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In this paper, we investigate how the interactions of a robot with its envirohozn be used

to create concepts that are typically represented by verbs in languagerds this end, we
utilize the notion of &ordances to argue that verbs typically refer to the generation of a specifi
type of dfect rather than a specific type of action. Then, we show how a robdboarthese
concepts through interactions with the environment and how humanseahese concepts to
ease their communication with the robots. We demonstrate that iCub, a bighmahot, can
use the concepts, which it has developed, tariderstandvhat a human performs, perform
multi-step planning for reaching a goal state as well as to specify a goaétmbot using
symbolic descriptions.

Introduction be able to choose the proper behavior from its own repertoire
. , . . and apply it. Note that, the behavior chosen for the exesutio
The use of natural language in our interaction with robotsyf the verbal command will depend on the subject and that a
remains an elusive target for autonomous robot research. A¢ommand such asush (the cupjs likely to require a dier-
cording to the embodied view of intelligence, such a compexnt pehavior (Figure 1). Moreover, the very same command
tence requires the robot to link the discrete symbols used i require the use of a behavior executed on the “free” arm
language into meanir_lgs that are groundeq in the continuoys 53 humanoid robot, who may be holding an object in its
sensory-motor experiences of the robot, infamously nameginer hand. Such a grounding of verbs requires not only the
as thesymbol groundingroblem by Harnad (1990). robot to interact with its environment observing thEeets it

Although' Harnad’s appro_aph to intelligence assyan- generated, but also the supervision from a human to properly
bol grounding problemhas initiated a great deal of de- |gpe| these fects.

bate, it was well received in the community (Borghi,
2007; Cangelosi & Harnad, 2001; Fischer & Zwaan, 2008;
Gallese & Lakdt, 2005). It is now widely accepted that lan- Language, Concepts and Robots

guage should be grounded in the sensorimotor experiences |n this section, we summarize the studies and the ap-

of the organism (Cangelosi & Riga, 2006; Cangelosi et al. proaches related to concepts and language in robots and de-
2010; Steels, 2003; Glenberg & Kaschak, 2002; Cangeloskcripe the main novelties of our work.

2010), and that the processing of a word requires the neu-

ral circuitry in the brain corresponding to its sensorinmoto Language in robots

experience, meaning or simulation (Glenberg et al., 2008;

Zwaan & Taylor, 2006). In other words, comprehension of  Although comprehension of words should involve the

words is likely to involve or require the simulation of the meaning represented by the corresponding concept, the com-

meaning represented by the corresponding concept. putational &orts in the literature linking language and the
The question that we tackle in this paper can be simplysensorimotor data have only focused on mapping a word

put forward asHow can a robot ground verbs that we use in to a single object or a behavior without much considera-

our language into its own sensory-motor interaction®?at  tion for generalization or conceptualization. Below armsu

is, when we command the robotpash (the tablé)it should  maries of these studies - for reviews on othorts as well
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gested that behaviors be represented in terms of tifeits.
They used their proposal for learning a complex mapping be-
tween the hit point and the target point of a thrown ball, and
they did not pursue generalization over behaviorsfteots
nor did they relate their representations to ‘verb concepts
Kozima et al. (2002) have also studied generalization over
behaviors based on theiffects in the context of imitation;
in theirtheoreticalproposal, they claimed that a robot should
use the equivalence of théfects of behaviors for imitating
a human performing a behavior rather than performing geo-
metrical transformations betweerfférent embodiments.
Montesano et al. (2008, 2009) proposed a Bayesian net-
work based on anfiordance formalization similar to the one
used in our paper. In the network, there are nodes for per-
Figure 1  Different behaviors through which one can push an ob-ceptual features (corresponding to the objezty; one node
ject. for color, one node for shape and another for size), actions
(e.g, grasp, tap, touch) andfects €.g, one node for each
of the following: object motion, hand motion and contact
as the importance of perception and action in the developef the hand with the object). The model learned the depen-
ment of language, and how and why language should bdencies between the nodes in the network and analyze the
grounded in action and perception, we refer to Cangelosiearned network in terms of how well it can interpret and
(2010); Nehaniv et al. (2007); Christiansen & Kirby (2003); imitate an observedfiect. Although such an approach has
Lyon et al. (2007). advantages in terms of inferencing, our focus in this paper i
An important tool in linking language and sensori-motor different: we are interested in how to generalize over behav-
data is artificial neural networks due to its biological plau iors to be able to represent them as verb concepts allowing
sibility and easy adaptability. Cangelosi (2010) presents efficient “communication” with humans.
review of their earlier work (all using multi-layer neurata As mentioned by Nehaniv et al. (2007), although there ex-
works) on (i) the multi-agent modeling of grounding and lan- ist computational modeling#rts for the emergence of sym-
guage development, using simulated agents that discover l&ols or words for nouns, the emergence of symbolic rep-
bels, or words, for edible and non-edible food while navigat resentations for verbs is still mostly untouched (except fo
ing in a limited environment (Cangelosi, 2001), (ii) thetsa ~ Cangelosi (2010)). Moreover, although highly promising,
fer of symbol grounding, using one simulated teacher (§gentefforts in grounding verbs (or nouns) mostly do not tackle
and one simulated learner (agent) that learn new behaviotbe issues of generalization over behaviors (or entities) f
based on the symbolic representations of previously lelarnerepresenting concepts or symbols (e.g., Cangelosi (2001);
behaviors (Cangelosi et al., 2006) and (iii) language cempr Cangelosi & Riga (2006); Cangelosi & Parisi (2004)), which
hension in a humanoid robot, where the robot learns to assas, in fact, the most essential reason for having conces in
ciate words with its behaviors and the objects in the envi-cognitive system.
ronment. Similarly, in an earlier work, Cangelosi & Parisi
(2004) use a neural network for linking nouns to twfelr  Theories of Concept
ent objects (a vertical bar and a horizontal bar) and verbs to
two different behaviors (pushing and pulling). There are three main views on how concepts can be
Another study on linking language with sensorimotor datalearned or represented (Gabora et al., 2008; Kruschke, 2005
(Hashimoto & Masumi, 2007) demonstrates the emergencRosch, 1973; Rouder & Ratélj 2006):
of symbols (to be linked with language) by interpreting the - The Classical, or Rule-based, Viewln this view (see,
attractors of a dynamical system (namely, a chaotic neurad.g., (Bruner et al., 1986)), categories are exact witftstri
network) to diferent symbols and the transitions between theboundariesj.e.,, an exemplar is either a member of a cate-
attractors to symbolic manipulation. gory or not a member of a category; there is no vagueness
For a similar goal, Steels (2007) demonstrates (using &volved. The members of the category share common prop-
robot and software simulation) the Recruitment Theory oferties (like YELLOW as color and LONG as appearance),
Language, which claims that organisms tr{felient cogni- and the membership for the category is based on satisfying
tive or motor abilities for communication first and adapt andthe common properties of the category, established as rules
develop those that lead to successful communication. (like color of exemplar= YELLOW A appearance of exem-
Cohen et al. (2005); Krunic et al. (2009); Marocco et al.plar = LONG).
(2010) have also attributed verbs to individual behaviors - The Prototype-based View In this view, the mem-
without generalization considerations. Other than thesehership for the categories is confidence-based (e.g., (Rosc
some studies investigate linking behaviors witfeets for  1973)) and the boundaries are not tight. Categories arerepr
other purposes: For example, similar to us, Rudolph et alsented by “prototype” stimuli (the stimuli best represegti
(2010) proposed relating behaviors to théfeets. They sug- the category), which are used for judging the membership of
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other items. The representation of the prototype is mostlform a desired “verb action” on a novel object. The com-
based on statistical regularitiesg., the frequency distribu- manding can be provided as (1) a verbal command, such as
tion of the features, (Ashby & Maddox, 1993). For example,“push (the cup)”, (2) a demonstration, such as the human
the APPLE concept can be represented by: pushing a box, and asking the robot to mimic what he just
did on a cup, (3) goal specification in the prototype space.
color 50% RED, 25% YELLOW or 25% GREEN Moreover, the robot can use these prototypes to make multi-
APPLE= ¢ shape @ step plans to achieve a goal that is not attainable through a
single behavior. Our results have shown that the use of proto
typical representations not only reduces the search space f

- The Exemplar-based View In this view, concepts are making such plans, but also minimizes the errors in making
represented by the exemplars of the categories stored in tiBeS€ plans by paying attention only to the relevant dimen-
memory (e.g., (Nosofsky et al., 1992)). An item is classifiedSIONs (as represented in the prototypical representations
as a member of a category if it is similar to one of the storedhe sensory space.
exemplars in that category. For example, the APPLE concept

can be represented by: Affordances and Verbs
> The notion of &ordance was introduced by Gibson
APPLE = .-c 7 (1986) to propose that organisms perceive the environment

in terms of the action possibilities that theyfer to them.

Gibson argued that when we look at a chair or a cup, our per-
Although the exemplar-based view is in accordance withCEPtion does not provide a generic perceptual view of these

objects consisting of all of their qualities, but insteafims

some experimental results, it falls short in explainingesal/ . . ; .
findings (see (Gabora et al., 2008) for a review and discus?f the @fordances such ast-ability andlift-ability that they

sion) offer to us.

Although it is widely believed that the classical view is Th_e QLo prov!ded a fresh. perspective to the clalss[cal
not adopted by human cognition, there are contradicting RGOS O¥perception and has inspired new lines of thnkin
idences about whether humans use prototypes, exemplaf @ Wide range of fields. In an earlier study (Sahin etal.,
or rules for representing concepts (Minda & Smith, 2001; 07), we formalized this important notion such that it can
Nosofsky & Zaki, 2002; Leopold et al., 2001). It might be be utilized to learn and uséfardances at dierent levels of
even that for dierent tasks (such as inferencing or classifi-2utonomous robot control. In particular, we argued thabeac
cation), we might be using fierent types of representations interaction episode of an agent .Wltl’.l its environment can be
(Johansen & Kruschke, 2005), making a hybrid representd€Presented as affordance relation instanceuple as (Fig-
tion appealing (Rosseel, 2002). Overall, how we represeri{® 2(2)): . .
concepts is still an open issue (Parthemore & Morse, 2010; (entity, behavior effecy, @)
Gardenfors, 2004). whereentity denotes the environmental relata obtained via

Learning concepts is also studied in Machine Learningperceiving the environment and the self. It encapsulates th
where dficiency and practicality are the main concerns un-perceptual representation of an agent #tedent complex-
like the theories of concepts in Psychology and the currenity levels, ranging from raw sensory data to the features ex-
study, where we are interested in having a developmentatacted from the environment. However, within the context
conceptualization framework which is biologically planisi  of this paper, we confine the use arftity to a single object.
(as also discussed in Section “Discussion”) and based on efFhe termbehaviorrepresents the physical embodiment of
action. Therefore, we leave an in-depth discussion of thehe agent’s interaction encoding the internal represiemtat
available Machine Learning methods and theories, and refahat defines a unit of action that can often take parameters

to Jebara (2004) for a review. for initiation and online control. Within the context of ¢hi
study, we assume that behaviors are discrete entitiesllyrina
The current study effectis defined as the perceptual change generated in the

In this paper, we are interested in how a robot can roungnvironment due to the execution of the behavior,

verbs in II)anp u:a e. Towards this end, we use thegnotio For instance, when a robot applieslitsbehavior to &an
of aﬁordancgs (git;son 1986) as formélized by Sahin et alri} produces the ectlifted, meaning that the can’s position,

' erceived by the robot, is elevated. Through its interac-
(2007) to develop a method that can learn to represent a perc ' L
use verb concepts on a humanoid robot platform. Specirf]%:r?:_w'th acan, arobot can acquieation instancesf the
ically, as the robot interacts with a set of objects using its ' i e i ,
own repertoire of behaviors, a human observes fifgetgen- (black-canlift-with-right-hand lifted),
erated and labels each interaction with a proper verb. Theneaning that there exists a potential to generate ffexte
method uses the data collected through such interactions tigted whenlift-with-right-handis applied tdblack-can Note
develop prototypical representations of verbs. Through ththat the termblack-canis used just as a short-hand label to
use of these prototypes, the robot can be commanded to peatenote the perceptual representation of the black can by the
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behavior

Behavior Behavior
Space Space
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entity )
Entity Effect Entity Effect
Space Space Space Space
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Figure 2 (a) An affordance (relation) involves an entity (from the entity space), a behévan ¢he behavior) space and affieet (from
the dfect space) that is produced by applying the behavior on the erlij\MWe propose linking verb concepts to generalizations over
behaviors based on theiffects. In this example, the set df@dance relations that have tlifted effect should be linked to the “lift” verb.

interacting agent. Similarllifted and lift-with-right-hand  dances (Gibson, 1986). For instancefetent kinds of han-
are labels for the related perceptual and proprioceptige re dle may dford different actions: some can be turned, some
resentations. For instance, the representation of thek blagpushed to open a door. From this view comes the idea that
can be a raw feature vector derived from all the sensors ddictivation is more tied to theffardances elicited by objects
the robot looking at thelack-canbefore it attempts to apply than to the words representing the objects. Objdidra
its lift behavior. dances would influence not only the understanding of words
Arguing that #ordances should be relations with predic- but also the understanding of more complex linguistic struc
tive abilities, rather than a set of unconnected relation intures such as sentences.
stances, we proposed a learning process that can be appliedAlthough the relationship between words, concepts and
on this representation. For instance, a robot can achi@ve thyffordances has been pointed out by others, the problem of
effectlifted, by applying theift-with-right-handbehavior on  how such a link exists in organisms and how it can be cre-

ablack-can or ablue-can It can thus learn a relation: ated in robots has not been completely tackled yet. In this
. . ) article, we argue that verbs that are provided by a human
(<*-can>, lift-with-right-hand lifted), observing the physical interactions of the robot with otgec

where <*-can> denotes the derived invariants of the canC” be used to bridge the concepts represented by these verbs

that are relevant for lift-ability. 'In our previous studies Into s.,er.1$or|motor mteractpns of the robot.

(Ugur et al., 2009; Gur & Sahin, 2010), we were able to Within the context of this paper, we assume that verbs,
train SVM (Support Vector Machine) classifiers to imple- that are used to command a robot, mostly specify the accom-
ment prediction modules such a&can> for each behavior, Plishment of a desired goal with no regard on the means of

successfully. In these studies, theets were grouped intoa Now it is achieved. For instance, when we command a robot

to vertically elevate the box. As illustrated in Figure leth

command should invoke filerent behaviors on the robot as
Affordances and Language determined by the properties of the box (such as size) or the

The link between the notion offfardances and language state the robot (such as th_e_ robo_t already holding a cup in_one

comprehension has already been pointed out in Psychologﬂf its hands). Such’ an ablllty relieves the _h_u_man from be_lng
(Borghi & Riggio, 2009; Borghi, 2012). The indexical hy- aware of the rok_Jots sensorimotor capabilities and reguire
pothesis by Glenberg & Robertson (2000) explains how thigh® robot to flexibly respond to verbal commands based on
may happen. According to the hypothesis, words and sertS Prior interaction with the objects.
tences are linked to objects in the world, their referentsp o
analogical representations as pictures or perceptual ggmb
(Barsalou, 1999). For example, the wdrandlerefers to its
referent, a handle, or to an analogical representationef th
handle. Thus words that refer to objects would evoke firstly It is tempting to associate the concept of a verb with a
perceptual information relative to such objects. Given thecategory that covers all the interactions that are gerettate
close relationship between perceptual and motor processebe execution of a particular behavior. If we want the robot
words should also evoke motor information. Indeed, dependto lift a particular objec, the verb “lift” can trigger the lift
ing on their perceptual features, objects can activéim-a behavior of the robot to accomplish our goal. For instartce, i

Verbs: behavior or gect categories
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might be suggested that the concept of lifting should cover: o B -~

(o} =

However, such an association provides a limited coverag
for all the meanings that the verb “lift” should convey. FEirs
the robot can probably lift an object withftérent behaviors,
such adift-with-right-arm and lift-with-left-arm (for exam- |
ple, Figure 1 shows six fferent behaviors that can be used
by humans to push an object towards left). Second, the exé
cution of the particular behavior may fail on some objects,
e.g., heavy or slippery objects. Third, in certain cases, {
seemingly contradictory behavior such as pressing, may als®
lift an object that is placed on a lever to accomplish lifting

The criticisms that are stated above indicate that the rep®
resentation of a verb concept by a particular behavioral cat™
egory implicitly includes the “manner” information by spec
ifying the exact type of behavior that is being asked for. Ar
alternative, which we take in this article, is to associag
with effect categories as:

Figure 3 iCub interacting with an object on the table.

Surface Normals

- I - 1 I Principal Curvatures
(<any-entity, <any-behavior>, lifted). 3 (;4';; o N;'ax)d 5
In other words, we propose linking the verb “lift” to the set
Shape Index

of behaviors that have tHited effect (see Figure 2(b)).

Pose and Size

Experimental Framework

y

We used the iCub humanoid robot (Metta et al., 2008), &igure 4 The elements of perception extracted within our system.
fully open-source platform designed for cognitive and dieve
opmental robotics research. The robot, built in the form of
4 year old child, has 53-DOF in its body and equipped with
7-DOF arms and 9-DOF hands making it possible to develofollowing features were then extracted from the point cloud
human-like simple object manipulation behaviors for inter corresponding to the object:
acting with objects put on a table. e Surface featuressurface normals (azimuth and zenith
The robot used a Kinect RGB-D camera (Figure 3) fixatedangles), principal curvatures, and shape index as regezsen
on the side of the robot to perceive the objects on the tablevith 20-bin histograms, using curvature and normal estima-
The camera captured the depth of scenes with a resolutidiion methods provided by an open-source Point Cloud Li-
of 640x 480, providing a cloud of 3D points with the corre- brary - PCL (Rusu & Cousins, 2011).

sponding RGB data. e Spatial featuresbounding box center, orientation, and
dimensions (along, Y, 2).
Behaviors e Object Presencea binary feature for whether an object

exists on top of the table or not. This information is espe-

We used a repertoire of six manipulation behaviors forcially useful when an object disappears after an interactio
interacting with the objects, similar to the ones used by The features extracted from the objects before the execu-
Bergquist et al. (2009); Metta & Fitzpatrick (2003). Thesetion of a behavior are called theitial featureswhereas the
behaviors, denoted as, .., bs, are: push-left push-right  features extracted after the behavior are calleditiad fea-
push-forward pull, top-grasp and side-graspbehaviord.  tures The diference between the final and the initial features
Thetop-graspandside-grasgehaviors are approach the ob- are used as theffect features These initial and fect fea-
ject from the top, or from the left or right (depending on the tures correspond to thentityand thegffectin the afordance
relative position of the object) and fingers close upon touch formalization in Equation 1.

Perceptual features Learning Afordance Relations

The object in the depth image captured by the Kinect de- In the experiments, the robot interacted with a set of 35
vice is segmented from the tabletop by assuming that thebjects of dfferent sizes and shapes as shown in Figure 5. In
workspace is planar and placed parallel to the ground. Thetal, 413 diferent interactions were recorded, that consisted
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Table 1
The average, maximum and minimum prediction accuracies
of SVMs for each behavior obtained through 5-fold cross val-

idation.
Behavior Average Maximum Minimum
Accuracy Accuracy Accuracy
side-grasp 100% 100% 100%
top-grasp 90% 100% 85%
push-left 92% 100% 83%
push-right 96% 100% 85%
push-forward 100% 100% 100%
pull 96% 100% 86%

Figure 5. The objects interacted by the robot for learning. for each behaviob;, the mappingM, : & — E2 from
, , 1 € .
the initial representation of the objects, &,,) to the dfect

L . . . , clustersE? is learned by a Support Vector Machine (SVM)
of mt‘.”“p'e ngtgracllcf:tlonst with tth(:’. objects [()jlacted aﬁ«:hentth classifier. These SVMs enable the robot to predict thece
positions and in dferent orientations, in order to capture the (oo b that it can generate by applying a behawer

Va”ab'.“ty' . . N ' on a novel object;. In our experiments, the SVM classifiers
During these interactions, the |In|t|al and final features of¢, . aach pehavior were trained with 5-fold cross validation
the_ objects were recorded, and tfeeets gg_nerated on t_he reaching average accuracy values above 90% (as can be seen
objects were labeled by a human. Specifically, each inter-

. . ; ' ; |r1TabIe 1).
action episode is encoded as a relation between an objec We would like to note that these SVMstectively pro-
0; € O, a behaviolb; € 8 and an éectf as:

vide an @ordance-based perception view of the object, by
b predicting what the robot can do (such as move-right, knock,
(€0, by, fo), (4)  disappear etc.) with them, i.e. what thefjoad.

whereg,, is the initial perceptual representation of the object
0;; bj € Bis a behavior from the set of behavidgs and foti”'

is the representation of theéfect. The &ect fcfi’j is defined
as the diference observed in the perceptual representation
objecte, as a result of the interaction as:

Verb Conceptualization

In this section, we describe (i) our verb conceptualization
c)l?ased on fect prototypes and two alternative methods for
verb conceptualization, and (ii) how verb concepts can be
used for various human-robot interaction problems.

b. b . . .
fo' = & = €. (®) |- Verb Conceptualization Usingffect Prototypes
Then, each interaction is labeled by a human based Cep
on the dfect generated using a set of verbse( ef- In this section, we describe how we derive the condensed

fect labels) E € & where & included no-effect,  prototype representatiofyy, of the efects{f} in an dfect
moved-left, moved-right, moved-forward, pulled, clusterE € & (Figure 6). We call this condensed represen-
grasped,knocked, anddisappeared. For example, if the tation theeffect prototypeand claim that they correspond to
robot applies @ush-rightbehavior on an object, leading to a conceptsepresented by verbs.
measurable displacement towards the right, the user Vgrbal  Figure 8 depicts a summarized version of the distribution
provides “moved right” to the robot. of effect features for dierent dfect categories. Examining
Figure 6 depicts the categories formed in tiffieet space the distribution of change in each feature elemet, ; f
as a result of theféect labeling. For instance, when the (where f is thei" element of the»-dimensional feature vec-
robot applied thepush-leftbehavior on cubes and cylin- tor f), we observe four dierent characteristics: feature ele-
ders, the objectmoved-left. However, the application of ments that (i) increase consistently, (ii) decrease cteriy,
the very same behavior on the balls, caused the objects i) remain constant or (iv) change in an unpredictable way
disappeared, since they rolled away and became invisible. Therefore, we find it suitable to represent dfeet proto-

It can also be seen that the sadisappeared effect can be  type using labels+’, *-’, ‘0", **’, corresponding to increase,

generated on balls through the applicationpokh-* (any  decrease, no-change and unpredictable-change in thedeatu

type of push) behaviors. element, respectively. In addition to these labels, we also
The overall process of learninffardances from theffor-  include the mean and the variance of the changes in the rep-

dance relation instances is sketched in Figure 7. Spedyfical resentation to quantify the amount of the changes.
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Effect Space

Push forward: '* &%.*

Push right: * _*

“1s=X)

Pull: '* &; *
@
Top Grasp:fl @ B e

Side Grasp: ' '
Push-* and Pul]:' '

Push-* and Pull: @ sZ_| Top-Grasp:
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Figure 6. Labeled clusters in thefect space. ™ represent all instances of the corresponding obgegory.
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Figure 7. Clusters in the ect space are used for training an SVM, which allows ffiectlabel to be predicted from a behavior on a novel
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As a result, we define agfect prototypeas a string con- In order to compare twofkect prototypes or anfkect pro-
sisting of labels+’, *-’, ‘0", **", called “prototype labels” in totype with an €ect instance, we define a similarity metric
the rest of the article, together with two vectors corresbon using the Mahalanobis distance (Mahalanobis, 1936). This
ing to the mean and the variance of the observed changes. modified version of Mahalanobis distance between two ef-
order to assign prototype labels to the feature elements, wiect clusters (or between arffect prototype and anfliect
use unsupervised clustering (hamely, Robust Growing Neunstance - Equation 8) is calculated by taking the meamf
ral Gas (Qin & Suganthan, 2004)) in the space of mean anfirst effect clusterk; and using the secondfect cluster’sE;
variance of the changes (summarized in Algorithm 1). Themeanug, and variancere;:
prototypes derived from our experiments are shown in Table
2. For the sake of clarity, we will abbreviate these protet/p 0 N 0
as a combination a denotingk consecutive occurrences of  der(Ei, Ej) = \/<NE. foroE, ) ST (ue — o E, ) ®
the symbols (which can be+’, *-’, ‘0’ or *').
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to the mean values of the changes, while the error bars correspondrteatti@nce (in the case of circles and triangles, the error bar looks
like a single line due to small variance). From unsupervised clusteringeathianges, we get four change types (clusters): consistently
increasing (upwards triangle), consistently decreasing (downwaatgle), consistently not changing (circle) and inconsistenly changing
(star). The abbreviations on the y-axis stand for some of flects (NC:“no change”, ML: “moved-left’, MR: “moved-right”, MF:
“moved-forward”, P:“pulled” , G: “grasped”, K: “knocked” and D:“disappeared”) and the abbreviations on the horizontal axis stand for
the feature elements (OBbject PresencePy: position-x Py: position-y Pz: position-z @: Orientation Wy, Wy, W: Size alongk, y andz
andHj...H;o: Shape Histogramsonly a subset of the shape histograms are provided for the sake space, see Table 2 for a complete
listing).

whereS; is the covariance matrix of the secorfteet cluster  *’in the prototype strings are disregarded (denoted"g)g”gi
E;. In accordance with (Verguts et al., 2004) who claim thatfor the dfect prototypefyog, of an dfect clusterE;), since
(i) non-existing features and (i) dissimilar features ac¢  these correspond to an unpredictgibleonsistent change in
used in computing similarity between categories, in computthe feature elements.

ing the Mahalanobis distance, the dimensions denoted by a



Table 2
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Effect prototype strings that are extracted using thfie@-prototype conceptualization £g) introduced in Section “Verb
Conceptualization”. Note that each feature element hassaoeaiated mean and variance of the change (not shown here).

Eff. Cat. | A Azimuth A Zenith A Curvature | A Shape Index A Position| A Orient. | A Size | A Object

Name Histograms | Histograms | Histograms | Histograms (x-y-2) (x-y-z) | Presence

NC *000000000| 0000000000, 0000000000, 0000000000 | 000 0 000 0
0000000000| 0000000*00| 00*0000000| 000000*000

MR *kkkkkkkkk *kkkkkkkkk 0000000000 *****O**** * +* * *kk 0
******O*O* ***7\-***000 00******** **0*0*0***

ML #k%0000 | 0**0**0000 | 0000000000| 00*0**Q*0* 0-0 * 000 0
QQ***Qrxxx **0000*000 | 0*****0000 | **0000*00*

M F *kkkkkkkkk ******OOO* 0000000000 ***O*O**** _00 * 000 0
*khkkkkkkkk **000**000 00****0*** **OOOOO***

P *khkkkkkkkkk ******OOO* 0000000000 **)\'0*0**** +00 * 000 0
*kkkhkkkkkk **000**000 00****0*** **00000***

K *0***00000 | *000000000| 0000000000 0000000000 | 0O- * 00- 0
000000**0* | 0000000000; 000000000*| 0000000000

G 0000000000| 0000000000| 0000000000 0000000000 | 000 * 000 0
0000000000| 0000000000; 0000000000; 0000000000

D 0000000000, 0000000000 0000000000; 0000000000 | 000 0 000 -
0000000000| 0000000000; 0000000000; 0000000000

Algorithm 1 Derivation of Hfect Prototypes - foCgp.

which considers all dimensions in a feature:

Gil\]/en: Interactions with the environment to collect a setftdas
{fa) | Vb; € 8,0, € ).

Output: Hfect prototyped,, (i.e., Cep) for each &ect category.

- Assign a labeE € & to each &ect.
for all E in the set of €ect clustersS do

- Compute the meaje of the change in each feature element

iﬂE:%Zif,

feE

whereN is the cardinality of the sdtf € E}.

menti:

end for

iU'E=%Z(if—i/~lE)2~

feE

(6)

@)

CEx

dnp(Ei, Ej) = \/(IJEi - fpro,Ej)T Sfl (,UEi - fpro,Ej)- 9

Il - Verb Conceptualization Using Exemplars -

For better evaluation, we also introduce conceptualinatio

of verbs using the exemplars in the categories. In this case,
checking the membership of an instance requires comparing
- Compute the variangere of the change in each feature ele- that instance with all the members of a category and picking
up the category that has the minimum distance. Itemwise

- Apply Robust Neural Growing Gas (RGNG) algorithm
(Qin & Suganthan, 2004) in the spacewok o
- Manually assign the labels*, -’, ‘0’ and **' to the four clus-
ters that emerge in the previous step.

comparison is achieved using Euclidean distance:

N
dEx( fne\/\b Ei) = r;rlgl \ nZ:;(l fnew i f)z, (10)

where fhew is the new &ect instancekE; is the dfect cluster

frewiS compared against; and,is the number of dimensions
in a feature.

Il - Verb Conceptualization Using Naive Proto- Understanding an interaction in terms of verbs
types - Gip

of verbs that do not utilize the string representatiios, (‘ +',

An important problem in human-robot interaction is
the correspondence between thefetent embodiments
(Alissandrakis et al., 2003), which requires, e.g., maighi

In order to evaluate ourfiect-prototype-based verb con- the ditferent body parts of the human to the parts of the robot.
cepts Cep), we introduce another prototype representationA practical way around the correspondence problem is to in-

terpret interactions based on theffests using the symbolic

1, % ‘0"). This amounts to pure Mahalanobis distance space of fect prototypes. In this study, matching an ob-
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served interaction (Bect) with another fect or prototype organism, and (2) to achieve goals specified in his own sym-
(Cep, Cnp Or Cgy) is achieved using the distance functions bolic representations which are grounded in his own sersory
dep, dyp anddgy respectively provided in Equations 8, 9 and motor system. We demonstrate and evaluate both aspects on
10, as outlined in Algorithm 2. the iCub platform.

Goal specification through demonstration andaigorithm 2 Understanding an observefiezybehavior.
multi-step planning Given: Observation of an entity, and a behavior applied

A natural way to command a robot is to specify our goal oney, Igadmg to theﬁect fgi. Note that this behavior may
through demonstration, a form of non-verbal communication Ot b€ in the repertoire of the robot.
that humans use with babies, with people that we do not have Output: Determine the verb concet (i.e., the éfect cat-
a common language, or with people that we have to commu- €gory) that best describes the observed interaction.
nicate in loud environments. We term this form of commu- . ) )
nication aggoal specification through demonstrationgen- - TakeE" (the best matchingftect category) as the inter-
eral. Within the context of this study, we would like a human Pretation of the observedfect:
to demonstrate a desired goal, by demonstrating it in frbnt o _
the robot and ask him to “do what I just did”. In this study, E* = arg minde(fa, foroE), (11)
we can achieve this by using verb concepts, which provide Ee&
abstraction over the behaviors, eliminating the need togec ~ wheredc(.,.) is eitherdgp(), dyp() or dex() respectively
nize individual behaviors and to handle the correspondence defined in Equations 8, 9 and 10; arfgho e is the proto-
problem (Alissandrakis et al., 2003). _ type of the €fect categonE. If required, a threshold on
Our method for “do what I just did” (see also Algorithm (] ) can be set as a criteria to determine whether
3) relle§ on (i) pred|ptlng the outcome of each behavio), (i ne observedféect is unknown to the robot.
comparing the predictions with the desired observidce - (Optional) Given a novel entitg,,, find the behaviob*

(e, what the human has demonstrated) and (i) repeating (among the behavior repertoire of the robot) that produces

step-(i) for each prediction produced in step-(ii). For eom . &
paring the predictions with the desirefliect, we will use and RgGCctin the dect cluster represented by tpro-

compare the distance functiodsp, dyp anddgy respectively totype fproe::
provided in Equations 8, 9 and 10.

b* = arg maxdc(SVM(e,. b). foroe:).  (12)
Commanding with verbs or symbols o _
wheredc(.,.) is eitherdep(), dvp() or dex() respectively
The SVMs allow the robot to predict the category of the defined in Equations 8, 9 and 10; afiglo e is the proto-
effect that it can generate on a novel object after executing type of the &ect categonE*. If required, a threshold on
a certain behavior. This allows the robot to respond to verb q(syv(e, , b), foroe-) CaN be set as a criteria to determine

commands, such as push-right (the object on the table), by \;pether the observed behavior cannot be replicated on the
feeding the objects perceptual representation to all tHdSV novel objecte,

and checking whether the specified goal (via giving the ver-

bal command) matches with the predicteteets of any of

the behaviors as outlined in Algorithm 4. Moreover, the tobo

can be specified a goal interms ef,*-", ‘0’ or ** symbols,  Verb concepts for goal emulation and multi-step

and satisfy such a goal by finding the behavior yielding theplanning

closest &ect to the specified goal (using the distance func-

tions Equations 8, 9 and 10). In Figure 9, some novel interactions (leading to novel ef-
Note that the application of more than one behavior mayfect instances) are shown. For these instances, the robot ca

be predicted to generate the desiréibet specified by the find the best interpretation by matching them against thie ver

commanding verb. The set of these behaviors provides theoncepts that it has formed using the distances defined in the

robot with aflexibility that can be useful in cases of failure previous section.

or in making multi-step plans (as outlined in Algorithm 3)  For these ffect instances, we compare our prototype-

subject to other constraints. based representatiolC{p) with the naive prototype rep-
resentation Cyp) and the exemplar-based representation
Results (Cex), as shown in Table 3. We see that our prototype-based

representation can find the correct category whereas the
In this section, we first demonstrate and evaluate the threexemplar-based conceptualization and the naive protetype
different verb conceptualization methods outlined in the prebased conceptualization fail to find the correct category in
vious section. Having verbs or verb concepts should enablsome casesCgy especially fails because the observed in-
an organism (1) to understand, in his own sensory-motor andtances are closest to thesappearedeffect category since
symbolic representations, the observed behavior of anothell dimensions in this category are ze@yp performs better
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(e) Toy bone initial state (f) Toy bone final state
Figure 9 Some novel interactions with novel objects. Tiieet is simply the dference of final and initial states of the given object. The
novel gfect predictions with dferent distance metrics for these instances are listed in Table 3.

thanCgy; however, we see that inconsistent dimensions thatvhen naive prototype£p - Equation 9) or exemplar€ey
are not excluded b@yp in distance calculations may lead to - Equation 10) are used for conceptualization. We see that,
wrong efect categories. in these cases, the planner could not produce proper behav-

Another advantage of the prototype-based representatidf’ Séquences to achieve the given goals in limited stegs (th
is that iCub can symbolically describe what it has seen. IrfliStance threshold was constant throughout the expergnent
Figure 9, iCub is shown two fierent interactions. Observ- | e multi-step planning is sketched in Algorithm 3.
ing the dfects, iCub finds theftect prototype (Figure 10) e
that best describes the observed behavior using AlgorithnY€rD concepts and goal specification
2. The matching fect prototype is the symbolic represen-
tation (.e. the verb concept) of the observed behavior anqh

this symbolic representation is grounded in iCub’s Seﬁsorifepresentations (Algorithm 4). Since they are grounded in

motor experiences. Having the sensori-motor grounding Ofc,ys sensori-motor experiences, iCub can find the behavio
the efect prototype, iCub is asked to produce the same eff

fect (Figure 10). Note that with the set of behaviors iCub is
equipped with, there may be more than one way to achieve
the goal, and iCub chooses the one with highest prediction

accuracy, as described in Algorithm 2. In this article, we have taken an ecological, embodied and
In a scenario requiring multi-step plans, we compare thegrounded approach to verb conceptualization. We have pro-
prototype with the exemplar-based and naive prototype conposed novel methodologies for linking the notion dfoa
ceptualization. The multi-step planning results are giedi  dances with concepts that correspond to verbs in language.
in Figure 11. We see that, using the verb concepts presentda this end, a humanoid robot, iCub exercised its behavior
in Table 2, iCub can successfully find a sequenceffi#ce  repertoire on the objects available in the environmenttier t
prototypes leading to the target state. From these pragstyp purpose of discovering thefardances of the objects.
iCub can choose the best behaviors that can generate thoseThe learned fiordances allow the derivation of novel con-
effects. In Figures 13 and 14, we provide the planning resultslensed representations of behaviofgets, which we called

As if specifying a goal for iCub with a verb (like “push left
e object”), we give iCub the goal with his own symbolic

hat satisfies the requested goal (shown in Figure 15).

Discussion
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Table 3
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Evaluation of the dferent conceptualization methods (i.egf&CCnp, Cex) for the novel interactions in Figure 9. The table
lists the distances between the observgéce and the existing verb concepts. The verb concept witlsrttadlest distance
is the corresponding interpretation of the correspondiogeeptualization method (i.e., one of £Cyp, Cex). The correct

predictions are in bold, whereas false predictions are utided.

Inter. Concept.| No Change| Moved | Moved | Moved | Pulled | Knocked| Grasped| Disappeared
Right Left Forward
Cep 390.81 146.24| 372.24| 389.21 | 215.56| 215.50 392.11 410.31
Figure 9(b) Cnp 392.16 182.13| 386.92| 416.43 | 241.06| 219.28 395.04 410.31
Cex 237.01 236.89| 237.42| 237.24 | 237.42| 237.42 237.25 236.84
Cep 731.36 494.18 | 416.42| 340.71 | 393.76| 358.06 738.04 790.41
Figure 9(d) Cnp 732.98 497.02 | 417.18| 426.71 | 423.17| 428.06 741.11 790.41
Cex 789.45 789.08| 789.83| 789.49 | 789.83| 789.83 789.54 788.84
dep 925.41 577.51| 267.45| 328.75 | 354.85| 354.74 928.16 947.51
Figure 9(f) Cnp 929.37 580.26 | 291.77| 369.75 | 373.37| 359.88 929.94 947.51
Cex 946.74 946.42| 947.03| 946.66 | 947.03| 947.03 947.01 946.21

Algorithm 3 Multi-step planning algorithm

Algorithm 4 Satisfying a given symbolic goal specification.

Given: esart andeyoq:.
Output: P, a plan, which is a sequence of behaviors leading to
egoal from Estart-

- Initialize: esyrrent < Estart.

for all level= 1 : Nieye dO
- Update the remainingfect: feurent ¢ €goal — Ecurrent:
- Find the verb concept that is closeskEtgar.

E" = arg mindc(feurrent, E). /dc(): der(), dup() Or dex()

EeE (13)
wheredc(.,.) is eitherdgp(), dyp() or dey() respectively de-
fined in Equations 8, 9 and 10.

- Find the behavior that takes us closeejgy. This behavior
is the one that best produces difeet corresponding to the
verb concepE*:

b = arg minde(S V M€urrent b), E”).
B

(14)

wheredc(.,.) is eitherdep(), dnp() or dey() respectively de-
fined in Equations 8, 9 and 10.
- Update the plan by adding the new behavi®r— P + b*.
- Update the current state of the object using the predicted verb
concepte*:
if Cepthen
€current < €current + f;,’(;th*
else
// Cnp or Cey

Given: fqoa, Which is a rough description of what should
change in what direction (marked witkand *-"). If re-
quired, the user can also specify what should not change
(with a ‘0"). The other elements are marked as *".

Output: Findb* (among the behavior repertoire of the
robot) that satisfies the go&joa:.

- Take f;, (the best matchingftect prototype) as the in-
terpretation of the goal:
f*

pro

= arg mindEp(fgoaI, fpro)7 (15)

pro
wheredgp(., .) is the Mahalanobis distance in Equation 8.
If required, a threshold odep(fgoai foro) Can be set as a
criteria to determine whether the goal cannot be satisfied
by the robot.

- Given a novel entity,, , find the behaviob* (among the
behavior repertoire of the robot) that produces fiect in

the efect cluster represented by thieet prototypef:

b* = argbma>dEp(SVM(eok, b), foro)s (16)
wheredgp(., .) is the Mahalanobis distance in Equation 8.
If required, a threshold odep(SVM(ey,, b), f;;,) can be
set as a criteria to determine whether the goal cannot be
achieved on the novel objee, .

€eurrent < €current + UE*
end if

end for

iors, and represent the behaviors (and what they are useful

for) using symbols, which then allow the robot to interptst i
own or others’ interactions with the environment. These con

effect prototypes We proposed thatfkect prototypes corre-
spond to verb concepts. We demonstrated that, with the
concepts, the robot can generafiabstract over its behav-

cepts can easily be linked to wordse(, verbs like “push”,
Sif, etc.) through which the robot can interact with huns
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iCub computes the category of thifezt iCub chooses and appligssh-righton the object
in Figures 9(a)-9(b) as
:Epved right”

iCub computes the category of thifezt iCub chooses and applipssh-lefton the object left
in Figures 9(e)-9(f) as
“moved left”

Figure 10 “Do what | just did” Demonstration.First row: iCub interprets the interaction in Figures 9(a)-9(b) as an instance of
“moved-right” verb concepti.e., which only has the change jnposition as consistently increasing, more specificall{f[0x]? 17

0% %13 0+ [0%]® +° + 5 O (For the sake of space, we den&teonsecutive occurrences of a symisakith s¢). Then, iCub is asked to
create the samdfect on a novel object. The columns show iCub executingtrgh rightbehavior which it successfully chose among the
behaviors in its repertoire leading to theet categorytioved-right”. Second row: Similarly, iCub interprets the interaction in Figures
9(e)-9(f)) as an instance ofibved left” verb concept (i.€.5°0% +3 0 +* Q[+ + 0]20% #2 0% % 0™ %5 0% + 042 [0%]2 +? 0% + 0? + 0 — 0 = 0*), and

a new object is put in front of it. It then chose to executeghsh leftbehavior to produce the samfest.

more naturally without the designer being worried about honHommel et al. (2001)), according to which a behavior is rep-
a certain verb is executed by the robot. For better evaluresented in distal termge., in terms of overall goals, not in
ation of our proposal, we compared oufeet prototypes proximal termsj.e., in terms of the kinematics of the move-
with naive prototypes and exemplar-based conceptualizati ments and of theftectors required to reach the goal (see also
in goal emulation and multi-step planning tasks. Our eval{Hamilton et al., 2007)).
uation showed that the regular-expression like nature of ou The neural underpinnings of this claim can be found in ev-
conceptualization proposal combined with Mahalanobis disidence on mirror neurons in monkeys, showing that they are
tance performs better than the alternatives considerdtkin t activated preferentially when the behavior or the goalescl
article. (Umilta et al., 2001, 2008). Such an association strongly in-
Our prototypical representation of concepts is novel ih thadicates that the concept being conveyed by the verb is the
they represent the overall feature distribution in a catggo request for a certainfiect to be generated through the use
in a compact andfcient manner. This has several advan-of an appropriate behavior. In this sense, when we ask the
tages: (i) Unimportant features can be discarded in similarrobot to lift an object, we specify the goal as an increase of
ity computation as also argued by (Verguts et al., 2004). (ii the object position in the vertical axis and leave the choice
Feature elements can be grouped and segmented togethefithe particular behavior to the robot itself. This is reéer
other inter-feature relations and dependencies can bly easto asgoal emulationin the literature as a form of imitation
interpreted and recovered. (iii) Such a symbolic condensedharacterized by the replication of the observed effieice
representation is very suitable for goal specification. hwit (Want & Harris, 2002), and is observed in infants after 12
these advantages at hand, we have demonstrated the advamenths (Elsner, 2007).
tages of our prototype-based concepts over exemplar-based .
and naive-prototype-based verb concepts. Verb concepts fromfects: Robotic and Computa-

tional Advantages

We claim that our proposal of linking verb concepts to the
Our proposal of linking verb concepts to thi#eets of be-  effects of behaviors and representing these concepts in terms
haviors is in line with psychological ideomotor theoriegy(e  of effect prototypes provides the following advantages, some

Verb concepts fromfgcts: Biological Relevance
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(c) First Step (d) Second and Final Step
Figure 11 A sample execution of multi step planning usi@gp - i.e., effect prototype based verb concepts. First, the initial state (a) and
final state are shown (b). Then, the robot makes a plan invopirsi-rightand push-forwardbehaviors, which are executed as shown in
(c) and (d). When a simple Euclidian distance or naive prototype is tlsedpbot could not derive a plan.

of which have been demonstrated in this article: from the distribution of features and are not dependenten th

. ... set of behaviors and the features used. (ii) The prototyles a
_* Condensation: The prototypes represent the distribu- " b ;man to interact with the robot at a more symbolic
tion of features in a category using less storage. Howewer, w nd abstract level

have shown that, compared to exemplar-based conceptuae}- e Robustness:
ization, this does not degrade the performance requwe:vmen%ince in our préposal irrelevant changes in features are

expefgad fégm a gjtn;ﬁg?'go(gs I';St.Gd_ beAloc\;\(l))ﬁce ¢ allows Marked and not taken into consideration while interpreting
ch;ck'nw hetrf)wuer ;n e 'spof);lrgya.t N cont gr Sot | TheSffects and verb concepts, our prototype-based proposal of
Ing w : ' P : Sverb concepts is robust to changes in appearance and spatial

fact that the information in a category is represented in g ., 00q “a5 demonstrated especially by the multi-step plan
condensed manner fCilitateS TaSter checking of memigershi ing scenario where the alternatives failed to converge to a

hence faster interpretation of an observed event in terms c&lrget state in 10 steps whereas our proposal (by comparing

verb concepts. :
; . . . the most relevant and consistent features) converged to the
The complexity of checking the membership of dfeet in- target states in 2-3 steps.

stancef in nverb concepts i®(n) in our proposal. However, .
that of exemplar-based conceptualizati®g,)) is O(n x m), The dfect-prototype-based verb concepts, being an ab-
wherem is the average number of items in a verb conceptStraction over behaviors, are beneficial for the following
The complexity of checking membership in the case of naiveProblems:
prototype conceptualizatio€p) has also the complexity of e Goal specification and satisfaction:
O(n); however, (i) the distance metric in Equation 9 requiresThe robot provides flexibility to the user to provide com-
more computations than the one in Equation 8 on averagmands at dferent levels: (i) at the language level, using
and (ii) Equation 9 leads to worse matching performance (aserbs, in which case the robot can choose the best behav-
shown in Section “Results”). ior that satisfies the correspondingeet, (ii) at the symbolic

e Flexibility: level, using strings of+’, -, ‘0’ and ', making it easy
Our verb concepts provide flexibility in flerent aspects: (i) for a human to specify in more detail what is expected to
The same set of methods can be applied to another robot witthange, in which case the robot can again find the best be-
a different embodiment having afféirent perceptual system havior leading to the required change specification, (i) a
and a diferent set of behaviors since the concepts are derivethe low sensorimotor level, using exact values for features
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Figure 12 Multi-Step planning demonstration wittifect prototype based verb concep@gp (and the modified Mahalanobis distance
in Equation 9). The behaviors are abbreviate®Bgpush-righ), PL (push-lef}, PF (push-forward, PB (pull), TG (top-grasp, SG(side-
grasp. The planner successfully terminates with a reasonably small sezgjoébehaviors executed. The trial is also visualized in Figure
11.

final state, which again can be achieved using the conceptan approach does not guarantee that the set of verb concepts
alization we have proposed. Moreover, as we have showrwould converge to be similar to the ones used by humans,
the human can demonstrate dfeet on any object and the and even if it did, it would take a longer time span. In a
robot can generate the santéeet on a completely fierent  developing infant, both supervised and unsupervised mecha
object. nisms are used in the development of concepts, and we leave
e Language and human-robot interaction: the integration of unsupervised categorization fééets as a
An important cornerstone in language and seamless humafuture work. However, it should be noted that if we wish a
robot interaction is sharing the same meaning for the wordsobot to have the same concepts as we, humans, do, then we
that are used by humans and robots. With the verb concepshould provide supervision for the sensorimotor intetandi
proposed in this article, we have addressed how verbs can be
grounded in the sensorimotor system of the robot such that For any computational system, representation is very im-
the robot can interpret in his own system the meaning assocPortant in that a suitable representation can simplify many
ated with the word and utilize that meaning in various taskgasks, and an unsuitable one can complicate many simple

involving interactions with humans. tasks unnecessanly In fact, one can argue that cogniéve d
velopment is about learning “suitable” representationsfr
Limitations and Future Directions sensorimotor interactions. A representational requirgme

for our method is that the features extracted from the ob-

An important aspect of the system is the inclusion of sujects must be a fixed-length vector, and that the information
pervision. The only supervision we put into the system is theextracted from the objects have fixed positions in this wvecto
effect labels that are provided by a human after each intef-or more complex objects, especially those with articalate
action. Although a developing infant gets such supervisiorparts, our methods can work with a hierarchical representa-
throughout most of his development, it is worthwhile to in- tion where the abstraction processes described in thidearti
vestigate what the fferent éfect categories could have been can be modified to work over the nodes of the hierarchy. For
in the lack of supervision. The simplest idea would be toa scenario involving dierent behaviors orfeects, a diterent
cluster the ffect instances using an unsupervised clusteringet of features might be required to be able to represent the
method. In (Akgin et al., 2009), we attempted an unsuper-changes. However, the same abstraction process can be used
vised approach to clustering th&ext space; however, such as long as the features have fixed length and positions.
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Figure 13 Multi-Step planning demonstration with naive prototype based verb pt;e€yp (and the pure cMahalanobis distance in
Equation 9). The behaviors are abbreviate®Rgpush-righ), PL (push-lef}, PF (push-forward, PB (pull), TG (top-grasp andSG(side-
grasp. The initial and the target states for the objects are the same with the anegat@ Figure 11. Since the distance calculations yield
wrong results due to irrelevant changes between the initial and goal, stetesearch does not terminate with success.

The current planning method is designed just to demonby TUBITAK (Turkish Scientific and Technology Council)
strate the usefulness of verb concepts. Our planner makeékrough projects no 109E033 and 111E287.
plans in terms of “what” changes are required in the environ-
ment in order to reach to a target state, and finds a sequence Footnotes
of verb concepts to satisfy them. In a full-fledged cognitive
system, the planning must be able to take into account also *In this paper, we will assume that the subject is given through
“how” some changes are performed in the environment. Thigaze or other means.
can be achieved by having the behaviors parametric such that *For simplicity, assume that the object is pointed through mech-
the same behavior with flerent parameters can yieldfdir- ~ anisms such as shared gaze. S _
ent dfects. The planner then can treaffelient parameter 3The reaching part of these beha_\/lqr_s is acIIIeved using a mod-
settings as dierent behaviors while making plans and de- ified form of Dynamic Movement Primitives (Akm et al., 2010)

nd the remaining parts of the behaviors are pre-coded. Due to Dy-
termine the behavior with the parameters conforming to th'?Iamic Movement Primitives, there is a feedback loop in the system

required task. allowing the robot to adapt to changes in position.
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