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Abstract: Detecting Micro Unmanned Aerial Vehicles (mUAVs) is crucial for (i) multi-UAV1

control scenarios such as environmental monitoring, surveillance and exploration as well2

as (ii) for intrusion detection by mUAVs in protected environments. In this article, we3

focus on visual detection and localization of mUAVs for these purposes. We evaluate4

vision algorithms as alternatives for detecting and localizing mUAVs, since other sensing5

modalities entail certain limitations on the environment or the distance between the UAVs.6

For this purpose, we test Haar-like features, Histogram of Gradients (HOG) and Local Binary7

Patterns (LBP) using cascades of boosted classifiers. Cascaded boosted classifiers allow fast8

processing by performing detection tests at multiple stages, where only candidates passing9

earlier simple stages are processed at the preceding more complex stages. We also integrate10

a position estimation method to our system utilizing geometric cues with Support Vector11

Regressors. We evaluated each method with both indoor and outdoor test videos that are12

collected in a systematic way, and also with videos having motion blur. Our experiments13

show that, using boosted cascaded classifiers with LBP, near real-time detection and distance14

estimation of mUAVs are possible in about 60 ms indoors (1032×778 resolution) and 150 ms15

outdoors (1280× 720 resolution) per frame, with a detection rate of 0.96 F-Score. However,16

the output of C-HAAR leads to better distance estimation since it can position the bounding17

boxes on mUAVs more accurately. On the other hand, our time analysis yields that C-HOG18

trains and runs faster than the other algorithms.19
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1. Introduction21

Advances in the development of micro Unmanned Aerial Vehicles (mUAVs)1 has led to the22

availability of highly capable yet cheap flying platforms. This has made the deployment of mUAV23

systems in surveillance, monitoring and delivery tasks a feasible alternative. The use of mUAVs in24

monitoring the state of forest fires where the mission spreads over a large region, and flying over the25

fire is dangerous [2], or in delivering packages in urban areas [3] as a faster and cheaper solution is26

being explored. Moreover, the widespread interest in public has also resulted in mUAVs2 showing up27

in places such as the White House where conventional security measures caught unprepared [4], or in28

traffic accidents of fires where the presence of mUAVs, flown by hobbyists to observe the scene, posed29

a danger to police and fire-fighter helicopters, and resulted in delays in their deployment [5]. In all these30

cases, the need for the automatic detection and localization of mUAVs, either from the ground or from a31

flying platform (which can be another mUAV or a helicopter) against a possibly cluttered background is32

apparent.33

The main objective of our study is the evaluation of vision as a sensor for detecting and localizing34

mUAVs. This problem poses a number of challenges: First, mUAVs are small in size and often do not35

project a compact and easily segmentable image on the camera. Even in applications where the camera36

is facing upwards and can see the mUAV against rather smooth and featureless sky, the detection poses37

big challenges. In multi-mUAV applications where each platform is required to sense its neighbors, and38

in applications where the camera is placed on a pole or on a high building for surveillance, the camera is39

placed at a height same or higher than the incoming mUAV, and the image of the mUAV is likely to be40

blended against feature-rich trees and buildings, with possibly other moving objects in the background,41

the detection and localization problem becomes challenging. Moreover, in multi-mUAV applications,42

the vibration of the platform as well as the size, power, weight and computational constraints posed on43

the vision system also need to be considered.44

Within this paper, we report our work towards the development of an mUAV detection and localization45

system. Specifically, we have created a system for automatic collection of data in a controlled indoor46

environment, proposed and implemented the cascaded approach with different features and evaluated47

the detection performance and computational load of these approaches with systematic experiments on48

indoor and outdoor datasets.49

For cooperative operation of mUAVs and for also sense and avoid purposes, relative localization in 3D50

space which requires the estimation of both bearing and distance is critical. By detecting an mUAV in an51

image, relative bearing can be estimated easily. However, for distance estimation, additional computation52

is needed. Due to the scale estimation problem in monocular vision and excessive variability of possible53

appearances of an mUAV for the same distance, the problem is challenging. Considering the demand54

for the distance information, we also developed a method to estimate relative distance of a detected55

mUAV by utilizing the size of detection window. We have performed indoor experiments to evaluate the56

performance of this approach in terms of both distance and time-to-collision estimation.57

1 mUAVs are UAVs less than 5 kg [1].
2 which are often referred to as drones
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2. Related Studies58

In this section, we discuss the relevant studies in three parts. In the first part, general computer59

vision approaches related with object detection and recognition are reviewed. The second and third parts60

summarize the efforts in the robotics literature to detect and localize mUAVs using computer vision and61

other modalities, respectively.62

2.1. Object Detection and Recognition Approaches with Computer Vision63

In Computer Vision and Pattern Recognition (CVPR), object detection and recognition has been64

extensively studied (see [6,7] for comprehensive reviews), with applications ranging from human65

detection, face recognition to car detection, scene classification [8–13]. The approaches to detection and66

recognition can be broadly categorized into two: keypoint-based approaches and cascaded-approaches.67

2.1.1. Keypoint-based Approaches68

In keypoint-based methods, CVPR usually detects salient points, called interest points or keypoints,69

in the “keypoint detection” phase. In this phase, regions in the image that are likely to have important70

information content are identified. The key points should be as distinctive as possible and should71

be invariant, i.e., detectable under various transformations. Popular examples of keypoint detectors72

include Fast Corner Detection (FAST) [14,15], Harris corner detection (HARRIS) [16], Maximally73

Stable Extremal Region extractor (MSER) [17], Good Features To Track (GFTT) [18] - see [19] for74

a survey of local keypoint detectors.75

In the next phase of keypoint-based approaches, intensity information at these keypoints are used to76

represent the local information in the image invariant to transformations such as rotation, translation,77

scale and illumination. Examples of the keypoint descriptors include Speeded-up Robust Features78

(SURF) [20], Scale Invariant Feature Transform (SIFT) [21], Binary Robust Independent Elementary79

Features (BRIEF) [22], Oriented FAST and Rotated BRIEF (ORB) [23], Binary Robust Invariant80

Scalable Keypoints (BRISK) [24], Fast Retina Keypoint (FREAK) [25].81

Extracted features are usually high dimensional (e.g., 128 in the case of SIFT, 64 in SURF, etc.),82

which makes it difficult to use distributions of features for object recognition or detection. To overcome83

this difficulty, the feature space is first clustered (e.g., using k-means), and the cluster labels are used84

instead of high-dimensional features for, e.g., deriving histograms of features for representing objects.85

This approach, called bag-of-words (BOW) model, has become very popular in object recognition (see,86

e.g., [26–28]). In BOW, histograms of cluster labels are used to train a classifier, such as Naive Bayes87

classifier or Support Vector Machines [29], to learn a model of the object.88

In the testing phase of BOW, a window is slided over the image and for each position of the window89

in the image, a histogram of the cluster labels of the features in that window is computed and tested with90

the trained classifiers. However, the scale of the window imposes a severe limitation on the size of the91

object that can be detected or recognized. This limitation can be overcome to only a certain extent by92

sliding windows of different scales. However this introduces a significant computational burden, making93

it unsuitable for real-time applications.94
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2.1.2. Hierarchical and Cascaded Approaches95

A better approach in CVPR is to employ hierarchical and cascaded models into recognition and96

detection. In such approaches, shape, texture and appearance information at different scales and97

complexities are processed, unlike the regular keypoint-based approaches. Processing at multiple levels98

has been shown to perform better than the alternative approaches (see, e.g., [30]).99

In hierarchical approaches, such as the deep learning approaches [31], features of varying scale are100

processed at each level: in lower levels of the hierarchy, low-level visual information such as gradients,101

edges etc. are computed, and with increasing levels in the hierarchy, features of the lower-levels are102

combining, yielding corners or higher-order features that start to correspond to object parts and to103

objects. At the top of the hierarchy, object categories are represented hierarchically. For detecting104

an object in such an approach, the information needs to pass through all the hierarchies to be able to105

make a decision.106

An alternative approach is to keep a multi-level approach but prune processing as early as possible107

if a detection does not seem likely. Such cascaded approaches, which are inspired, especially, from108

ensemble learning approaches [32] in machine learning, perform fast but coarse detection at early109

stages and only candidates passing earlier stages pass on to higher stages where finer details undergo110

computationally-expensive detailed processing. This way, these approaches benefit from speed by111

processing candidate regions that are highly likely to contain a match [33]. A prominent study, which112

also forms the basis of this study, is the approach by Viola and Jones [10,34], which builds cascades of113

Haar-based classifiers of varying complexities, adopting the Adaboost classifiers [35]. Viola and Jones114

[10,34] applied their method to face detection and demonstrated high detection rates at high speeds. The115

approach was later extended to work with Local Binary Patterns for face recognition [36] and Histogram116

of Oriented Gradients for human detection [37], which are more descriptive and faster to compute than117

Haar-like features.118

2.2. Detection and Localization of mUAVs with Computer Vision119

With advances in computational power, vision has become a feasible modality for several tasks with120

UAVs. These include fault detection [38], target detection [39] and tracking [40], surveillance [41,42],121

environmental sensing [43], state estimation and visual navigation [44–49], usually combined with other122

sensors such as GPS, Inertial Measurement Unit (IMU), altimeter or magnetometer.123

Recently, vision has been used for mUAV detection and localization by recognizing black-and-white124

special markers placed on mUAVs [50,51]. In these studies, circular black-white patterns are designed125

and used for detection and distance estimation, achieving estimation errors less than 10 cm in real-time.126

However, in some applications where it is difficult to place markers on mUAVs, such approaches are not127

applicable and a generic vision-based detection system such as the one proposed in the current article is128

required.129

In [52], leader-follower formation flight of two quadrotor mUAVs in outdoor environment is studied.130

Relative localization is obtained via monocular vision using boosted cascaded classifiers of HAAR-like131

features for detection and Kalman filtering for tracking. To estimate distance, they used the width of the132

leader with the camera model. They tested their vision based formation algorithm in simulation and with133
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real mUAVs. Results for only real world experiments are provided where the follower tries to keep 6 m134

distance to the leader flying up to a speed of 2 m/s. Their results present only the relative distance of the135

mUAVs during a flight where the distance information is obtained probably (not mentioned clearly) from136

GPS. Although they claim that the tracking errors converge to zero, their results indicate that the errors137

always increase while the leader has a forward motion. Only when the leader becomes almost stationary138

after 35 seconds of total 105 seconds flight, the errors start to decrease.139

In [53], 2D relative pose estimation problem is studied by extending the approach in [52]. Once140

mUAV is detected via cascaded classifier, its contours are extracted and for these contours best matching141

image from a set of images collected previously for different view angles is determined. Then, using142

affine transformation the orientation is estimated. Their experimental results are not sufficient to deduce143

the performance of pose estimation. Furthermore, they use the estimated pose to enhance relative144

distance estimation method applied in [52]. According to the results given for only 50 frames, there145

seems an improvement, however, the error is still very high (up to three meters for a 10 meters distance146

with a variance of 1.01 meters) and GPS is taken as the ground truth whose inherent accuracy is actually147

not very appropriate for such an evaluation.148

Both studies [52,53] mentioned above use boosted cascaded classifiers for mUAV detection, however149

they provide no analysis about detection and computational performance of the classifiers. The methods150

are tested only outdoors and the results for the tracking and pose estimation are poor to evaluate151

the performances of the methods. They use HAAR-like features directly without any investigation.152

Moreover, no information is available about the camera and processing hardware used. The detection153

method is reported to run as 5 Hz.154

In [54], collision detection problem for fixed-winged UAVs is studied. A morphological filter based155

on close-minus-open approach is used for preprocessing stage. Since morphological filters assume156

a contrast difference between the object and the background, once the image is preprocessed, the157

resulting candidate regions should be further inspected to get the final estimation. This is very crucial as158

the morphological filters produces large amount of false positives which have to be eliminated. For159

this purpose, they combined the morphological filtering stage with two different temporal filtering160

techniques, namely, Viterbi-based and Hidden Markov Model (HMM) based. The impact of image161

jitter and the performance of target detection are analyzed by off-board processing of video images on a162

graphical processing unit (GPU). For jitter analysis, videos recorded using a stationary camera are used163

by adding artificial jitter at three increasing levels, low, moderate and extreme. Both temporal filtering164

techniques demonstrate poor tracking performances in case of extreme jitter where interframe motion is165

greater than 4 pixels per frame. Some failure periods is also observed for HMM filter in moderate jitter166

case. Target detection performance experiments are performed on videos captured during three different167

flights with an onboard camera mounted on a UAV. Two of them include head on maneuvers and in168

the third one UAVs fly at right angles to each other. A detection range between 400 and 900 meters is169

reported allowing to estimate a collision before 8− 10 seconds of the impact.170

There are also studies for detecting aircrafts via vision [55–57]. Although we include mainly the171

literature proposed for UAVs in this section, these studies are noteworthy since they are potentially useful172

for UAVs as long as size, weight and power (SWaP) constraints of UAVs are complied. In [55], aircraft173

detection under presence of heavily cluttered background patterns is studied for collision avoidance174
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purposes. They applied a modified version of boosted cascaded classifiers using HAAR-like features175

for detection. Temporal filtering is also integrated to the system to reduce false positives by checking176

the previous detections around a detection before accepting it as valid. Their method does estimate the177

distance. Experimental results presented on videos recorded via a camera mounted on an aircraft and178

having collision course and crossing scenarios indicate a detection rate around 80% with up to 10 false179

positives per frame. No distance information is available between target and host aircrafts. Looking180

at the images, the distance seems to be on the order of some hundred meters. The performance of the181

system in close distances is also critical which is not clearly understood from their experiments. They182

report that their method has a potential of real time performance, however, no information is available183

about the frame size of the images and the processing hardware.184

[56,57] present another approach for aircraft detection for sense and avoid purposes. They propose185

a detection method without distance estimation consisting of three stages which are (1) morphological186

filtering, (2) SVM-based classification of the areas found by stage 1, and (3) tracking based on similarity187

likelihoods of matching candidate detections. They tested their method on videos recorded using188

stationary cameras of various imaging sensor, lens and resolution options. These videos include aircraft189

flying only above horizon, therefore the background patterns are less challenging than below horizon190

case which is not investigated in the study. A detection rate of 98% at 5 statute miles with 1 false191

positive in every 50 frames is reported with a running time of 0.8 seconds for 4 megapixel frame.192

Table 1. Comparison of the studies on visual detection of aerial vehicles.

Study Vehicle Detection Method
Detection

Performance
Motion

Blur
Training

Time
Testing
Time

Background
Complexity

Environment
Distance

Estimation

Lin et al., 2014 mUAV
Boosted cascaded classifiers

with HAAR-like features
No No No No Medium Outdoor

Yes
(low accuracy)

Zhang et al., 2014 mUAV
Boosted cascaded classifiers

with HAAR-like features
No No No No Medium Outdoor

Yes
(low accuracy)

Petridis et al., 2008 Aircraft
Boosted cascaded classifiers

with HAAR-like features
Yes No No No High Outdoor No

Dey et al., 2009; 2011 Aircraft Morphological filtering Yes No NA No Low Outdoor No
Lai et al., 2011 mUAV Morphological filtering Yes Yes NA Yes High Outdoor No

Current study mUAV
Boosted cascaded classifiers
with HAAR-like, LBP and

HOG features
Yes Yes Yes Yes High

Indoor and
Outdoor

Yes

2.3. Detection and Localization of mUAVs with other Modalities193

There are many alternative sensing methods that can be used for relative localization among mUAVs.194

One widely-used approach is Global Positioning System (GPS): In a cooperative scenario, each mUAV195

can be equipped with GPS receivers and share their positions with other agents [58]. However, GPS196

signals could be affected by weather, nearby hills, buildings, and trees. The service providers may197

also put limitations on the availability and accuracy of the GPS signals. Moreover, the accuracy of198

GPS signals is not sufficient for discriminating between close-by neighboring agents unless a Real-Time199

Kinematic GPS (RTK-GPS) system is used [59]. However, RTK-GPS systems require additional base200

station unit(s) located in the working environment.201

Alternative to GPS, modalities such as (1) infrared [60–65], (2) audible sound signals [66,67], and202

(3) ultrasound signals [68–70] can be used; however, they entail certain limitations on the distance203
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between the mUAVs and the environments in which they can perform detection. Infrared tends to be204

negatively affected from sunlight, hence not very suitable for outdoor applications. Sound can be a205

good alternative; yet, when there are close-by agents, interference becomes a hindrance for multi-mUAV206

systems and audible sound signals are prone to be affected from external sound sources. Multipath207

signals can disturb the measurements severely. The speed of the sound limits the achievable maximum208

update rate of the system. Moreover, current ultrasound transducers provide limited transmission and209

reception beam angles complicating the design of a system with omni-directional coverage.210

An alternative modality commonly used by planes is radio waves (i.e., radar). The limitation with211

radar, however, is that the hardware is too heavy and expensive to place on an mUAV. Recently, there has212

been an effort to develop an X-Band radar to be used on mUAVs [71,72].213

Ultra-wide band (UWB) radio modules which allow two-way time-of-flight and214

time-difference-of-arrival measurements, and signal strength between radio frequency (RF) devices215

could be thought as another alternatives. However, both techniques need anchor units placed at the216

environment. The use of UWB modules without beacon units could be considered as an aiding method217

to enhance the performance of localization systems that depend on other modalities. Signal strength218

between RF devices does not allow to design an accurate system due to uncertainties arising from219

antenna alignment and effects of the close objects.220

2.4. The Current Study221

As reviewed above, there is an interest in detecting and locating aerial vehicles via vision for various222

purposes such as cooperation and collision avoidance. Table 1 summarizes these studies in terms of223

various aspects. Looking at this comparison table and above explanations, our study fills a void with224

regard to the comprehensive and systematical analysis of cascaded methods with videos including very225

complex indoor and outdoor scenes providing also an accurate distance estimation method.226

The main contribution of the article is a systematic analysis on whether a mUAV can be detected227

using a generic vision system under different motion patterns both indoors and outdoors. The tested228

indoor motion types include lateral, approach-leave, up-down and rotational motions that are precisely229

controlled using a physical platform that we constructed for the article. In the outdoor experiments, we230

tested both calm and agile motions that can also include moving background. Moreover, the effect of231

motion blur is also analyzed in a controlled manner. To the best of our knowledge, this is the first study232

that presents comprehensive and systematical investigation of the vision for detecting and localizing233

mUAVs without special requirements, e.g., markers used by [50,51].234

Besides detecting the quadrotor, our study also integrates a distance estimation method in which a235

support vector regressor estimates the distance of the quadrotor utilizing the dimensions of the bounding236

box estimated in detection phase.237

Since it is faster than the alternatives and it does not require a large training set, we use cascaded238

classifiers for detection, which consist of multiple (classification) stages with different complexities [10,239

34,36,37]. The early (lower) stages of the classifier perform very basic checks to eliminate irrelevant240

windows with very low computational complexity. The windows passing the lower stages are low in241
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Detected
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Coarse,
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Figure 1. The stages of processing in a cascaded-approach. At each stage, a decision to
reject or to continue processing is made. If all stages pass, then the method states detection
of the object.

number, and undergo heavier computations to be classified as mUAV or background. To train a cascaded242

classifier, we use different feature types proposed in the literature and compare their performances.243

3. Methods244

In this section, we describe the cascaded detection methods used in this paper; namely, the method of245

Viola and Jones [10,34], and the ones that extend it [36,37].246

3.1. A Cascaded Approach to mUAV Detection247

Cascaded classifiers are composed of multiple stages with different processing complexities [10,34,248

73]. Instead of one highly complex single processing stage, cascaded classifiers incorporate multiple249

stages with increasing complexities as shown in Figure 1.250

Early stages of the classifier have lower computational complexities and are applied to the image to251

prune most of the search space quickly. The regions classified as mUAV by one stage of the classifier252

is passed to the higher stages. As the higher level of stages are applied, the classifier works on smaller253

number of regions at each stage to identify them as mUAV or background. At the end of last stage, the254

classifier returns the regions classified as mUAV.255

In the method proposed by [10,34], which relies on using the AdaBoost learning, combinations of
weak classifiers are used at each stage to capture an aspect of the problem to be learned. A weak
classifier, hf (x), simply learns a linear classification for feature f with a threshold θf :

hf (x) =

{
1 if f(x) < θf

0 otherwise
(6)

The best performing weak classifiers are combined linearly to derive a stronger one (on a stage of the256

cascade) - see Algorithm 1.257

In the approach of Viola & Jones [10,34], the AdaBoost algorithm is used to learn only one stage of258

the cascade of classifiers: In the cascade, simpler features are used in the earlier stages whereas bigger259
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Algorithm 1: AdaBoost Learning.
input : The training samples: {(xi, li)}, i = 1, ..., N , where li = 1 for positive, and li = 0 for

negative samples. N = m+ o, where m and o are the number of positives and negative
samples, respectively.

output: Strong classifier, h(x), as a combination of T weak classifiers.

1 - Initialize the weights for samples:
w1,i = 1

2m
for positive samples, and w1,i = 1

2o
for negative samples.

2 for t = 1 to T do
3 - Normalize weights so that wt add up to 1:

ŵt,i =
wt,i∑n
j=1 wt,j

. (1)

for each feature f ∈ F , the set of all features do
4 - Train a weak classifier hf for learning from only feature f .
5 - Calculate the error of classification:

εf =
n∑
i=1

ŵt,i|hf (xi)− li|. (2)

6 - Among the weak classifiers, hf , ∀f ∈ F , choose the one with the lowest error (εt):

ht = arg min
f∈F

εf . (3)

- Update the weights:

wt+1,i = ŵt,i

(
εt

1− εt

)ei
, (4)

where ei = 1 if xi is classified correctly, and 0 if it is not.

7 - The final classifier is then the combination of all the weak ones found above:

h(x) =

 1 if
T∑
t=1

αtht(x) ≥ 1

2

T∑
t=1

αt

0 otherwise

(5)

where αt = log 1−εt
εt

.

and more complex features are only processed if the candidate window passes the earlier stages. The260

method constructs the cascade by simply adding a new stage of AdaBoost classifier when the current261

cascade does not yield the desired false positive and detection rates - see Algorithm 2 and Figure 1.262

Such an approach can only become computationally tractable if the features can be extracted in a very263

fast manner. One solution is using integral images, as proposed by Viola and Jones. In Section 3.1.1, we264

will describe them.265



Version August 19, 2015 submitted to Sensors 10 of 41

Algorithm 2: Learning a cascade of classifiers (Adapted from [34]).
input : Positive and negative training samples: P = {x+

1 , x
+
2 , ..., x

+
L}, N = {x−1 , x−2 , ..., x−M}

output: The cascade of classifiers

1 initialize:
i = 0 : The stage number
Fi = 1.0 : False positive rate of the current cascaded classifier
Di = 1.0 : Detection rate of the current cascaded classifier
Ni = N : Negative samples for the current cascaded classifier
f : user defined maximum acceptable false positive rate per layer
d : user defined minimum acceptable detection rate per layer

while Fi > Ftarget do
2 i← i+ 1

3 ni = 0

4 Fi ← Fi−1

5 while Fi > f × Fi−1 do
6 ni ← ni + 1

7 - Train a classifier hni
on P and Ni with ni features using AdaBoost (see Algorithm 1)

8 - Determine Fi and Di using the overall current cascaded detector
9 - Decrease threshold θi for hni

until Di > d×Di−1

10 if Fi > Ftarget then
11 - Run the overall current cascaded detector with θi on N0

12 - Put any false negatives into Ni+1

The cascaded detectors are usually run in multiple scales and locations, which lead to multiple266

detections for the same object. These are merged by looking at the amount of overlap between detections,267

as a post-processing stage.268

3.1.1. Integral Images269

In order to speed up the processing, computation of each feature in a window is performed using the270

integral images technique. In this method, for a pixel (i, j), the intensities of all pixels that have smaller271

row and column number are accumulated at (i, j):272

II(i, j) =
i∑

c=1

j∑
r=1

I(i, j), (7)

where I is the original image, and II the integral image. Note that II can be calculated incrementally273

from the II of the neighboring pixels more efficiently.274

Given such an integral image, the sum of intensities in a rectangular window can be calculated275

easily by accessing four values and performing 5 operations. See Figure 2 for an example: The sum276

of intensities in window A can be calculated as II4 + II1 − (II2 + II3) [10].277
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A

𝐼𝐼1 𝐼𝐼2

𝐼𝐼3 𝐼𝐼4

Figure 2. The method of integral images for efficient computation of sums of intensities in
a window. The sum of intensities in window A can be calculated as II4 + II1− (II2 + II3).
(Adapted from [10])

Figure 3. Sample Haar-like features used in our study.

3.2. Cascaded Detection using Haar Features (C-HAAR)278

Haar-like features [74] are extensions of Haar wavelets to images. They can be used to extract279

meaningful information about the distribution of intensities in the form of various configurations of ON280

and OFF regions in an image window as shown in Figure 3. Combined with integral images, calculating281

the responses of Haar-like features at a pixel can be extremely sped-up, making it a suitable candidate282

for the cascaded approach.283

In this paper, we are using the extended set of Haar-like features described in [73]. The detector284

window is run over the image at multiple scales and locations.285

3.3. Cascaded Detection using Local Binary Patterns (C-LBP)286

In LBP [75], a widely used method for feature extraction, a window is placed on each pixel in the
image, and within which the intensity of the center pixel is compared against the intensities of the
neighboring pixels. During this comparison, larger intensity values are taken as 1 and smaller values
as 0. To describe formally, for a window Ω(xc, yc) at pixel (xc, yc) in image I , LBP pattern Lp is as
Lp(xc, yc) = ⊗(x,y)∈Ω(xc,yc)σ(I(x, y)− I(xc, yc)), where ⊗ is the concatenation operator, and σ(.) is the
unit step function:

σ(x) =

{
0 if x < 0

1 otherwise
(8)

The concatenation of 1’s and 0’s can be converted to a decimal number, representing the local intensity
distribution around the center pixel with a single number:

L2(xc, yc) =

|Ω(xc,yc)|∑
i=0

2i × Lip(xc, yc). (9)



Version August 19, 2015 submitted to Sensors 12 of 41

𝐼1 𝐼2 𝐼3 

𝐼4 𝐼𝑥  𝐼5 

𝐼6 𝐼7 𝐼8 

𝐼 1 𝐼 2 𝐼 3 

𝐼 4 𝐼 𝑥  𝐼 5 

𝐼 6 𝐼 7 𝐼 8 

3 × 3 9 × 9 

Figure 4. In LBP, the center pixel is compared with the others usually in a 3 × 3 window
(left). In the multi-block version (on the right), average intensities in the blocks are compared
instead.

The cascaded approach of Viola and Jones [10,34] has been extended by Liao et al. [36] to use a
statistically effective multi-scale version of LBP (SEMB-LBP) features. In multi-scale LBP, instead of
comparing the intensities of pixels, the average intensities of blocks in the window are compared with
the central block - see Figure 4. Then, SEMB-LBP at scale s is defined as follows:

SEMB − LBPs = {ι | rank(Hs(ι)) < N}, (10)

where rank(Hs) is the rank of Hs after descending sort; N is the number of uniform patterns, i.e., LBP
binary strings where there are at most two 0-1 or 1-0 transitions in the string; and, Hs is the histogram at
scale s:

Hs(ι) = 1[fs(x,y)=ι], ι = 0, ..., L− 1, (11)

where fs(x, y) is the outcome of the multi-scale LBP at pixel (x, y). In the current article, we test C-LBP287

with scales (3× u, 3× v) where u = 1, ..., 13 and v = 1, ..., 7, and N is set to 63, as suggested by [36].288

To speed up the computation, integral images method is used on each bin of the histogram.289

3.4. Cascaded Detection using Histogram of Oriented Gradients (C-HOG)290

Histograms of Oriented Gradients (HOG) constructs a histogram of gradient occurrences in localized
grid cells [11]. HOG has been demonstrated to be very successful in human detection and tracking.
HOG of an image patch P is defined as follows:

HOG(k) =
∑
p∈P

δ

( ⌊
θp

L

⌋ )
, (12)

where δ(·) is the Kronecker delta given in Equation 8, L is a normalizing constant and θp is the orientation291

at point p, which is equal to the image gradient at that point. HOG(k) corresponds to the value of the292

kth bin in a K-bin histogram. The value of K used in the experiments is set to 9, and the value of the293

normalizing constant, L, is equal to 180/K = 20 [11].294

Zhu et al. [37] extended HOG features so that the features are extracted at multiple-sizes of blocks295

at different locations and aspect ratios. This extension enables the definition of an increased number of296

blocks on which AdaBoost-based cascaded classification (Section 3.1) can be applied to choose the best297

combination. To speed up the computation, integral images method is used on each bin of the histogram.298
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3.5. Distance Estimation299

Having detected the rectangle bounding an mUAV using one of the cascaded approaches introduced300

above, we can estimate its distance to the camera using the geometric cues. For this, we collect a301

training set of {(wi, hi), di}, where wi, hi are the width and the height of the mUAV bounding box,302

respectively, and di is the known distance of the mUAV. Having such a training set, we train a Support303

Vector Regressor (SVR - [76]). Using the trained SVR, we can estimate the distance of the mUAV once304

its bounding box is estimated.305

4. Experimental Setup and Data Collection306

Quadrotor

Camera
Motion Capture 

System

Linear Rail

Figure 5. The setup used in indoor experiments. The rail was constructed in order to be
able to move the camera with respect to the quadrotor in a controlled manner. This allows
analyzing the performance of the methods under different motion types.

The experimental setup, shown in Figure 5, consists of the following components:307

• mUAV: We used a quadrotor platform shown in Figure 6(a). Open-source Arducopter [77]308

hardware and software are used as the flight controller. The distance between the motors on the309

same axis is 60 cm. 12 markers are placed around the plastic cup of the quadrotor for which310

we define a rigid body. The body coordinate frame of the quadrotor is illustrated in Figure 6(a).311

xQ-axis and yQ-axis are towards the forward and right direction of the quadrotor, respectively.312

zQ-axis points upwards with respect to the quadrotor.313

• Camera: We use two different electro-optic cameras for indoor and outdoor due to varying needs314

in both environment. For indoor, the synchronization property of the camera is vital since we have315

to ensure that the 3D position data obtained from the motion capture system and the captured316

frames are synchronized in time. Complying this requirement, we use a camera from Basler317

ScoutTM (capturing 1032 × 778 resolution videos at 30 fps in gray scale) mounted on top of the318

motion capture system. It weighs about 220 g including its lens whose maximum horizontal and319

vertical angle of views are 93.6◦ and 68.9◦, respectively. Power consumption of the camera is320
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about 3 W and it outputs the data through Gigabit Ethernet port. The body coordinate frame of321

the camera is centered at the projection center. xC-axis is towards the right side of the camera,322

yC-axis points down of the camera, and zC-axis coincides with the optical axis of the camera lens323

as depicted in Figure 6(b).324

Due to difficulties in powering and recording of the indoor camera outdoors, we use another325

camera (Canon R© PowerShot A2200 HD) to capture outdoor videos. This camera is able to record326

videos at 1280 × 720 resolution at 30 fps in color. However, we use gray scale versions of the327

videos in our study.328

Although we needed to utilize a different camera outdoors due to logistic issues, we should note329

that our indoor camera is suitable to be placed on mUAVs in terms of SWaP constraints. Moreover,330

alternative cameras with similar image qualities compared to our cameras are also available in the331

market even with less SWaP requirements.332

• Motion capture system (used for indoor analysis): We use the VisualeyezTM II VZ4000 3D333

real-time motion capture system (MOCAP) (PhoeniX Technologies Incorporated) that can sense334

the 3D positions of active markers up to a rate of 4348 real-time 3D data points per second with335

an accuracy of 0.5 ∼ 0.7 mm RMS in ∼ 190 cubic meters of space. In our setup, the MOCAP336

provides the ground truth 3D positions of the markers mounted on the quadrotor. The system337

provides the 3D data as labeled with the unique IDs of the markers. It has an operating angle of338

90◦(±45◦) in both pitch and yaw, and its maximum sensing distance is 7 m at minimum exposure.339

The body coordinate frame of the MOCAP is illustrated in Figure 6(c).340

• Linear rail platform (used for indoor analysis): We constructed a linear motorized rail platform341

to move the camera and the MOCAP together in a controlled manner so that we are able to capture342

videos of the quadrotor only with single motion types, i.e., approach-leave, up-down, lateral,343

rotational motions. With this platform, we are able to move the camera and MOCAP assembly344

on a horizontal line of approximately 5 meters up to 1 m/s speeds.345

4.1. Ground Truth Extraction346

In the indoor experimental setup, the MOCAP captures the motion of active markers mounted on the347

quadrotor, and supplies the ground truth 3D positions of those markers. For our purposes, we need the348

ground truth bounding box of the quadrotor and the distance between the quadrotor and the camera for349

each frame.350

To determine a rectangular ground truth bounding box encapsulating the quadrotor in an image, we
need to find a set of 2D pixel points (P ′

Qi)
3 on the boundaries of the quadrotor in the image. These

2D points correspond to a set of 3D points (PQi) on the quadrotor. To find P
′
Qi, PQi should first be

transformed from the body coordinate frame of the quadrotor to the MOCAP coordinate frame, followed

3 In our derivations, all points in 2D or 3D sets are represented by homogeneous coordinate vectors.
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Figure 6. (a) The quadrotor used in our study and its body coordinate frame. There
are 12 markers mounted roughly 30◦ apart from each other on the plastic cup of the
quadrotor. (b) The VisualeyezTM II VZ4000 motion capture system and its body coordinate
frame. (c) The body coordinate frame of the camera is defined at the projection center.
(d) The calibration tool used to obtain 3D-2D correspondence points needed to estimate
the transformation matrix, TCM , between the MOCAP and the camera coordinate systems.
Circles and the triangle indicate the MOCAP markers and the center of the chess pattern,
respectively.

by a transformation to the camera coordinate frame. These two transformations are represented by the
transformation matrices TMQ and TCM , respectively, and are applied as follows:

PMi = TMQ PQi for all i, (13)

PCi = TCMPMi for all i, (14)

where PMi and PCi are the transformed coordinates in the MOCAP and the camera coordinate frames,
respectively. After these transformations, we project the points in PCi to the image plane as:

P
′

Qi = PcPCi for all i, (15)

where Pc is the camera matrix and get P ′
Qi. Then, we can find the bounding box of the quadrotor by

calculating the rectangle with minimum size covering all of the points in P ′
Qi as follows:

xr = min(xi), (16)

yr = min(yi), (17)

wr = max(xi)−min(xi), (18)

hr = max(yi)−min(yi), (19)

where (xi, yi) ∈ P
′
Qi, (xr, yr) is the upper left pixel position of the rectangle, and wr and hr are the width351

and height of the rectangle, respectively.352



Version August 19, 2015 submitted to Sensors 16 of 41

It is not possible to place a marker on the quadrotor for every point in PQi. Therefore, we define a353

rigid body, a set of 3D points whose relative positions are fixed and remain unchanged under motion, for354

12 markers on the quadrotor. The points in PQi are then defined virtually as additional points to the rigid355

body.356

A rigid body can be defined from the positions of all markers obtained at a particular time instant
while the quadrotor is stationary. However, we wanted to obtain a more accurate rigid body and used the
method presented in [78,79] with multiple captures of the marker positions. Taking 60 different samples,
we performed the following optimization to minimize the spatial distances between the measured points
Mi and the points Ri in the rigid body model.

arg min
Ri

∑
i

‖Mi −Ri‖2, (20)

where ‖.‖ denotes the calculation of the Euclidean norm for the given vector.357

Once the rigid body is defined for the markers on the quadrotor, if at least 4 markers are sensed by358

the MOCAP, TMQ can be estimated. Since the MOCAP supplies the 3D position data as labeled and the359

rigid body is already defined using these labels, there is no correspondence matching problem. Finding360

such a rigid transformation between two labeled 3D point sets requires the least square fitting of these361

two sets and is known as the “Absolute Orientation Problem” [80]. To solve this problem, we use the362

method presented in [78,81] and calculate TMQ . Note that TMQ transformation matrix should be calculated363

whenever the quadrotor or the camera moves with respect to each other.364

There is no direct way of calculating TCM since it is not trivial to measure the distances and the angles
between the body coordinate frames of the MOCAP and the camera. However, if we know a set of 3D
points (PT i) in the MOCAP coordinate frame and a set of 2D points (P ′

T i) which corresponds to the
projected pixel coordinates of the points in PT i, then we can estimate TCM as the transformation matrix
that minimizes the re-projection error. The re-projection error is given by the sum of squared distances
between the pixel points in P ′

T i as in the following optimization criterion:

arg min
TC
M

∑
i

‖P ′

T i − TCMPT i‖2. (21)

For collecting the data points in PT i and P ′
T i, we prepared a simple tool shown in Figure 6(d). In this365

tool, there is a chess pattern and 2 MOCAP markers mounted on the two edges of the chess pattern. 3D366

position of the chess pattern center, shown inside the triangle in Figure 6(d), is calculated by finding the367

geometric center of the marker positions. We obtain 2D pixel position of the chess pattern center using368

the camera calibration tools of Open Source Computer Vision Library (OpenCV) [82]. We collect the369

data need for PT i and P ′
T i by moving the tool in front the camera. Note that, since the MOCAP and the370

camera are attached to each other rigidly, once TCM is estimated, it is valid as long as the MOCAP and371

the camera assembly remained fixed.372

To calculate the ground truth distance between the quadrotor and the camera, we use TMQ and TCM as
follows:

p
′

c = TCMT
M
Q pc, (22)
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where pc is 3D position of the quadrotor center in the quadrotor coordinate frame and p
′
c is the

transformed coordinates of the quadrotor center to the camera coordinate frame. pc is defined as the
geometric center of 4 points where the motor shafts and the corresponding propellers intersect. Once p′

c

is calculated, the distance of the quadrotor to the camera (dQ) is calculated as:

dQ = ‖p′

c‖. (23)

4.2. Data Collection for Training373

Indoors: We recorded videos of the quadrotor by moving the MOCAP and the camera assembly374

around the quadrotor manually while the quadrotor is hanged at different heights from the ground and375

stationary with its motors running. From these videos, we automatically extracted 8876 image patches376

including only the quadrotor using the bounding box extraction method described in Section 4.1 without377

considering the aspect ratios of the patches. The distribution of the aspect ratios for these images are378

given in Figure 7 with a median value of 1.8168. Since the training of cascaded classifiers requires image379

windows with a fixed aspect ratio, we enlarged the bounding boxes of these 8876 images by increasing380

their width or height only according to the aspect ratio of the originally extracted image window, so that381

they all have a fixed aspect ratio of approximately 1.81684. We preferred enlargement to fix the aspect382

ratios since this approach keeps all relevant data of the quadrotor inside the bounding box. We also383

recorded videos of the indoor laboratory environment without the quadrotor in the scene. From these384

videos, we extracted 5731 frames at a resolution of 1032× 778 pixels as our background training image385

set. See Figures 8(a) and 8(b) for sample quadrotor and background images captured indoors.386

Outdoors: We used a fixated camera to record while flying the quadrotor in front of the camera387

using remote control. Since the MOCAP is not operable outdoors, the ground truth is collected in a388

labor-extensive manner: By utilizing the background subtraction method presented in [83], we are able389

to approximate the bounding box of the quadrotor in these videos as long as there is not any moving390

object other than the quadrotor. Nevertheless, it is not always possible to get a motionless background.391

Therefore, the bounding boxes from background subtraction are inspected manually, and only the ones392

that bound the quadrotor well are selected. Both the number and aspect ratio of the outdoor training393

images are the same as the indoor images. For outdoor background training images, we have recorded394

videos at various places on the university campus. These videos include trees, bushes, grasses, sky, roads,395

buildings, cars and pedestrians without the quadrotor. From these videos, we have extracted frames as396

the same number of indoor background training images at 1280 × 720 resolution. See Figures 9(a)397

and 9(b) for sample images collected outdoors.398

Looking at the training image sets, the following observations can be deduced which also represents399

the challenges in our problem: (i) Changes in camera pose or quadrotor pose result in very large400

differences of in quadrotor’s visual appearance. (ii) The bounding box encapsulating the quadrotor401

contains large amount of background patterns due to structure of the quadrotor. (iii) Vibrations in402

the camera pose and agile motions of the quadrotor cause motion blur in the images. (iv) Changes403

4 Due to floating point rounding, aspect ratios may not be exactly 1.8168.
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Figure 7. Box-plot (left) and histogram (right) representation for the aspect ratios of 8876

quadrotor images automatically extracted from the training videos. In this figure and the
subsequent box-plot figures, the top and bottom edges of the box and the line inside the box
represent the first and third quartiles and the median value, respectively. The bottom and
top whiskers correspond to the smallest and largest non-outlier data, respectively. The data
inside the box lie within the 50% confidence interval, while the data in between the whiskers
lie within the 99.3% confidence interval. Here, the median value is 1.8168 which defines the
aspect ratio of the training images used.

(a) (b)

Figure 8. Example images from indoor (a) quadrotor and (b) background training image
sets. Mostly the challenging examples are provided in the quadrotor images.
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(a) (b)

Figure 9. Example images from outdoor (a) quadrotor and (b) background training image
sets. The images are colored, however their grayscale versions are used in the training. For
quadrotor images, mostly the challenging examples are included.

in brightness and the illumination direction yield very different images. (v) Motion in the image can also404

be induced by the motion of the camera or the motion of background objects (e.g., trees swinging due to405

wind, etc.).406

4.3. Data Collection for Testing407

Indoor and outdoor environments are significantly different from each other, since controlled408

experiments can only be performed indoors by means of motion capture systems. On the other hand,409

outdoor environments provide more space increasing the maneuverability of the quadrotor and many410

challenges that need to be evaluated. These differences directed us to prepare test videos of different411

characteristics indoors and outdoors.412

In order to investigate the performance of the methods (C-HAAR, C-LBP and C-HOG) systematically,413

we defined 4 different motion types, namely, lateral, up-down, yaw and approach-leave for the indoor414

test videos. Please note that maneuvers in a free flight are combinations of these motions and use of415

these primitive motions is for systematical evaluation purposes. The recording procedure of each motion416

type is depicted in Figure 10 by two different views, the top view and the camera view. Each motion417

type has different characteristics in terms of the amount of changes in the scale and appearance of the418

quadrotor, and the background objects as shown in Table 2. Details of each motion type are as follows:419

Table 2. Properties of motion types in terms of the amount of changes in the scale and
appearance of the quadrotor, and the background objects.

Lateral Up-Down Yaw Approach-Leave
Scale Moderate Moderate Small Large

Appearance Moderate Large Large Large

Background Large No Change No Change Moderate

• Lateral: The camera performs left-to-right or right-to-left maneuvers while the quadrotor is fixed420

at different positions as illustrated in Figure 10. As seen in the top view, the perpendicular distance421

of the quadrotor to the camera motion course is changed by 1 m for each of 5 distances. For each422
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Figure 10. Graphical representation for indoor test videos. There are 4 motion types,
namely, lateral, up-down, yaw and approach-leave. Each of them is illustrated with the
top and camera views. Dashed gray thick lines represent the motion of the camera or the
quadrotor along the path with given length. Dashed black thin lines are used to represent
dimensions.

distance, the height of the quadrotor is adjusted to 3 different (top, middle and bottom) levels with423

1 m apart making a total of 15 different position for lateral videos. Left-to-right and right-to-left424

videos collected in this manner allow us to test the features’ resilience against large background425

changes.426

In each video, the camera is moved along an approximately 5 m path. However, when the427

perpendicular distance is 1 m and 2 m and, the quadrotor is not fully visible in the videos for428

the top and bottom levels. Therefore, these videos are excluded from the dataset resulting in 22429

videos with a total of 2543 frames.430

• Up-Down: The quadrotor performs a vertical motion from the floor to the ceiling for the up motion431

and vice versa for the down motion. The motion of the quadrotor is performed manually with the432

help of a hanging rope. The change in the height of the quadrotor is approximately 3 m in each433

video. During the motion of the quadrotor, the camera remains fixed. For each of the 5 different434

positions shown in Figure 10, one up and one down video are recorded, resulting in 10 videos435

with a total of 1710 frames. These videos are used for testing the features’ resilience against large436

appearance changes.437

• Yaw: Quadrotor turns around itself in clockwise or counter clockwise directions while both the438

camera and the quadrotor are stationary. The quadrotor is positioned at the same 15 different points439

used in the lateral videos. Since the quadrotor is not fully present in the videos recorded for the top440

and bottom levels when the perpendicular distance is 1 m and 2 m, these videos are omitted from441
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the dataset. Hence, there are 22 videos with a total of 8107 frames in this group. These videos442

are used for testing the features’ resilience against viewpoint changes causing large appearance443

changes.444

• Approach-Leave: In these videos, the camera approaches the quadrotor or leaves away from it445

while the quadrotor is stationary. There are 9 different positions for the quadrotor with 1 m distance446

separation as illustrated in Figure 10. The motion path of the camera is approximately 5 m. By447

recording approach and leave videos separately, we have 18 videos with a total of 3574 frames for448

this group. These videos are used for testing whether the features are affected by large scale and449

appearance changes.450

We should note that the yaw orientation of the quadrotor is set to random values for each of 50 videos451

in lateral, up-down and approach-leave sets, although the quadrotors in Figure 10 are given for a fixed452

orientation. There are cases where the MOCAP can give wrong or insufficient data to extract ground453

truth for some frames. These frames are not included in the dataset.454

For outdoor experiments, we prepared four different videos with distinct characteristics. In all videos,455

the quadrotor is flown manually in front of a stationary camera. In the first two videos, a stationary456

background is chosen. These two videos differ in terms of agility such that in the first video the quadrotor457

performs calm maneuvers whereas in the second one it is flown agile. In the third video, the background458

includes moving objects like cars, motorcycles, bicycles and pedestrians while the quadrotor is flown in459

a calm manner. Fourth video is recorded to test maximum detection distances of the methods. In this460

video, the quadrotor first leaves away from the camera and then comes back flying on an approximately461

straight 110 meters path. We will call these videos as (i) Calm, (ii) Agile, (iii) Moving background, and462

(iv) Distance in the rest of the paper. These videos have 2954, 3823, 3900, and 2468 frames respectively.463

The ground truth bounding boxes for each frame of these three videos are extracted manually. For464

distance video, only ground truth distance of the quadrotor to the camera is calculated by utilizing another465

video recoded simultaneously by a side view camera. With the help of poles at known locations on the466

experiment area and by manually extracting the center of the quadrotor on the side view video, we467

computed the ground truth distance with simple geometrical calculations.468

We should note that the scenes used in testing videos are different from the ones included in the469

training datasets for both indoor and outdoor.470

5. Results471

We implemented the cascaded methods introduced in Section 3 using OpenCV [82] and evaluated472

them on the indoor and outdoor datasets. We trained indoor and outdoor cascade classifiers separately473

using the corresponding training datasets with the following parameters: The quadrotor image windows474

were resized to 40× 22 pixels. For an image with this window size, C-HAAR extracts 587408 features,475

whereas C-LBP and C-HOG yield 20020 and 20 features, respectively. 7900 positive (quadrotor) and476

10000 negative (background) samples were used for indoors and outdoors. We trained the classifiers477

with 11, 13, 15, 17 and 19 stages (the upper limit of 19 is due to the enormous time required to train478

C-HAAR classifiers as will be presented in Section 5.6.1). During our tests the classifiers performed479
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multi-scale detections beginning from a minimum window size of 80 × 44 and enlarging the window480

size by multiplying it with 1.1 at each scale.481

5.1. Performance Metrics482

To evaluate the detection performance of the classifiers, we use precision-recall (PR) curves, which483

are drawn by changing the threshold of the classifiers’ last stages from −100 to +100, as performed by484

[10,34]. Note that each stage of the cascaded classifiers has its own threshold determined during the485

training, and that increasing the threshold of a stage S to a high value such as +100 results in a classifier486

with S − 1 many stages at the default threshold.487

Precision is defined as:
Precision =

tp

tp+ fp
, (24)

where tp is the number of true positives (see below), and fp is the number of false positives. Recall is
defined as:

Recall =
tp

tp+ fn
, (25)

where fn is the number of false negatives.488

A detected bounding box (BD) is regarded as a true positive if its Jaccard Index (J) [84], calculated
as follows, is greater than 60%:

J(BD, BG) =
|BD ∩BG|
|BD ∪BG|

, (26)

where BG is the ground truth bounding box. Otherwise, BD is regarded as a false positive. If there are489

multiple detections in a frame, each BD is evaluated separately as a tp or fp. If no BD is found for an490

image frame by the classifier, then fn is incremented by one.491

We use also F-Score in our evaluations calculated as follows:

F -Score = 2× Precision×Recall
Precision+Recall

. (27)

A widely-used measure with PR-curves is the normalized area under curve. If a PR curve, p(x), is
defined at the interval [rmin, rmax], where rmin and rmax are the minimum and maximum recall values,
respectively, the normalized area Ap under curve p(x) is defined as:

Ap =
1

rmax − rmin

∫ rmax

rmin

p(x) dx. (28)

5.2. Indoor Evaluation492

We tested the classifiers trained with indoor training dataset, on indoor test videos having 15934493

frames in total with four different motion types, namely, lateral, up-down, yaw and approach-leave as494

presented in Section 4.3. We evaluated the classifiers for 5 different number of stages to understand how495

they perform while their complexity increases. Figure 11 shows the PR curves as well as the normalized496

area under the PR curves for each method and for different number of stages. In Table 3, the maximum497

F-Score values and the values at default thresholds are listed.498



Version August 19, 2015 submitted to Sensors 23 of 41

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C-HAAR

11
13
15
17
19

# of
Stages

(a)

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C-LBP

11
13
15
17
19

# of
Stages

(b)

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C-HOG

11
13
15
17
19

# of
Stages

(c)

# of stages
11 13 15 17 19

   
   

   
   

  N
or

m
al

iz
ed

 A
re

a 
U

nd
er

 C
ur

ve

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C-HAAR
C-LBP
C-HOG

(d)

Figure 11. PR curves showing the performance of (a) C-HAAR, (b) C-LBP and (c) C-HOG
for different number of stages on indoor test videos. (d) Normalized areas under the PR
curves in (a), (b) and (c).

The performances of C-HAAR and C-LBP are close to each other in terms of maximum F-Scores499

(Table 3) and the normalized area under curve (Figure 11(d)), except for a decrease on stage 15 of500

C-HAAR, and they both perform better than C-HOG in all aspects. The lower performance of C-HOG501

is due to low number of features it extracts from a training window. Even with the extension of Zhu et502

al. [37], only 20 features are extracted from a 40 × 22-pixel2 training image. For AdaBoost to estimate503

a better decision boundary, more features are required. The difference between the number of features504

used by C-HAAR and C-LBP, however, does not result in a considerable performance divergence.505

We observe a slight difference between C-HAAR and C-LBP in terms of the lowest points that PR506

curves (Figure 11) reach. This is related with the performance differences between the methods at their507

Table 3. Performance of the methods indoors, reported as F-Score values. Bold indicates
best performances.

Feature Type C-HAAR C-LBP C-HOG
Number of Stages 11 13 15 17 19 11 13 15 17 19 11 13 15 17 19

Maximum F-Score 0.903 0.920 0.836 0.958 0.976 0.904 0.936 0.940 0.962 0.964 0.818 0.848 0.842 0.839 0.862

F-Score at Default Threshold 0.058 0.143 0.286 0.570 0.822 0.104 0.345 0.774 0.943 0.954 0.404 0.550 0.627 0.664 0.716
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Figure 12. PR curves for (a) lateral left-to-right and right-to-left, (b) up and down, (c) yaw
clockwise and counter-clockwise, (d) approach and leave, and (e) all motion types.

default threshold. As mentioned earlier, increasing the threshold of a classifier’s latest stage, S to a508

very high value results in a classifier with a stage number of S − 1. Therefore, since the performances509

of C-LBP classifiers at their default thresholds are greater than the default performances of C-HAAR510

classifiers, we observe PR curves ending at higher points in case of C-LBP.511

For all the methods, training with 19 stages outperforms training with less stages. Therefore, taking512

19 as the best stage number for all methods, we present their performances on different motion types in513

Figure 12 with their overall performances on all motion types. The performance of C-HAAR is slightly514

better than C-LBP on lateral, up-down and yaw motions since it has PR curves closer to the rightmost515

top corner of the figures. C-HOG gives the worst performance in all motion types.516

When we look at the performances of each method individually for each motion type, C-HAAR517

performs similar on lateral, up-down and yaw motions, however its performance diminishes on518

approach-leave which is the most challenging motion in the indoor dataset. C-LBP has a performance519

degrade on lateral motion showing that it is slightly affected from the large background changes. Other520

than this, the performance of C-LBP is almost equal in other motion types. C-HOG performs better on521

lateral than other motions. A notable performance degrade is observed on approach-leave motion.522

5.3. Outdoor Evaluation523

We evaluated the classifiers trained with the outdoor training dataset using all outdoor motion types,524

namely, calm, agile and moving-background. We present the resulting PR curves and the normalized525
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area under curves for each motion in Figure 13 and for overall performance in Figure 14. The F-Score526

performances are listed in Table 4.527
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(a) Performances for calm test video.

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
C-HAAR

11
13
15
17
19

# of
Stages

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
C-LBP

11
13
15
17
19

# of
Stages

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
C-HOG

11
13
15
17
19

# of
Stages

(b) Performances for agile test video.
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(c) Performances for moving background test video.
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Figure 13. PR curves for outdoor evaluation (Best viewed in color).
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We notice that the performances of C-HAAR and C-LBP are remarkably better than C-HOG in all528

experiments. When comparing C-HAAR and C-LBP, C-HAAR is giving slightly better results in terms529

of all measures. Under agile maneuvers of the quadrotor, C-LBP and C-HOG display a performance530

degrade, while C-HAAR’s performance is hardly affected. This suggests that C-HAAR is more robust531

against appearance changes due to rotation of the quadrotor. Slight performance decreases are observed532

in moving-background video for C-HAAR and C-LBP.533

When compared to the indoor evaluation, C-HAAR classifiers with low stage numbers perform534

better outdoors. The performance of C-HOG decreases in outdoor tests. In terms of F-Score, best535

performing stage numbers differ for C-HAAR and C-HOG. Unlike indoors, the performances of C-LBP536

and C-HAAR classifiers at their default thresholds are close to each other, resulting in PR curves reaching537

to closer end points when compared to indoor results.538

In order to determine the maximum distances at which the classifiers can detect the quadrotor539

successfully, an experiment is conducted with distance test video using best performing classifiers on540

the overall according to the F-Scores in Table 4. In this experiment, minimum detection window size541

is set to 20 × 11. The resulting maximum detection distances are 25.71 m, 15.73 m and 24.19 m,542

respectively for C-HAAR, C-LBP and C-HOG.543
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Figure 14. Normalized area under curves for outdoor evaluation.
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Table 4. Performance of the methods outdoors, reported as F-Score values. Bold indicates
best performances.

Feature Type C-HAAR C-LBP C-HOG
Number of Stages 11 13 15 17 19 11 13 15 17 19 11 13 15 17 19

CALM
Maximum F-Score 0.979 0.987 0.991 0.991 0.997 0.930 0.951 0.953 0.977 0.985 0.846 0.822 0.781 0.732 0.842
F-Score at Default Threshold 0.036 0.112 0.248 0.536 0.734 0.040 0.095 0.266 0.670 0.930 0.118 0.144 0.168 0.189 0.216

AGILE
Maximum F-Score 0.965 0.983 0.988 0.987 0.989 0.887 0.902 0.890 0.947 0.942 0.719 0.735 0.619 0.600 0.713
F-Score at Default Threshold 0.034 0.108 0.282 0.727 0.906 0.041 0.094 0.260 0.704 0.920 0.121 0.146 0.168 0.188 0.211

MOVING
BACKGROUND

Maximum F-Score 0.955 0.965 0.969 0.963 0.967 0.935 0.870 0.940 0.954 0.964 0.797 0.840 0.785 0.777 0.832
F-Score at Default Threshold 0.030 0.084 0.169 0.274 0.441 0.043 0.111 0.269 0.480 0.747 0.158 0.180 0.199 0.216 0.234

OVERALL
Maximum F-Score 0.955 0.972 0.977 0.973 0.975 0.906 0.869 0.915 0.949 0.957 0.770 0.801 0.707 0.672 0.781
F-Score at Default Threshold 0.033 0.099 0.221 0.429 0.627 0.042 0.100 0.265 0.594 0.850 0.132 0.157 0.178 0.198 0.221

5.4. Performance under Motion Blur544

We have tested the performance of the methods against motion blur in the images. We utilized a linear
motion blur similar to the one used in [85,86]. A motion-blurred version of an image I is generated by
convolving it with a filter k (i.e., Ĩ = I ∗ k) which is defined as:

k(x, y) =

{
1 if y = d/2,

0 otherwise,
(29)

where d is the dimension of the kernel (blur length), determining the amount of motion blur, sampled545

from a Gaussian distribution N(µ = 0, σ), with µ and σ being the mean and the standard deviation,546

respectively. We applied this kernel to the video images after a rotation of θ radian (blur angle) chosen547

from a uniform distribution U(0, π). For each frame of a video, a new kernel is generated in this manner,548

and it is applied to all pixels in that frame. Using this motion blur model, we generated blurred versions549

of all indoor test videos for 5 different values of σ, namely, 5, 10, 15, 20 and 25.550

We tested the best performing classifiers having 19 stages and giving the maximum F-Scores in551

Table 3 on the blurred and original videos. The tests are performed on the indoor dataset only, for552

the sake of simplicity, since we do not expect a difference between the effects of motion blur in indoor553

and outdoors. The results depicting the change in F-Score, PR against the amount of motion blur are554

given Figure 15. We see that C-HAAR and C-LBP display a more robust behavior compared to C-HOG555

since the decreasing trend in their F-Score and recall values are slower than C-HOG. C-LBP performs556

better than C-HAAR in terms of F-Score and recall. However, the precision of C-HAAR and C-HOG557

increases slightly with the increasing amount of motion blur. The reason for this increase is the decrease558

in the number of false positives since they start to be identified as background by C-HAAR and C-HOG559

when there is more noise. However, this trend has a limit since, at some point, the noise causes major560

decrease in the number of true positives. Here, σ = 25 is the point where the precision of C-HAAR and561

C-HOG starts to decrease.562

In the case of C-LBP, precision values are continuously decreasing due to increasing number of false563

positives. However, this degradation in precision is not so rapid. Moreover, the decreasing trend in the564

recall of C-LBP is slower than other methods. This slow decline rate in the recall is resulting from a high565

number of correct detections and a low number of incorrect rejections.566

5.5. Distance Estimation567
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Figure 15. Performance of methods under motion blur. (a) F-Score, (b) Precision, and
(c) Recall. To better illustrate the unexpected changes in precision and recall, they are plotted
separately. σ = 0 corresponds to original videos without motion blur.
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Figure 16. (a) Training error distribution for distance estimation. (b) Distribution of distance
estimation error for each method. (c) Distance estimations during a leave motion followed
by an approach.

To train the distance estimator (Section 3.5), we prepared a training set of 35570 pairs of {(wi, hi), di},568

where wi, hi are the width and the height of the mUAV bounding box, respectively, and di is its known569

distance, acquired using the motion capture system (see Section 4 for the details).570

A Support Vector Regressor (SVR) has been trained on this set with Radial Basis Functions kernel.571

The values of the parameters are optimized using a grid-search, yielding the following values: ν =572

0.09, C = 0.1, and γ = 0.00225. With these values and using 5-fold cross validation, a training error573

of 6.44 cm as median is obtained. The distribution of distance estimation errors over the training set is574

shown in Figure 16(a).575

Since there is no ground truth distance information to hand for the outdoor dataset the distance576

estimation has been evaluated by means of indoor videos only.577

As in motion-blur analysis, we tested the best performing classifiers having 19 stages resulting in578

maximum F-Scores tabulated in Table 3. The resulting distance estimation distributions are displayed in579

Figure 16(b).580
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We see that the performance of C-HAAR is slightly better than C-LBP. The medians of the error for581

C-HAAR and C-LBP are 18.6 cm and 20.83 cm, respectively. The performance of C-HOG is worse than582

the other two methods with a median error of 43.89 cm and with errors distributed over a larger span.583

In Figure 16(c), we plot estimated and actual distances for a leave motion followed by an approach.584

These plots are consistent with the results provided with Figure 16(b) such that the performance585

C-HAAR and C-LBP are close to each other and better than C-HOG.586

5.5.1. Time to Collision Estimation Analysis587

We have analyzed the performance of the methods in the estimation of time to collision (TTC). In
order to estimate TTC, the current speed (vc) is estimated first:

vc =
dc − dp

∆t
, (30)

where dc is current distance estimation, dp is a previous distance estimation, and ∆t is the time difference
between two distance estimations. dp is arbitrarily selected as the 90th previous distance estimation to
ensure a reliable speed estimation. Once vc is calculated, TTC can be estimated as:

TTC =
dc
vc
. (31)

Using this approach, we have evaluated the methods on indoor approach videos. Figure 17(a) shows588

the resulting box-plots for errors in estimating TTC. Figure 17(b) illustrates the estimated and actual589

TTC’s for a single approach video. The performances of C-HAAR and C-LBP are close to each other590

with a smaller median error for C-LBP. C-HOG performs worse than C-HAAR and C-LBP as a result of591

its low performance in distance estimation.592

5.6. Time Analysis593

The training and testing time of the methods are analyzed in detail for the indoor and outdoor datasets594

on a computer with Intel R© CoreTM i7 860 @2.80 GHz processor. Currently, processors with similar595

computational power are available for mUAVs [87,88].596

5.6.1. Training Time Analysis597

Table 5. Time spent for training the cascaded classifiers having 19 stages in hours.

Feature Type C-HAAR C-LBP C-HOG
Indoor 98.31 22.94 13.53

Outdoor 177.59 0.87 0.52

Figure 18 shows the amount of time required to train each stage of the classifiers, and Table 5 lists598

the total training times needed for the training of all 19 stages (the upper limit of 19 has been imposed599

due to the excessive time required for training C-HAAR). We observe that C-HAAR is the most time600

consuming method which is succeeded by C-LBP and C-HOG. It is observed that C-HAAR requires on601

the order of days for training, whereas C-LBP and C-HOG finish in even less than an hour.602
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Figure 17. Indoor time to collision estimation performances of the methods for (a) all
approach motions, and (b) a single approach motion. In (a), there are outliers also outside the
limits of the y-axis. However, in order to make differences between the methods observable,
y-axis is limited between −5 and 25. In (b), the y-axis is in log-scale and no estimation is
available until 90th frame. The missing points after 90th frame are due to negative or infinite
time to collision estimations.
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Figure 18. (a) Indoor and (b) outdoor training times consumed for each stage in the cascaded
classifier. The y-axes are in log-scale.
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The main reason behind the differences in the training times of the methods is the number of features603

extracted by each method from an image window. As mentioned previously (Section 5.1), the ordering604

among the methods is C-HAAR, C-LBP and C-HOG with the decreasing number of associated features605

with an image window of 40× 22 pixels. The increase in the number of features amounts to an increase606

in training the cascaded classifier to select the subset of good features via boosting.607

We also observe significant difference between indoor and outdoor training times for each method.608

On the outdoor dataset, C-HAAR is twice slower than on the indoor dataset, where C-LBP and C-HOG609

are 26 times faster. The reason for this is the fact that the outdoor background images are more distinct,610

enabling C-LBP and C-HOG find the best classifier in each stage faster. However, this effect is not611

observed in C-HAAR since Haar-like features are adversely affected by the illumination changes which612

are observed substantially in our outdoor dataset.613

5.6.2. Testing Time Analysis614
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Figure 19. Change of computation time required to process one video frame with respect to
distance of the quadrotor.

We have measured and analyzed the computation time of each method in two different aspects: i)615

on a subset of the indoor videos, we measured the computation time by changing the distance of the616

quadrotor to understand the effect of the distance. ii) we analyzed the average running times needed to617

process indoor and outdoor frames, with respect to the number of stages and the thresholds.618

For the first experiment, we have selected 5 videos from yaw motion type for 1, 2, 3, 4 and 5619

meter distances for middle-level height. In total, there were 1938 frames in these videos. We tested620

the performance of the classifiers having 19 stages at their default thresholds, as shown in Figure 19 with621

respect to the distance between the quadrotor and the camera. Although there are fluctuations, the time622

required to process a single frame shows an inverse correlation. This is so because as a quadrotor gets623

further away its footprint in the image will decrease and hence the bigger-scale detectors will reject the624

candidate windows faster which will yield a speed up in the overall detection.625

In our second experiment, we tested the running time performance of the classifiers with respect to626

the number of stages. This has been performed both for the classifiers at their default threshold as well627

as with thresholds giving the maximum F-Score. Table 3 displays the results for indoor and Table 4 for628

outdoor.629
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(a) Indoor tests with default thresholds
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(b) Indoor tests with maximum F-score thresholds
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(c) Outdoor tests with default thresholds
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(d) Outdoor tests with maximum F-score
thresholds

Figure 20. Analysis of time required to process one frame of (a-b) indoor and (c-d) outdoor
videos. In (a) and (c), the classifiers are tested with their default thresholds, whereas in (b)
and (d) the thresholds yielding maximum F-Score are used.

For indoor experiments, a subset of the indoor dataset consisting of videos from approach, down,630

lateral left-to-right and yaw-clockwise motion types containing 1366 frames in total was used. For631

the outdoor experiments, a total of 1500 frames from all motion types, namely calm, agile and632

moving-background, were used. Figure 20 displays the resulting time performance distributions.633

When we compare indoor and outdoor results, we observe that all three methods require more time634

to process outdoor frames. This increase reaches up to three times for C-HAAR and C-LBP. Outdoor635

frames are bigger than indoor frames by a factor of 1.15. This accounts partially for the increase in the636

processing time. But the main reason is the higher complexity of outdoor background patterns, which637

manage to pass the early simple processing stages of the cascades more; thus consume more time before638

being identified as background.639

When the results at the default thresholds and the maximum-F-score thresholds are compared, we640

observe an increase in the time spent on the lower stages of C-HAAR and C-LBP. This is due to the641

increasing number of candidate bounding boxes that are later merged into the resulting bounding boxes.642

Both detection and merging of these high number of candidate bounding boxes causes the processing643

time to increase.644
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For the maximum-F-score thresholds, processing time increases with the number of stages. This is an645

inherent result due to the increase in the number of stages.646

The scatter plots in Figure 21 display the distribution of F-Scores with respect to the mean running647

times both for indoor and outdoor. The classifiers used in these plots are the ones giving maximum648

F-Scores. F-Score values for C-HAAR and C-LBP are close to each other and higher than C-HOG. For649

C-HAAR, F-Score values are spread over a larger range for indoors while the deviations in its mean650

time requirement increase for outdoor. Similar distributions are observed for C-LBP for both indoors651

and outdoors. F-Score values of C-HOG decrease and disperse over a wide range for outdoors, but the652

spread of its mean time requirements is very similar for indoors and outdoors.653
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Figure 21. (a) Indoor and (b) outdoor scatter plots for F-Score and mean running times.
Each F-score value corresponds to a different classifier with different number of stages at the
threshold resulting in maximum F-Score.

5.7. Sample Visual Results654

In Figure 22, we present samples of successful detection and failure cases. These images are obtained655

using only the best performing C-LBP classifiers for the sake of space. C-LBP is remarkable among656

the three methods since its detection and distance estimation performance is very high and close to657

that of C-HAAR. Furthermore, it is computationally more efficient than C-HAAR both in training and658

testing. Three supplementary videos5 are also available as addendum showing the detection performance659

of C-LBP on video sequences from the indoor and outdoor test datasets.660

The images in Figure 22(a) display the performance of the detector in an indoor environment that661

has extensive T junctions and horizontal patterns. The performance of the detector under motion blur is662

also displayed. Outdoor images in Figure 22(b) exemplify outdoor performance of the detector where663

there are very complex textures including also moving-background patterns (pedestrians and various664

type of vehicles). When we look at the failures in Figure 22(c), we observe that the regions including T665

5 Available at: http://www.kovan.ceng.metu.edu.tr/∼fatih/sensors/
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(a) Successful detections from indoor experiments.

(b) Successful detections from outdoor experiments.

(c) Failures from indoor and outdoor experiments.

Figure 22. Successful detection and failure examples from indoor and outdoor experiments
obtained using best performing classifiers of C-LBP (only C-LBP results are provided for
the sake of space).

junctions, horizontal patterns and silhouettes very similar to the quadrotor’s are the confusing areas for666

the algorithms.667

6. Conclusion668

In this article, we have studied whether an mUAV can be detected and localized with a camera669

through cascaded classifiers using different feature types. To demonstrate this in a systematic manner, we670

performed several experiments indoors and outdoors. For indoor evaluations, a motion platform was built671

to analyze the performance of the methods in controlled motions, namely, in approach-leave, up-down,672

lateral and rotational motions. For outdoor evaluations, on the other hand, the methods were evaluated673

for cases where the mUAV was flown in a calm manner, agile manner or with other moving objects in the674

background. Maximum detection distance of the methods are also analyzed with an outdoor experiment.675

We evaluated the performance of three methods, namely, C-HAAR, C-LBP and C-HOG where, in676

each method, a different feature extraction approach is combined with the boosted cascaded classifiers677

and with a distance estimator utilizing SVR. Our experiments showed that near real-time detection678

and accurate distance estimation of mUAVs are possible. C-LBP becomes prominent among the three679

methods due to its (1) high performance in detection, and distance and time to collusion estimation,680

(2) moderate computation time, (3) reasonable training time and (4) more robustness to the motion blur.681

When it comes to distance estimation, C-HAAR performs better since it positions the bounding boxes682

more accurately compared to the other methods. On the other hand, our time analysis reveals that C-HOG683

is the fastest both in training and testing.684
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We have demonstrated that an mUAV can be detected in about 60 ms indoors and 150 ms outdoors in685

images with 1032× 778 and 1280× 720 resolutions, respectively, with a detection rate of 0.96 F-Score686

both indoors and outdoors. Although this cannot be considered real-time, a real-time performance with687

cascaded classifiers is reachable, especially considering that the implementations are not optimized. We688

also showed that distance estimation of mUAVs is possible using simple geometric cues and the SVR689

even the change in the pose of the quadrotor or the camera results in different bounding boxes for the690

same distance between mUAV and the camera.691

The performance of detection can be improved significantly when combined with tracking, e.g., by692

employing tracking-by-detection methods [89–91]. Such methods limit the search space of the detector693

in the next frame(s) by using the properties of the current and previous detections. This can improve694

both running time and the detection performance substantially.695

Cascaded approaches are known to generalize rather well with the increase in the number of objects.696

By looking at simple, fast yet effective features at multiple stages to minimize false-positives and to697

maximize detection rates, successful applications on complex and challenging datasets with many many698

exemplars of the same class have been reported [36,37,92]. These indicate that, for mUAV detection,699

cascaded approaches are very suitable even if many mUAV variants with appearance characteristics are700

included.701
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