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Öz

Tam bir tanımını yapmak zor olsa da, bağlam, anlamın bağlı olduğu bilgi olarak görülebilir.
İnsanlar ile etkileşmesini beklediğimiz yapay bir etmen için, çevresi ve insanlar ile olan etkileşimin
başarısı büyük oranda bağlama bağlıdır. Bu rapor, bağlama semantik uzay modelleri ve komutatif
ve dağıtık olmayan olasılık çerçeveleri ile yaklaşmayı araştırmaktadır.



Abstract

Although a precise definition is hard to pinpoint, context can be seen as the in-
formation that meaning is dependent on. For an artificial agent that is expected to
interact with humans, the success of its interactions with both the environment and
humans depends on context. This report aims to investigate a unified framework for
context in robots, inspired from semantic space models and a non-commutative and
non-distributive probability framework.

1 Introduction

As Harnad stated, categorization of objects, events, and actions, is quite essential for cognition:

“To Cognize is to Categorize: Cognition is Categorization” – S. Harnad [16]

However, in order to be able to classify, preliminary information of what is being classified, an
abstraction, must already exist. These abstractions, called concepts, make us understand and give
meaning to categories: Put another way, we can understand words with concepts, identify objects,
perceive events. We exist with cognitive mechanisms built on top of concepts [3, 6].

Although concepts are indispensable for cognition, it is suggested that concepts cannot be
separated from the context they exist in [4]. Context is defined in the Oxford Dictionary as:

“The circumstances that form the setting for an event, statement, or idea, and in
terms of which it can be fully understood”
“The parts of something written or spoken that immediately precede and follow a
word or passage and clarify its meaning.”

This and similar context definitions are available in many resources, however there are critical
differences between those definitions [5]. The identified differences are:

• Defining context externally or internally.

• Defining context as a set of information or as processes.

• Defining context as static or dynamic.

• Defining context as a simple set of phenomenon or an organized network.

Although there are different definitions, the common point in those definitions is the importance
of context while defining and interpreting objects, events and phenomena [34, 32]. For example, in
what manner we carry a cup may depend on the temperature of the liquid in it, how much liquid
it has, whether we are in a hurry, if there are obstacles around. Or the manner we speak with
a neighbor we meet every day can be affected by whether we are in a hurry, our health at that
moment or our mood. The sentences we construct to communicate and the meaning we derived
from them can change in different contexts.

Certainly, the connection between context and concept, which is essential for understanding
cognition, is also essential for both artificial intelligence and robotics. In the first studies on
concepts, definitions of concept already suggest the similarities and differences between context
and concepts. Psychological findings and recent studies that define context as a class of concept
[9] also suggest the similarity of context and concept.

It can be argued that the established formalisms of context in AI are focused on representation
of the background information that will affect the agent [28]. In this respect, they are static
and descriptive systems. Also the recent success stories from AI generally follow an connectionist
approach. For an autonomous robot as an intelligent agent in an environment with humans, the
need for a unified framework of context that represent background knowledge, can incorporate
learning and interface with connectionist systems is identified as a need and will be the goal of this
study.

2 Background

This section introduces the necessary background, for the proposed study, on concepts, context
and quantum probability.
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2.1 Concepts

The definition and the nature of concept is discussed for centuries since the times of Aristotle and
Plato. Different theories are suggested [12, 27] and these theories can be classified under three
main categories[17]:

• Rule based concepts: In this approach, concepts are defined as a set of rules which are hard
thresholds. For example, properties of an object is represented as the rule “color = yellow
AND 10cm < height < 12cm” In this approach, the membership of a thing is determined
by which rules are satisfied by the object properties.

• Prototype based concepts: In this approach, concepts are defined by a prototypical ob-
ject that summarizes the properties of the whole set. In this concentrated representation,
properties are represented as the distribution of possible properties such as “color = %40
yellow, %30 blue, %30 black”. Membership of an object is determined by comparing it to
the prototypical object.

• Example based concepts: In this approach, concepts are defined by a set of observed objects.
A general definition is not defined. Membership of an object is determined by comparing it
to the whole set of examples.

Different studies and approaches suggests that concepts are not isolated definitions but has a
connected nature. This can be as a hierarchical structure of concepts [13, 19, 11], or as a more
general graph structure where different kinds of connections are present [8]. For example, in a
hierarchical structure “horse” and “sheep” concepts are connected under “vertebrate” concept. In
a more complex concept web, “cup” and “plate” concepts can be connected as both carry the
property “hard”.

2.2 Context

Most generally, context can be defined as any and all information, in any time frame, that can
affect the meaning/understanding of the symbols or objects that has been observed.

2.2.1 Context in AI

Two approaches for context put forward by Ghidini [14] and McCarthy and his team [21] can be
argued to be the two mature approaches in AI for context [28].

Propositional logic of context is the framework that is developed by McCarthy, who tried to
define context for agents in a logical formalism [21]. McCarthy claims that context have following
properties:

• Contexts are formal objects.

• Context can be defined exactly.

• There are connection between contexts and contextual function, and a new context can be
constructed from another by changing certain properties such as time, place, and state.

The second approach is local model semantics or multi-context systems [14]. In this approach,
context is mainly a subset of the global state of the individual’s belief/information about the
world. They identify two natures of context, namely metaphysical context and cognitive context.
Metaphysical context is the structure of the world modeled around a speaker and a listener. On
the other hand cognitive context is the representation of the world within an individual. The
idea is, reasoning happens locally in a cognitive context that is also a subset of agents global
state. Here, different contexts are not unrelated belief sets, but different representations of the
world. This difference may be difference in perspective or in difference in levels of detail. Also the
relations between context can only be partial, meaning there is no complete translation between
representations of two different contexts.
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2.2.2 Context in Computer Vision and Visual Cognition

In computer vision, the nature of context can be simplified by a relation between foreground and
background of an image. Also context is noted as any and all information that influence the
perception of a scene [31]. With this definition, physical, photogrammetric and computational
context is defined. Physical context is the real world situation the image is taken in, ranging from
the geometry of the scene to the weather the image is taken. The photogrammetric context is the
parameters of the device that is taking the picture. These can be exposure of a simple camera
or the position and angle of the satellite that is taking the picture. Computational context is the
information about the state of processing, requirements and information on both hardware and
software.

In cognition, the context definition also takes into account the expectations of the observer
[2]. Here the expectation can be constructed from the background knowledge that is learned from
first hand experience or from a secondary source. The time frame can also vary, it can be an
observation that has been made few seconds ago or a piece of knowledge acquired years ago.

2.2.3 Context in Linguistics

Context in the context of language can be defined by two different focuses. One is the focus on the
linguistic expression itself and the second is the person who is using this expression, the utterance
and the speaker. Although there is no clear distinction in their definitions, first, the expression,
can be described as semantics, and the second is pragmatics [30].

In semantics, the context is the information that can be used for, for example, the disam-
biguation of indexicals. Information exists in utterance, the text that is been read or the entry
in the dictionary as background knowledge defines the context. The word-sense disambiguation is
also can be seen as the effect of context. However, a similar definition can be given for near-side
pragmatics.

In pragmatics, context also includes the state of the parties that is in communication. The
intension of the speaker also affects the context and defines the meaning of an utterance [18]. Both
the speaker and the listener or the reader and the writer can be counted within the context that
the meaning emerges from.

3 Quantum Probability

Giving a comprehensive story of quantum theory is way more than one computer major to handle.
Following is summarized from the background information given in [7]. To give few prominent
points in Quantum Physics’s history, we can start with the quantization of energy by Max Planck.
To unify the existing radiation laws, Planck introduced discrete energies. Another step was the
interpretation of matter as a wave or as a particle. There was existing experimental evidence for
the wave nature of light by Thomas Young, when Albert Einstein describe the photoelectric effect
with the particle nature of photons. Later, Neils Bohr used the quantized discrete energy levels to
explain electron levels of hydrogen atom.

Louis de Broglie used the Einstein’s idea to view light as particles rather than waves and defined
matter as waves rather than particles. In 1920s, Erwin Schrödinger put de Broglie’s ideas into the
wave function of matter known as Schrödinger equation. On the other hand, Werner Heisenberg
developed a matrix formulation of quantum theory.

In 1932, John von Neumann proved the wave function and matrix formulation is mathemat-
ically equivalent. In 1930s, von Neumann, Francis Murray and Garrett Birkhoff axiomatized the
quantum theory with a set of fundamental principles. With von Neumann’s axiomatization, a non-
commutative and non-distributive logic is defined that entails a generalized theory of probability.

3.1 Notation and Definitions from Linear Algebra

3.1.1 Vector notation

To explain quantum probability, there are a few definitions that are needed from linear algebra.
But first, the notation will be introduced. The physicists use Dirac notation, named after Paul

3



Dirac, to represent quantum states. |W 〉 is called a ket vector and can be represented as a column
vector:

|W 〉 7→


w1

w2

...
wn

 . (1)

A bra vector 〈R| can also be represented as a row vector:

〈R| 7→
[
r1 r2 · · · rn

]
. (2)

The notation does not imply a basis, so |W 〉 is an abstract representation of a vector. However
the “coordinates” of this vector depend on the basis that is used to define it, and there can be
more than one representation for a given vector |W 〉. A n × 1 matrix represents the coordinates
with a certain basis vector set1. For example, with the basis {|X〉 , |Y 〉 , |Z〉} that spans a 3D
space, a vector |S〉 can be represented by s in Equation 3. The same vector |S〉 is s′ with the
basis {|K〉 , |L〉 , |M〉} shown in Equation 4. Clearly s 6= s′; however, they still represent the same
vector.

|S〉 = s1 |X〉+ s2 |Y 〉+ s3 |Z〉 , (3)

|S〉 = s′1 |K〉+ s′2 |L〉+ s′3 |M〉 , (4)

|S〉 7→

s1s2
s3

 = s, (5)

|S〉 7→

s′1s′2
s′3

 = s′. (6)

Turning a bra vector to a ket vector is a linear function in the complex space:

|W 〉 7→ 〈W | =
[
w∗1 w∗2 · · · w∗n

]
. (7)

Note that each component of the vector is complex-conjugated2.

3.1.2 Inner Product

For n dimensional vectors |W 〉, |S〉, inner product is shown with a braket and defined as follows:

〈W |S〉 =

n∑
i=1

w∗i si. (8)

3.1.3 Hilbert Space

Hilbert space is a generalization of Euclidean space. Named after David Hilbert, it is a possibly
infinite dimensional, real or complex inner product space.

By definition, in a Hilbert space H, for any λ ∈ C, any pair of elements w, s ∈ H, it also holds
that w + λs ∈ H. The following properties have to hold for the inner product 〈W |S〉:

1. Linearity: Linear in the second argument and anti-linear in the first argument. Also called
sesquilinear.

〈W |c1S1 + c2S2〉 = c1 〈W |S1〉+ c2 〈W |S2〉 ,
〈c1W1 + c2W2|S〉 = c∗1 〈W1|S〉+ c∗2 〈W1|S〉 .

(9)

1Basis is a set of vectors that are linearly independent and any vector in the space can be represented
as a linear combination of these vectors.

2For a complex number x = a+ bi , x∗ = a− bi . x∗can also be shown as x
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2. Conjugate symmetry:
〈W |S〉 = 〈S|W 〉∗ . (10)

3. Positive-definiteness:

〈W |W 〉 =

n∑
i=1

w∗iwi =

n∑
i=1

|wi|2 ≥ 0. (11)

3.1.4 Quantum Probability

In Kolmogorovian or classical probability, events are represented as members of a set, and probabil-
ities are given by a function that maps a set to a real number in range [0, 1]. Quantum probability
is defined on different axioms and in a way generalizes classical probability [26].

3.1.5 Events

In classical probability, a sample space contains finite number of points. Each point represents an
elementary event that can be observed. A more complex event Ei is a subset of this sample space.
Conjunction of two events E1 and E2 is represented by the set intersection (E1 ∩E2), disjunction
of two events is a set union (E1 ∪ E2). Conceptually there is no difference between E1, E2 or
E1 ∩ E2.

In quantum theory, an event is a subspace of a Hilbert space X . A set of basis vectors
V = {|Vi〉 , i = 1, 2, .., n} spans the space and each basis vector corresponds to an elementary
outcome. For an event E1 that is spanned by the VE1

⊆ V and event E2 spanned by VE2
⊆ V ,

two projectors are defined:

PE1 =
∑

Vi∈VE1

|Vi〉 〈Vi| , (12)

PE2 =
∑

Vi∈VE2

|Vi〉 〈Vi| . (13)

Conjunction of two events, E1 ∧E2, is an intersection of subspaces, VE1
∩VE2

, and disjunction
of two events, E1 ∨ E2, is span of subspaces, VE1

∪ VE2
.

3.1.6 System State

Classical probability theory defines a function that maps points of sample space to a number in
interval [0, 1]. The function defines the state of the system. The empty space is mapped to 0 and
sample space is mapped to 1. For events E1 and E2, the probability of their occurrence can be
defined as the relation p(E2 ∪ E2) = p(E1) + p(E2)− p(E1 ∩ E2).

In quantum probability theory, state is a unit vector |S〉 in a Hilbert space. Probability of an

event Ei with basis VEi
⊆ V is q(Ei) = ‖PEi

|S〉 ‖2 where

‖PEi
|S〉 ‖2 = 〈S|P†Ei

·PEi
|S〉 = 〈S|PEi

|S〉 . (14)

For events E1 and E2, that are mutually exclusive, E1 ∩ E2 = ∅, their probability is defined,
from orthogonality, as follows:

q(E1 ∨ E2) =‖PE1
+ PE2

|S〉 ‖2 (15)

=‖PE1
|S〉 ‖2 + ‖PE2

|S〉 ‖2 (16)

=q(E1) + q(E2). (17)

3.1.7 State Revision

Revision of the system state is the conditional probability function in classical probability. For the
occurrence of an event Ei, the probability function is defined as:

p(X|Ei) =
p(X ∩ Ei)

p(Ei)
. (18)
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In quantum probability, after the event Ei is observed the state |S〉 is updated with following
relation:

|SEi
〉 =

PEi
|S〉

‖PEi
|S〉 ‖

. (19)

3.1.8 Compatibility

In classical probability, a single probability function (also called the probability density function)
defines the complete set of possibilities. All events and their combinations are defined and mapped
by this probability function. This is called the principle of unicity by [15].

In quantum probability all events are contained within a single Hilbert space. However, events
are of two kinds, compatible events and incompatible events.

If two events, E1 and E2, are spanned by subsets of same basis set, VE1 ⊂ V and VE2 ⊂ V ,
then two events are compatible. As mentioned earlier in section 3.1.5, disjunction is union of basis
vectors of the event and conjunction is intersection of those sets for compatible events.

If two events are defined over two different basis sets then, the events are incompatible in
quantum probability, which is a condition that does not exist in classical probability. The two
event have to be considered in some sequence. Suppose two basis sets are defined for the same
Hilbert space X , V = {|Vi〉 , i = 1, 2, .., n}, W = {|Wi〉 , i = 1, 2, .., n}. Event EV is spanned by
VEV

⊆ V and event EW is spanned by WEW
⊆ W . For the sequence of events, EV occurring

before EW , probability of event EV occurring is

q(EV ) = ‖PEV
|S〉 ‖2. (20)

Then the state conditioned on observing event EV is

|S′〉 =
PEV

|S〉
‖PEV

|S〉 ‖
. (21)

With the updated state vector |S′〉, the probability of event EW is equals to

q(EW |EV ) = ‖PEW
|S′〉 ‖2. (22)

Then the probability of sequence of events EV and EW is

q(EV ) · q(EW |EV ) = ‖PEV
|S〉 ‖2 · ‖PEW

|S′〉 ‖2

= ‖PEV
|S〉 ‖2 ·

∥∥∥∥PEW

PEV
|S〉

‖PEV
|S〉 ‖

∥∥∥∥2
= ‖PEV

|S〉 ‖2 · 1

‖PEV
|S〉 ‖2

‖PEW
PEV

|S〉 ‖2

= ‖PEW
PEV

|S〉 ‖2.

(23)

Since the projectors PEV
and PEW

do not share a common set of eigenvectors which implies
PEW

PEV
6= PEV

PEW
then q(EV ) · q(EW |EV ) 6= q(EW ) · q(EV |EW ).

In classical probability, p(D|E1, E2, ...En) of event D does not depend on the order of events
Ei. Because, it is based on sets, events E1 through En is the set E1 ∩ E2 ∩ · · · ∩ En as a single
event. However, in quantum probability, event order is important as shown with equation 23.

3.1.9 Total Probability and Interference

Suppose two events, E1 and E2, are being observed and q(E1) is the main focus of the experiment.
For the single event E1 the probability can be calculated as q(E1) = ‖PE1 |S〉 ‖2. If E1 is observed
after E2, then the total probability for E1 is:

qT (E1) = ‖PE1PE2 |S〉 ‖2 + ‖PE1PE2
|S〉 ‖2, (24)
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where E2 is used to show the negation of event E2. However, if the expression for the probability
of the single event is manipulated as follows:

q(E1) =‖PE1
|S〉 ‖2

=‖PE1I |S〉 ‖2

=‖PE1
(PE2

+ PE2
) |S〉 ‖2

= 〈S| (PE2 + PE2
)PE1PE1(PE2 + PE2

) |S〉
= 〈S| (PE2

+ PE2
)PE1

(PE2
+ PE2

) |S〉
= 〈S|PE2

PE1
PE2
|S〉+ 〈S|PE2

PE1
PE2
|S〉

+ 〈S|PE2
PE1PE2 |S〉+ 〈S|PE2

PE1PE2
|S〉

=‖PE1
PE2
|S〉 ‖2 + ‖PE1

PE2
|S〉 ‖2

+ 〈S|PE2
PE1PE2 |S〉+ 〈S|PE2PE1PE2

|S〉
=qT (E1) + 〈S|PE2

PE1
PE2
|S〉+ 〈S|PE2

PE1
PE2
|S〉

(25)

It can be shown that the following equality holds:

qT (E1) = qT (E1) + intE1 , (26)

where intE1 = 〈S|PE2
PE1PE2 |S〉+ 〈S|PE2PE1PE2

|S〉 represents the interference. If E1 and E2

are compatible, ie. PE1
PE2

= PE2
PE1

then, intE1
= 0 and qT (E1) = qT (E1). Because,

PE2
PE1

PE2
= PE2

PE2
PE1

= 0 ·PE1
= 0. (27)

However, intE1
can have a positive or negative value and violate the total probability.

4 Semantic Space

One of the ways to describe the meaning of a word is defining it as a point in a multidimensional
space, called semantic space [10]. This space can be constructed from the co-occurrence of words
within a corpus. It is observed that the meaning of a word can be represented by the distribution
of words around it in a corpus. This representation can be simply the frequencies of the word
occurrences [20]. The occurrences also can be used to generate word embeddings [24, 22]. Also
apart from co occurrences syntactic dependency can be used to generate a semantic space for words
[23].

A word w has co-occurrence relations with other words in the corpus C = {D1, D2...Dm}
where m is the number of documents, V = {w1, w2, ...wn} where n is number of word in the
vocabulary. Co-occurrence can be calculated around a word within a window in each document
Di. This way certain number of words before and after the target word represents the context
of the word. Dependency relations can be represented by a similar vector with same size. This
dependency based vector can represent modifiers and affordances of a word, verbs and adjectives,
used in relation to the target word. More complicated definition of context while generating word
embeddings are shown to give marginal improvements [1].

5 Proposal

The quantum probability that is developed and mainly used by physicists has been proposed to
be a good candidate for the modeling context [7]. There is evidence from cognitive science that
the framework has better descriptive qualities for explaining cognitive science processes. Moreover,
studies in information retrieval have demonstrated its practical applications, such as summarization
of documents [25] and ranking [29].

5.1 Quantum Probabilistic Nature of Decision Making

Observations from a decision experiments will be explained to make a case that the quantum
probability framework is more suitable to model decision processes of humans.
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Figure 1: Word embedding using context. A naive representation of a word is projected
to its representation, representation is mapped to its surrounding words.

5.1.1 The Conjunction Fallacy

The conjunction fallacy is a judgment error first described by Tversky and Kahneman in [33]. In
the experiments which this judgment fallacy is observed, participants are given a text about the
previous life of a woman, named Linda, and asked questions about her. The questions are: Linda
is now:

1. active in the feminist movement,

2. a bank teller,

3. active in the feminist movement and a bank teller,

4. active in the feminist movement or a bank teller.

The conjunction fallacy occurs when option 3 is judged to be more likely than option 2. In classical
interpretation, both options are sets and the option 3 is intersection of options 1 and 2. So the
probability of option 3 has to be smaller than or equal to option 2. But the participants frequently
judge option 3 more likely than option 2.

q(S3) = ‖PFPB |S〉 ‖2 (28)

q(S1) = ‖PB |S〉 ‖2 (29)

In quantum probability, option 3 can be weighed by q(S3) and option 1 can be weighed by
q(S1). The value difference can be made to match the experiment results with careful selection of
state vector values and the basis chosen for being a feminist |F 〉 and being a bank teller |B〉. The
figure 2 is a geometric representation that shows the difference between |S1〉 and |S3〉. As can be
seen, quantum framework can model the behavior observed in the experiments. The two choices
are represented by two different basis in two dimensional space. The non-compatibility of this two
basis give quantum probability the ability to model the observation of the experiments done.

Motivated from these, this report proposes to study context from a quantum probability, as
outlined below.

5.2 Modeling Context within Quantum Probability

Context can be modeled in two ways within quantum probability framework. First one is repre-
senting each context as a different basis set. Second one is representing context as subspaces of
the same Hilbert space.
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Figure 2: Same vector different basis sets

5.2.1 Context as a Basis

In the basis approach, each context Ci is a different set of basis vector for the Hilbert space X that
the word wi exist in. For contexts C1 = {W 1

1 ,W
1
2 , ...,W

1
n} and C2 = {W 2

1 ,W
2
2 , ...,W

2
n}, the word

|w〉 has following relations,

|w〉 = a1
∣∣W 1

1

〉
+ a2

∣∣W 1
2

〉
+ . . .+ an

∣∣W 1
n

〉
, (30)

|w〉 = b1
∣∣W 2

1

〉
+ b2

∣∣W 2
2

〉
+ . . .+ bn

∣∣W 2
n

〉
, (31)

where ai and bi for i ∈ {1, 2, . . . , n} is associations of word |w〉 with word Wi. For example, if
word vectors comes from co-occurrences, different context modifies the co-occurrence frequencies
thus their meaning.

5.2.2 Context as a Subspace

After a corpus is processed with the aim to produce the mentioned frequencies, A word can be
represented with a vector wi = (wi1, wi2, ..., win)T . With basis vectors that represent each word
in the vocabulary, that are not necessarily orthogonal, a vector that represent the “meaning” can
be shown as |wi〉. The density matrix can be calculated as ρi = |wi〉 〈wi|. Word w representing a
concept

ρw = p1ρ1 + p2ρ2+, . . . , pmρm, (32)

where there is m senses, or associations for the word w.
The effect of context on a word w can be defined as a quantum measurement, that projects a

word state ρw into a subspace [7]. This projection is defined as:

PxρwP
†
x = |w〉 〈x| ρw |x〉 〈w| = ρxw, (33)

where Px = |w〉 〈x| is the operator representing the context x, which is not necessarily a projection
operator. The probability p of this projection (collapse of state) is given by:

p = |x〉 ρw 〈w| . (34)

For a pure state vector |w〉, that represents the word w, the new state |w′〉 is given by:

|w′〉 =
Px |w〉
‖Px |w〉 ‖

. (35)
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5.3 Modeling Word Embeddings with Quantum Probability

The probability of co-occurrence between two words can be modeled within a quantum probability
framework. For a word w with embedding |W 〉, its context can be defined as a set of words that
are within a certain distance around the word w, C = {w1, w2, w3, ..., wt}. The probability of word
wi occurring within the context window of w, q(wi|w) is equal to:

q(wi|w) = ‖PWi |W 〉 ‖2, (36)

where PWi = |Wi〉 〈Wi|.
With the probabilities calculated over a corpus, finding the vector representation of a given

word becomes the following minimization problem.

arg min
|Wi〉,|W 〉

C(w,wi) = ‖PWi |W 〉 ‖2 − P (wi|w), (37)

where the value P (wi|w) is the classical probability the word wi occurring within the context
window of word w, that is calculated over the corpus.

6 Conclusion and Future Work

In this report, we provide a semantic-space take on modeling context. For this end, we have started
training word2vec embeddings that can be used as a semantic map for the approach provided in
the report. However, the model requires unit length word representations, for which we wrote
our own loss function for training a word2vec network. Our initial results suggest that a useful
representation has been learned in this manner.
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