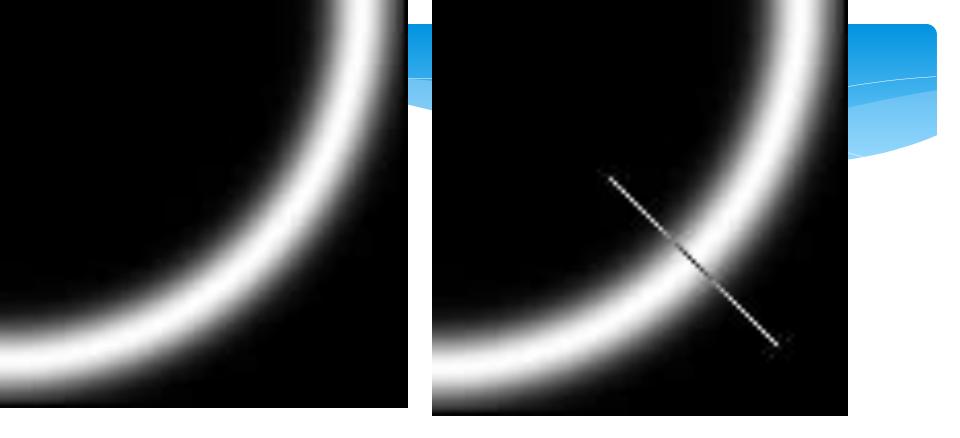
Gradient magnitudes at scale 2

Issues:

- 1) The gradient magnitude at different scales is different; which should we choose?
- 2) The gradient magnitude is large along thick trail; how do we identify the significant points?
- 3) How do we link the relevant points up into curves?
- 4) Noise.

The scale of the smoothing filter affects derivative estimates, and also the semantics of the edges recovered.

Forsyth, 2002



We wish to mark points along the curve where the magnitude is biggest. We can do this by looking for a maximum along a slice normal to the curve (non-maximum suppression). These points should form a curve. There are then two algorithmic issues: at which point is the maximum, and where is the next one?

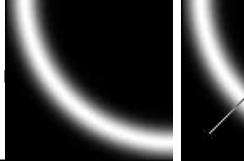
Forsyth, 2002

q Gradient \bigcirc ľ

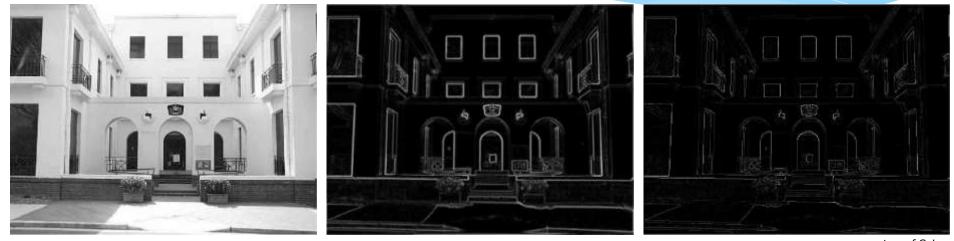
Non-maximum suppression

At q, we have a maximum if the value is larger than those at both p and at r. Interpolate to get these values.

Forsyth, 2002



Examples: Non-Maximum Suppression



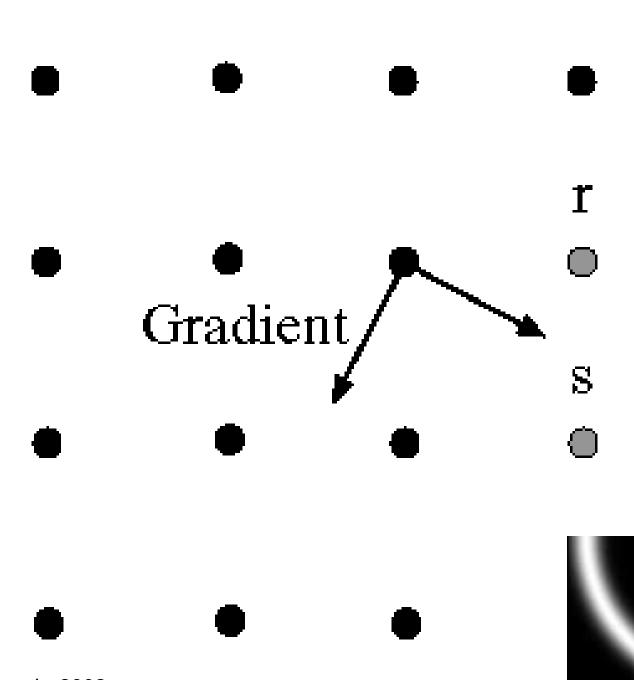
courtesy of G. Loy

Original image

Gradient magnitude

Non-maxima suppressed

Slide credit: Christopher Rasmussen



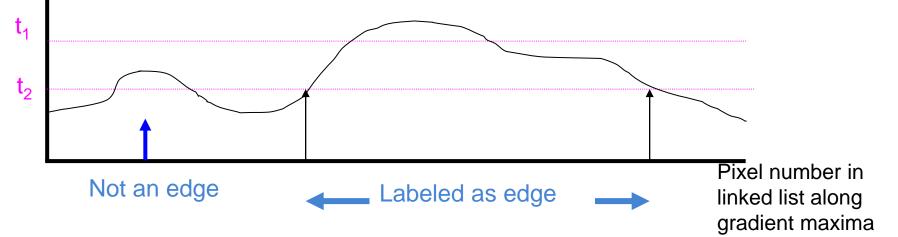
Predicting the next edge point

Assume the marked point is an edge point. Then we construct the tangent to the edge curve (which is normal to the gradient at that point) and use this to predict the next points (here either r or s).

Forsyth, 2002

Closing edge gaps

- Check that maximum value of gradient value is sufficiently large
 - * drop-outs? use hysteresis
 - * use a high threshold to start edge curves and a low threshold to continue them.

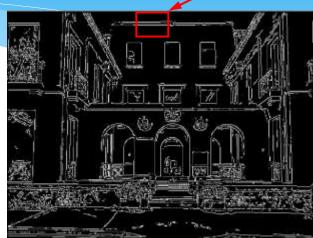


Gradient magnitude

Example: Canny Edge Detection

gap is gone

Original image



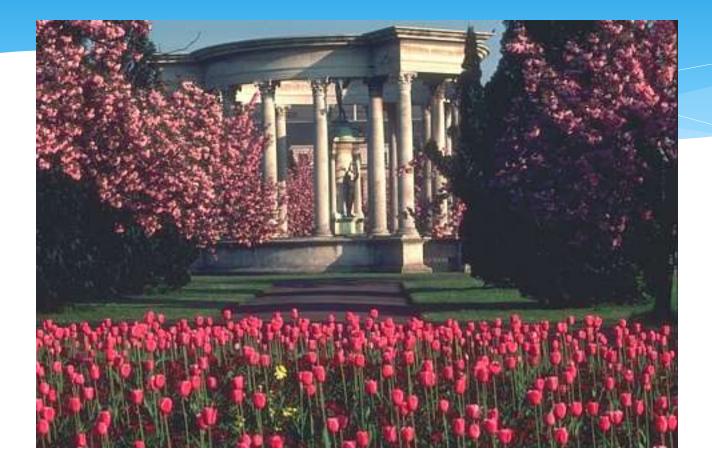
Strong edges only

Strong + connected weak edges

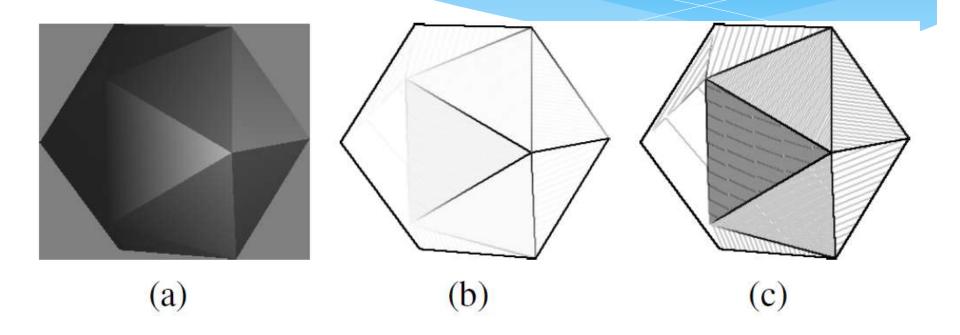
Weak edges

courtesy of G. Loy

- * Issues:
 - * isn't it way too early to be thresholding, based on local, low-level pixel information alone?

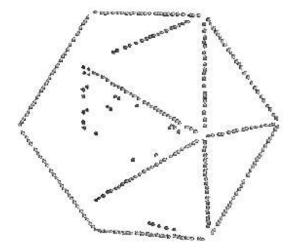


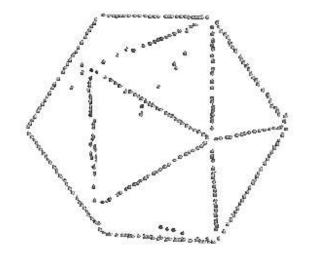
Effect of thresholding



Kalkan et al., Int Conf. on Computer Vision Theory and Applications, 2008.

Effect of thresholding





Kalkan et al., Int Conf. on Computer Vision Theory and Applications, 2008.

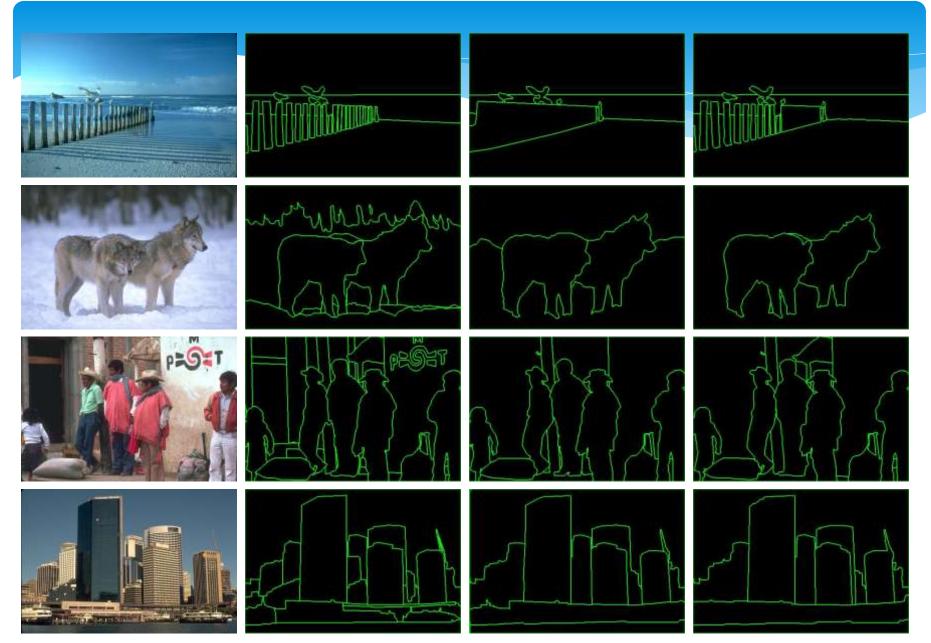
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 5, MAY 2004

Learning to Detect Natural Image Boundaries Using Local Brightness, Color, and Texture Cues

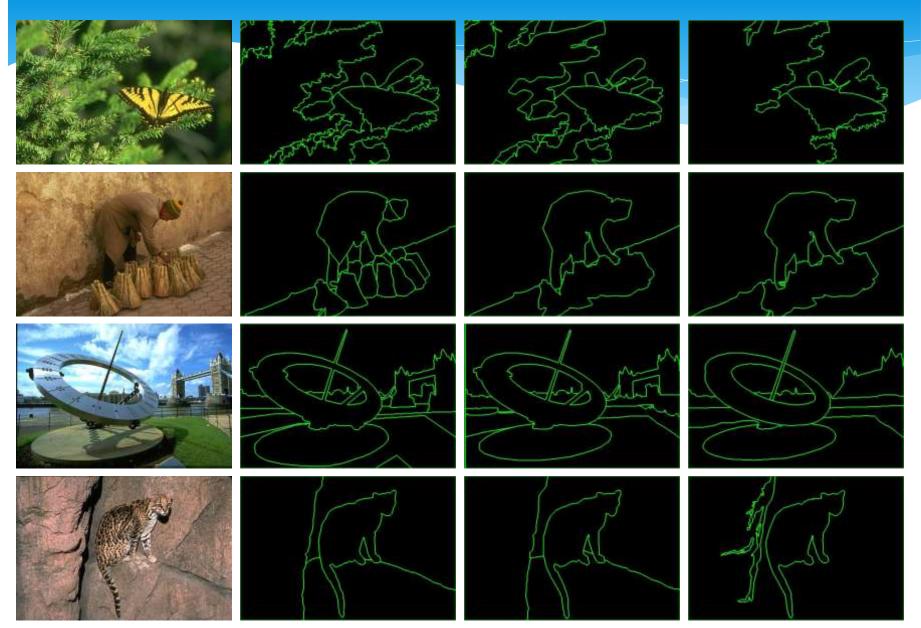
David R. Martin, Member, IEEE, Charless C. Fowlkes, and Jitendra Malik, Member, IEEE

Abstract—The goal of this work is to accurately detect and localize boundaries in natural scenes using local image measurements. We formulate features that respond to characteristic changes in brightness, color, and texture associated with natural boundaries. In order to combine the information from these features in an optimal way, we train a classifier using human labeled images as ground truth. The output of this classifier provides the posterior probability of a boundary at each image location and orientation. We present precision-recall curves showing that the resulting detector significantly outperforms existing approaches. Our two main results are 1) that cue combination can be performed adequately with a simple linear model and 2) that a proper, explicit treatment of texture is required to detect boundaries in natural images.

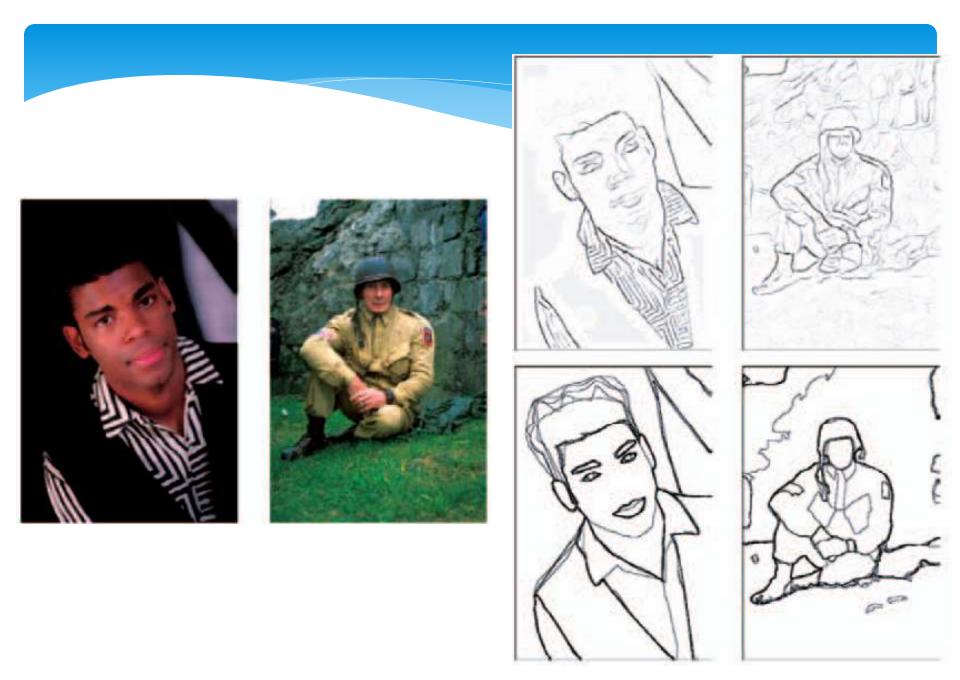
Slides credit: Jitendra Malik



¹²⁰ Slides credit: Jitendra Malik



¹²¹ Slides credit: Jitendra Malik



Martin et al., PAMI, 2004.

Gabor Filters, Efficient Encoding and Edges

Sensory Coding

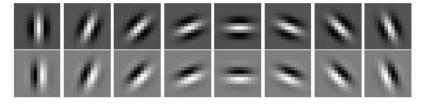


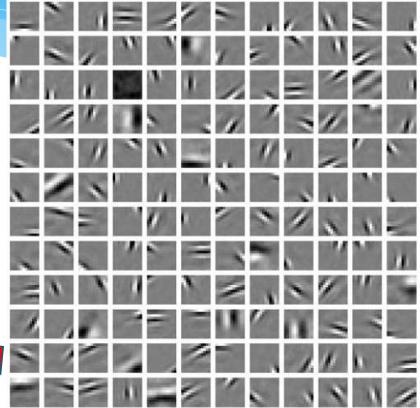
Figure 3: Real (first row) and imaginary (second row) parts of eight orientation Gabor wavelets. (Kalkan et al., 2008)

Efficient Coding Hypothesis

- "The goal of early vision (or, early visual processing) is to provide an <u>efficient</u> representation of the incoming visual signal"
- * (Field, 1987; Hateren, 1998; Bell & Sejknowski, 1996, 1997; Olshausen & Field, 1996; Hyvarinen, 2010)
- * For a review & critics:
 - * (Simoncelli & Olshausen, 2001;
 Simoncelli, 2003)

Independent Component Analysis:

 s_1 .



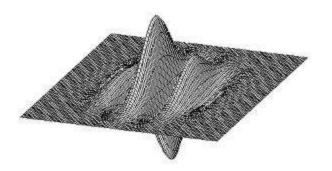
(Olshausen & Field, 1996)

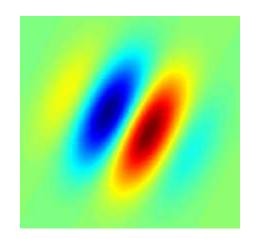
Sk

(Hyvarinen, 2010)

Gabor Filter

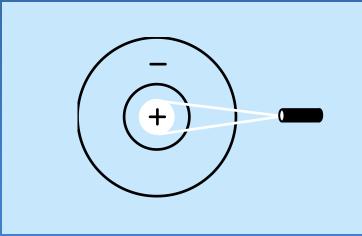
$$g(x,y;\lambda,\theta,\psi,\sigma,\gamma) = \exp\left(-\frac{x'^2 + \gamma^2 y'^2}{2\sigma^2}\right) \exp\left(i\left(2\pi\frac{x'}{\lambda} + \psi\right)\right)$$





Gabor Filters vs. Cortical Receptive Fields

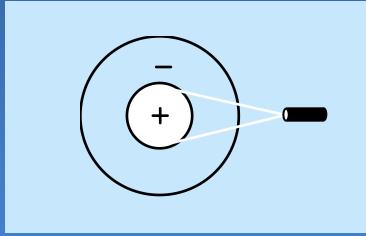
Receptive field structure in ganglion cells: On-center Off-surround



Stimulus condition

Electrical response

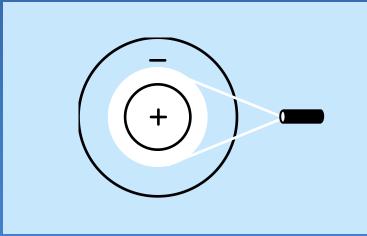
Receptive field structure in ganglion cells: On-center Off-surround



Stimulus condition

Electrical response

Receptive field structure in ganglion cells: On-center Off-surround

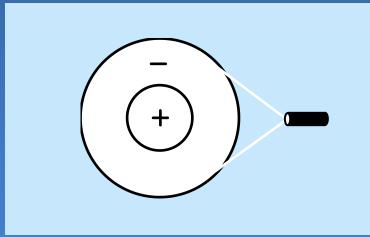


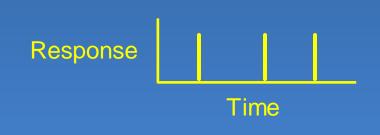


Stimulus condition

Electrical response

Receptive field structure in ganglion cells: On-center Off-surround

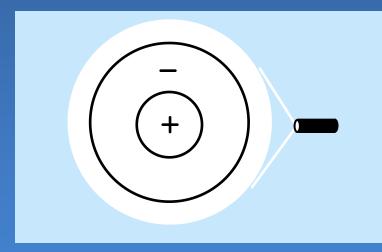


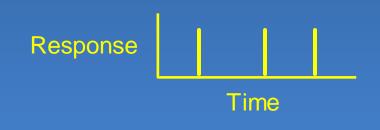


Stimulus condition

Electrical response

Receptive field structure in ganglion cells: On-center Off-surround

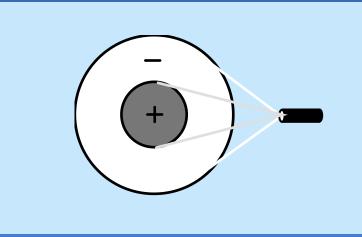


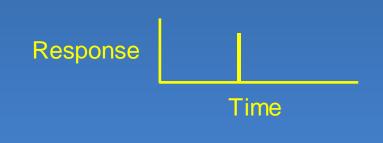


Stimulus condition

Electrical response

Receptive field structure in ganglion cells: On-center Off-surround

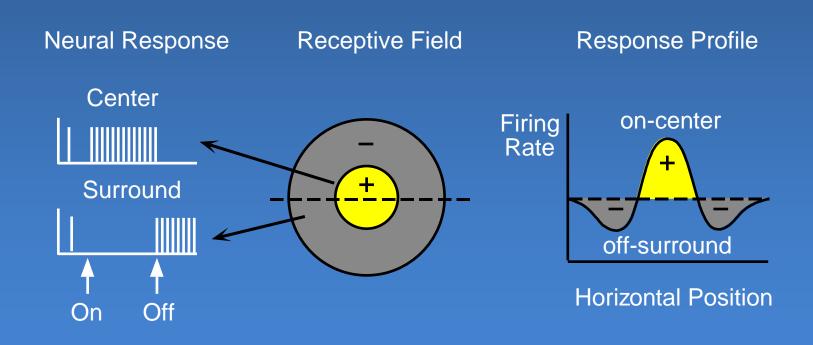




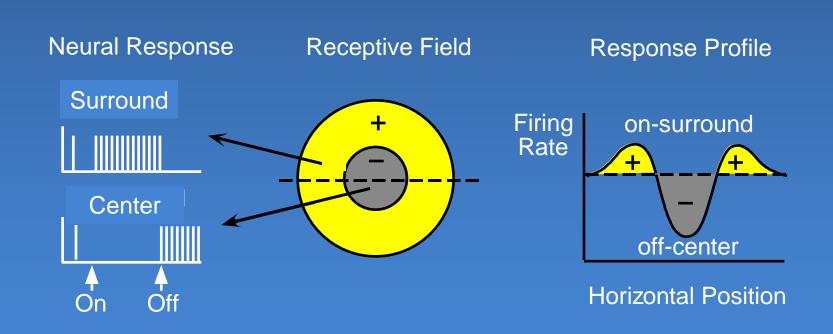
Stimulus condition

Electrical response

RF of On-center Off-surround cells

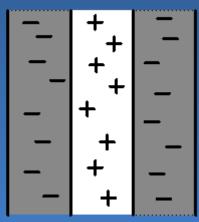


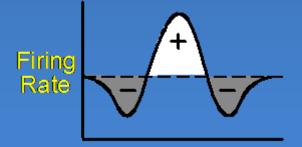
RF of <u>Off</u>-center <u>On</u>-surround cells



Simple Cells: "Line Detectors"

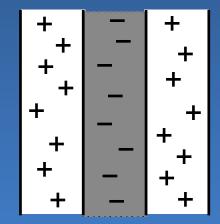
A. Light Line Detector

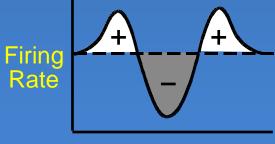




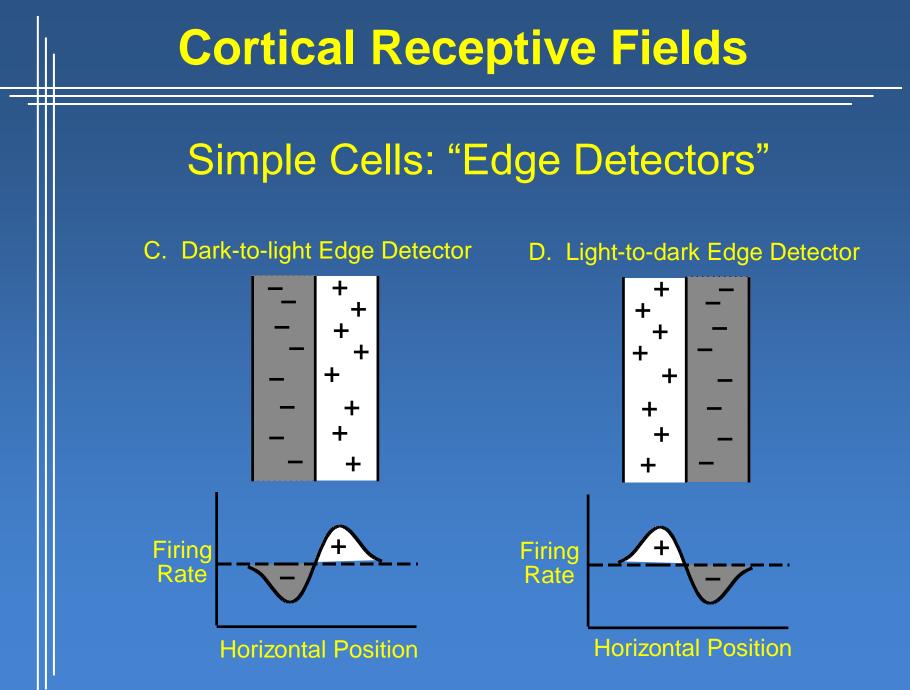
Horizontal Position

B. Dark Line Detector





Horizontal Position



So, what does it say?

- The early 'low-level filtering' achieves efficient encoding by finding intensity changes.
 With Gabor-like filters.
- This is one of the important evidence for the hypothesis that our visual system is tuned to the statistical regularities in the environment.

Summary of this week

Topics

- Cameras, projective geometry, calibration
- * Filtering
- * Edges

Problems

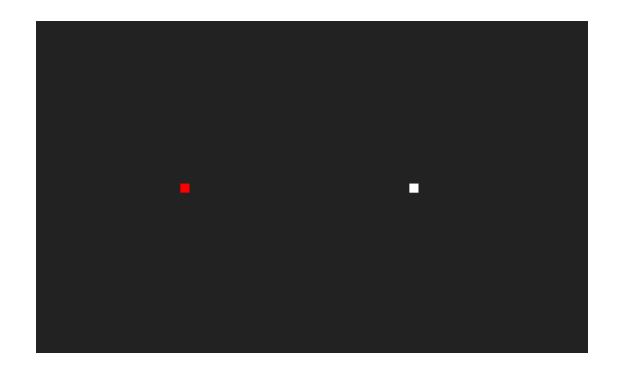
- * Scale for filtering
- * Thresholding
- Noisy, incomplete, ambiguous information

Reading

* Ch1 & Ch2 from "Computer Vision: A Modern Approach"

Illusion of the week

- 1. Close your left eye.
- 2. Stare at the red spot.
- 3. Move towards the image until the white spot disappears.



http://www.vonrechenberg.ch/blindspots.html