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In this paper, we investigate how the interactions of a robot with its environment can be used
to create concepts that are typically represented by verbs in language. Towards this end, we
utilize the notion of affordances to argue that verbs typically refer to the generation of a specific
type of effect rather than a specific type of action. Then, we show how a robot canform these
concepts through interactions with the environment and how humans can use these concepts to
ease their communication with the robots. We demonstrate that iCub, a humanoid robot, can
use the concepts, which it has developed, to tounderstandwhat a human performs, perform
multi-step planning for reaching a goal state as well as to specify a goal to the robot using
symbolic descriptions.

Introduction

The use of natural language in our interaction with robots
remains an elusive target for autonomous robot research. Ac-
cording to the embodied view of intelligence, such a compe-
tence requires the robot to link the discrete symbols used in
language into meanings that are grounded in the continuous
sensory-motor experiences of the robot, infamously named
as thesymbol groundingproblem by Harnad (1990).

Although Harnad’s approach to intelligence as asym-
bol grounding problemhas initiated a great deal of de-
bate, it was well received in the community (Borghi,
2007; Cangelosi & Harnad, 2001; Fischer & Zwaan, 2008;
Gallese & Lakoff, 2005). It is now widely accepted that lan-
guage should be grounded in the sensorimotor experiences
of the organism (Cangelosi & Riga, 2006; Cangelosi et al.,
2010; Steels, 2003; Glenberg & Kaschak, 2002; Cangelosi,
2010), and that the processing of a word requires the neu-
ral circuitry in the brain corresponding to its sensorimotor
experience, meaning or simulation (Glenberg et al., 2008;
Zwaan & Taylor, 2006). In other words, comprehension of
words is likely to involve or require the simulation of the
meaning represented by the corresponding concept.

The question that we tackle in this paper can be simply
put forward as:How can a robot ground verbs that we use in
our language into its own sensory-motor interactions?That
is, when we command the robot topush (the table)1 it should

be able to choose the proper behavior from its own repertoire
and apply it. Note that, the behavior chosen for the execution
of the verbal command will depend on the subject and that a
command such aspush (the cup)is likely to require a differ-
ent behavior (Figure 1). Moreover, the very same command
will require the use of a behavior executed on the “free” arm
of a humanoid robot, who may be holding an object in its
other hand. Such a grounding of verbs requires not only the
robot to interact with its environment observing the effects it
generated, but also the supervision from a human to properly
label these effects.

Language, Concepts and Robots

In this section, we summarize the studies and the ap-
proaches related to concepts and language in robots and de-
scribe the main novelties of our work.

Language in robots

Although comprehension of words should involve the
meaning represented by the corresponding concept, the com-
putational efforts in the literature linking language and the
sensorimotor data have only focused on mapping a word
to a single object or a behavior without much considera-
tion for generalization or conceptualization. Below are sum-
maries of these studies - for reviews on other efforts as well
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Figure 1. Different behaviors through which one can push an ob-
ject.

as the importance of perception and action in the develop-
ment of language, and how and why language should be
grounded in action and perception, we refer to Cangelosi
(2010); Nehaniv et al. (2007); Christiansen & Kirby (2003);
Lyon et al. (2007).

An important tool in linking language and sensori-motor
data is artificial neural networks due to its biological plau-
sibility and easy adaptability. Cangelosi (2010) presentsa
review of their earlier work (all using multi-layer neural net-
works) on (i) the multi-agent modeling of grounding and lan-
guage development, using simulated agents that discover la-
bels, or words, for edible and non-edible food while navigat-
ing in a limited environment (Cangelosi, 2001), (ii) the trans-
fer of symbol grounding, using one simulated teacher (agent)
and one simulated learner (agent) that learn new behaviors
based on the symbolic representations of previously learned
behaviors (Cangelosi et al., 2006) and (iii) language compre-
hension in a humanoid robot, where the robot learns to asso-
ciate words with its behaviors and the objects in the envi-
ronment. Similarly, in an earlier work, Cangelosi & Parisi
(2004) use a neural network for linking nouns to two differ-
ent objects (a vertical bar and a horizontal bar) and verbs to
two different behaviors (pushing and pulling).

Another study on linking language with sensorimotor data
(Hashimoto & Masumi, 2007) demonstrates the emergence
of symbols (to be linked with language) by interpreting the
attractors of a dynamical system (namely, a chaotic neural
network) to different symbols and the transitions between the
attractors to symbolic manipulation.

For a similar goal, Steels (2007) demonstrates (using a
robot and software simulation) the Recruitment Theory of
Language, which claims that organisms try different cogni-
tive or motor abilities for communication first and adapt and
develop those that lead to successful communication.

Cohen et al. (2005); Krunic et al. (2009); Marocco et al.
(2010) have also attributed verbs to individual behaviors
without generalization considerations. Other than these,
some studies investigate linking behaviors with effects for
other purposes: For example, similar to us, Rudolph et al.
(2010) proposed relating behaviors to their effects. They sug-

gested that behaviors be represented in terms of their effects.
They used their proposal for learning a complex mapping be-
tween the hit point and the target point of a thrown ball, and
they did not pursue generalization over behaviors or effects
nor did they relate their representations to ‘verb concepts’.
Kozima et al. (2002) have also studied generalization over
behaviors based on their effects in the context of imitation;
in their theoreticalproposal, they claimed that a robot should
use the equivalence of the effects of behaviors for imitating
a human performing a behavior rather than performing geo-
metrical transformations between different embodiments.

Montesano et al. (2008, 2009) proposed a Bayesian net-
work based on an affordance formalization similar to the one
used in our paper. In the network, there are nodes for per-
ceptual features (corresponding to the object -e.g., one node
for color, one node for shape and another for size), actions
(e.g., grasp, tap, touch) and effects (e.g., one node for each
of the following: object motion, hand motion and contact
of the hand with the object). The model learned the depen-
dencies between the nodes in the network and analyze the
learned network in terms of how well it can interpret and
imitate an observed effect. Although such an approach has
advantages in terms of inferencing, our focus in this paper is
different: we are interested in how to generalize over behav-
iors to be able to represent them as verb concepts allowing
efficient “communication” with humans.

As mentioned by Nehaniv et al. (2007), although there ex-
ist computational modeling efforts for the emergence of sym-
bols or words for nouns, the emergence of symbolic rep-
resentations for verbs is still mostly untouched (except for
Cangelosi (2010)). Moreover, although highly promising,
efforts in grounding verbs (or nouns) mostly do not tackle
the issues of generalization over behaviors (or entities) for
representing concepts or symbols (e.g., Cangelosi (2001);
Cangelosi & Riga (2006); Cangelosi & Parisi (2004)), which
is, in fact, the most essential reason for having concepts ina
cognitive system.

Theories of Concept

There are three main views on how concepts can be
learned or represented (Gabora et al., 2008; Kruschke, 2005;
Rosch, 1973; Rouder & Ratcliff, 2006):

- The Classical, or Rule-based, View: In this view (see,
e.g., (Bruner et al., 1986)), categories are exact with strict
boundaries;i.e., an exemplar is either a member of a cate-
gory or not a member of a category; there is no vagueness
involved. The members of the category share common prop-
erties (like YELLOW as color and LONG as appearance),
and the membership for the category is based on satisfying
the common properties of the category, established as rules
(like color of exemplar= YELLOW ∧ appearance of exem-
plar = LONG).

- The Prototype-based View: In this view, the mem-
bership for the categories is confidence-based (e.g., (Rosch,
1973)) and the boundaries are not tight. Categories are repre-
sented by “prototype” stimuli (the stimuli best representing
the category), which are used for judging the membership of
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other items. The representation of the prototype is mostly
based on statistical regularities,i.e., the frequency distribu-
tion of the features, (Ashby & Maddox, 1993). For example,
the APPLE concept can be represented by:

APPLE=























color 50% RED, 25% YELLOW or 25% GREEN

shape
...

- The Exemplar-based View: In this view, concepts are
represented by the exemplars of the categories stored in the
memory (e.g., (Nosofsky et al., 1992)). An item is classified
as a member of a category if it is similar to one of the stored
exemplars in that category. For example, the APPLE concept
can be represented by:

APPLE=























...























Although the exemplar-based view is in accordance with
some experimental results, it falls short in explaining several
findings (see (Gabora et al., 2008) for a review and discus-
sion).

Although it is widely believed that the classical view is
not adopted by human cognition, there are contradicting ev-
idences about whether humans use prototypes, exemplars
or rules for representing concepts (Minda & Smith, 2001;
Nosofsky & Zaki, 2002; Leopold et al., 2001). It might be
even that for different tasks (such as inferencing or classifi-
cation), we might be using different types of representations
(Johansen & Kruschke, 2005), making a hybrid representa-
tion appealing (Rosseel, 2002). Overall, how we represent
concepts is still an open issue (Parthemore & Morse, 2010;
Gärdenfors, 2004).

Learning concepts is also studied in Machine Learning
where efficiency and practicality are the main concerns un-
like the theories of concepts in Psychology and the current
study, where we are interested in having a developmental
conceptualization framework which is biologically plausible
(as also discussed in Section “Discussion”) and based on en-
action. Therefore, we leave an in-depth discussion of the
available Machine Learning methods and theories, and refer
to Jebara (2004) for a review.

The current study

In this paper, we are interested in how a robot can ground
verbs in language. Towards this end, we use the notion
of affordances (Gibson, 1986) as formalized by Sahin et al.
(2007) to develop a method that can learn to represent and
use verb concepts on a humanoid robot platform. Specif-
ically, as the robot interacts with a set of objects using its
own repertoire of behaviors, a human observes the effect gen-
erated and labels each interaction with a proper verb. The
method uses the data collected through such interactions to
develop prototypical representations of verbs. Through the
use of these prototypes, the robot can be commanded to per-

form a desired “verb action” on a novel object. The com-
manding can be provided as (1) a verbal command, such as
“push (the cup)”, (2) a demonstration, such as the human
pushing a box, and asking the robot to mimic what he just
did on a cup, (3) goal specification in the prototype space.
Moreover, the robot can use these prototypes to make multi-
step plans to achieve a goal that is not attainable through a
single behavior. Our results have shown that the use of proto-
typical representations not only reduces the search space for
making such plans, but also minimizes the errors in making
these plans by paying attention only to the relevant dimen-
sions (as represented in the prototypical representations) in
the sensory space.

Affordances and Verbs

The notion of affordance was introduced by Gibson
(1986) to propose that organisms perceive the environment
in terms of the action possibilities that they offer to them.
Gibson argued that when we look at a chair or a cup, our per-
ception does not provide a generic perceptual view of these
objects consisting of all of their qualities, but instead informs
of the affordances such assit-ability andlift-ability that they
offer to us.

The notion provided a fresh perspective to the classical
theories of perception and has inspired new lines of thinking
in a wide range of fields. In an earlier study (Sahin et al.,
2007), we formalized this important notion such that it can
be utilized to learn and use affordances at different levels of
autonomous robot control. In particular, we argued that each
interaction episode of an agent with its environment can be
represented as anaffordance relation instancetuple as (Fig-
ure 2(a)):

(entity,behavior,effect), (1)

whereentity denotes the environmental relata obtained via
perceiving the environment and the self. It encapsulates the
perceptual representation of an agent at different complex-
ity levels, ranging from raw sensory data to the features ex-
tracted from the environment. However, within the context
of this paper, we confine the use ofentity to a single object.
The termbehavior represents the physical embodiment of
the agent’s interaction encoding the internal representation
that defines a unit of action that can often take parameters
for initiation and online control. Within the context of this
study, we assume that behaviors are discrete entities. Finally,
effect is defined as the perceptual change generated in the
environment due to the execution of the behavior.

For instance, when a robot applies itslift behavior to acan,
it produces the effect lifted, meaning that the can’s position,
as perceived by the robot, is elevated. Through its interac-
tions with a can, a robot can acquirerelation instancesof the
form:

(black-can, lift-with-right-hand, lifted),

meaning that there exists a potential to generate the effect
lifted whenlift-with-right-handis applied toblack-can. Note
that the termblack-canis used just as a short-hand label to
denote the perceptual representation of the black can by the
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Figure 2. (a) An affordance (relation) involves an entity (from the entity space), a behavior (from the behavior) space and an effect (from
the effect space) that is produced by applying the behavior on the entity.(b) We propose linking verb concepts to generalizations over
behaviors based on their effects. In this example, the set of affordance relations that have thelifted effect should be linked to the “lift” verb.

interacting agent. Similarly,lifted and lift-with-right-hand
are labels for the related perceptual and proprioceptive rep-
resentations. For instance, the representation of the black
can be a raw feature vector derived from all the sensors of
the robot looking at theblack-canbefore it attempts to apply
its lift behavior.

Arguing that affordances should be relations with predic-
tive abilities, rather than a set of unconnected relation in-
stances, we proposed a learning process that can be applied
on this representation. For instance, a robot can achieve the
effect lifted, by applying thelift-with-right-handbehavior on
ablack-can, or ablue-can. It can thus learn a relation:

(<*-can>, lift-with-right-hand, lifted),

where<*-can> denotes the derived invariants of the can
that are relevant for lift-ability. In our previous studies
(Ug̃ur et al., 2009; Ŭgur & Şahin, 2010), we were able to
train SVM (Support Vector Machine) classifiers to imple-
ment prediction modules such as<*-can> for each behavior,
successfully. In these studies, the effects were grouped into a
number of discrete effect categories

Affordances and Language

The link between the notion of affordances and language
comprehension has already been pointed out in Psychology
(Borghi & Riggio, 2009; Borghi, 2012). The indexical hy-
pothesis by Glenberg & Robertson (2000) explains how this
may happen. According to the hypothesis, words and sen-
tences are linked to objects in the world, their referents, or to
analogical representations as pictures or perceptual symbols
(Barsalou, 1999). For example, the wordhandlerefers to its
referent, a handle, or to an analogical representation of the
handle. Thus words that refer to objects would evoke firstly
perceptual information relative to such objects. Given the
close relationship between perceptual and motor processes,
words should also evoke motor information. Indeed, depend-
ing on their perceptual features, objects can activate affor-

dances (Gibson, 1986). For instance, different kinds of han-
dle may afford different actions: some can be turned, some
pushed to open a door. From this view comes the idea that
activation is more tied to the affordances elicited by objects
than to the words representing the objects. Object affor-
dances would influence not only the understanding of words
but also the understanding of more complex linguistic struc-
tures such as sentences.

Although the relationship between words, concepts and
affordances has been pointed out by others, the problem of
how such a link exists in organisms and how it can be cre-
ated in robots has not been completely tackled yet. In this
article, we argue that verbs that are provided by a human
observing the physical interactions of the robot with objects
can be used to bridge the concepts represented by these verbs
into sensorimotor interactions of the robot.

Within the context of this paper, we assume that verbs,
that are used to command a robot, mostly specify the accom-
plishment of a desired goal with no regard on the means of
how it is achieved. For instance, when we command a robot
to lift (a box), we expect him to pick the proper behavior
to vertically elevate the box. As illustrated in Figure 1, the
command should invoke different behaviors on the robot as
determined by the properties of the box (such as size) or the
state the robot (such as the robot already holding a cup in one
of its hands). Such an ability relieves the human from being
aware of the robot’s sensorimotor capabilities and requires
the robot to flexibly respond to verbal commands based on
its prior interaction with the objects.

Verbs: behavior or effect categories

It is tempting to associate the concept of a verb with a
category that covers all the interactions that are generated by
the execution of a particular behavior. If we want the robot
to lift a particular object2, the verb “lift” can trigger the lift
behavior of the robot to accomplish our goal. For instance, it
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might be suggested that the concept of lifting should cover:

(



















.

.

.



















, lift ,



















.

.

.



















). (2)

However, such an association provides a limited coverage
for all the meanings that the verb “lift” should convey. First,
the robot can probably lift an object with different behaviors,
such aslift-with-right-arm and lift-with-left-arm (for exam-
ple, Figure 1 shows six different behaviors that can be used
by humans to push an object towards left). Second, the exe-
cution of the particular behavior may fail on some objects,
e.g., heavy or slippery objects. Third, in certain cases, a
seemingly contradictory behavior such as pressing, may also
lift an object that is placed on a lever to accomplish lifting.

The criticisms that are stated above indicate that the rep-
resentation of a verb concept by a particular behavioral cat-
egory implicitly includes the “manner” information by spec-
ifying the exact type of behavior that is being asked for. An
alternative, which we take in this article, is to associate verbs
with effect categories as:

(<any-entity>, <any-behavior>, lifted). (3)

In other words, we propose linking the verb “lift” to the set
of behaviors that have thelifted effect (see Figure 2(b)).

Experimental Framework

We used the iCub humanoid robot (Metta et al., 2008), a
fully open-source platform designed for cognitive and devel-
opmental robotics research. The robot, built in the form of
4 year old child, has 53-DOF in its body and equipped with
7-DOF arms and 9-DOF hands making it possible to develop
human-like simple object manipulation behaviors for inter-
acting with objects put on a table.

The robot used a Kinect RGB-D camera (Figure 3) fixated
on the side of the robot to perceive the objects on the table.
The camera captured the depth of scenes with a resolution
of 640× 480, providing a cloud of 3D points with the corre-
sponding RGB data.

Behaviors

We used a repertoire of six manipulation behaviors for
interacting with the objects, similar to the ones used by
Bergquist et al. (2009); Metta & Fitzpatrick (2003). These
behaviors, denoted asb0, ..,b5, are: push-left, push-right,
push-forward, pull, top-grasp and side-graspbehaviors3.
Thetop-graspandside-graspbehaviors are approach the ob-
ject from the top, or from the left or right (depending on the
relative position of the object) and fingers close upon touch.

Perceptual features

The object in the depth image captured by the Kinect de-
vice is segmented from the tabletop by assuming that the
workspace is planar and placed parallel to the ground. The

Figure 3. iCub interacting with an object on the table.

Figure 4. The elements of perception extracted within our system.

following features were then extracted from the point cloud
corresponding to the object:
• Surface features:surface normals (azimuth and zenith

angles), principal curvatures, and shape index as represented
with 20-bin histograms, using curvature and normal estima-
tion methods provided by an open-source Point Cloud Li-
brary - PCL (Rusu & Cousins, 2011).
• Spatial features:bounding box center, orientation, and

dimensions (alongx, y, z).
• Object Presence:a binary feature for whether an object

exists on top of the table or not. This information is espe-
cially useful when an object disappears after an interaction.

The features extracted from the objects before the execu-
tion of a behavior are called theinitial featureswhereas the
features extracted after the behavior are called thefinal fea-
tures. The difference between the final and the initial features
are used as theeffect features. These initial and effect fea-
tures correspond to theentityand theeffect in the affordance
formalization in Equation 1.

Learning Affordance Relations

In the experiments, the robot interacted with a set of 35
objects of different sizes and shapes as shown in Figure 5. In
total, 413 different interactions were recorded, that consisted
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Figure 5. The objects interacted by the robot for learning.

of multiple interactions with the objects placed at different
positions and in different orientations, in order to capture the
variability.

During these interactions, the initial and final features of
the objects were recorded, and the effects generated on the
objects were labeled by a human. Specifically, each inter-
action episode is encoded as a relation between an object
o j ∈ O, a behaviorbi ∈ B and an effect f as:

(eoi ,b j , f
b j
oi

), (4)

whereeoi is the initial perceptual representation of the object
oi ; b j ∈ B is a behavior from the set of behaviorsB; and f

b j
oi

is the representation of the effect. The effect f
b j
oi

is defined
as the difference observed in the perceptual representation of
objecteoi as a result of the interaction as:

f
b j
oi
= e

b j
oi
− eoi . (5)

Then, each interaction is labeled by a human based
on the effect generated using a set of verbs (i.e., ef-
fect labels) E ∈ E where E included no-effect,
moved-left, moved-right, moved-forward, pulled,
grasped,knocked, anddisappeared. For example, if the
robot applies apush-rightbehavior on an object, leading to a
measurable displacement towards the right, the user verbally
provides “moved right” to the robot.

Figure 6 depicts the categories formed in the effect space
as a result of the effect labeling. For instance, when the
robot applied thepush-left behavior on cubes and cylin-
ders, the objectsmoved-left. However, the application of
the very same behavior on the balls, caused the objects to
disappeared, since they rolled away and became invisible.
It can also be seen that the samedisappeared effect can be
generated on balls through the application ofpush-* (any
type of push) behaviors.

The overall process of learning affordances from the affor-
dance relation instances is sketched in Figure 7. Specifically,

Table 1
The average, maximum and minimum prediction accuracies
of SVMs for each behavior obtained through 5-fold cross val-
idation.
Behavior Average Maximum Minimum

Accuracy Accuracy Accuracy
side-grasp 100% 100% 100%
top-grasp 90% 100% 85%
push-left 92% 100% 83%
push-right 96% 100% 85%
push-forward 100% 100% 100%
pull 96% 100% 86%

for each behaviorbi , the mappingMbi : eo j → Ebi
o j

from
the initial representation of the objects (i.e., eo j ) to the effect
clustersEbi

o j
is learned by a Support Vector Machine (SVM)

classifier. These SVMs enable the robot to predict the effect
category (Ebk

ol
) that it can generate by applying a behaviorbk

on a novel objectol . In our experiments, the SVM classifiers
for each behavior were trained with 5-fold cross validation
reaching average accuracy values above 90% (as can be seen
in Table 1).

We would like to note that these SVMs effectively pro-
vide an affordance-based perception view of the object, by
predicting what the robot can do (such as move-right, knock,
disappear etc.) with them, i.e. what they afford.

Verb Conceptualization

In this section, we describe (i) our verb conceptualization
based on effect prototypes and two alternative methods for
verb conceptualization, and (ii) how verb concepts can be
used for various human-robot interaction problems.

I - Verb Conceptualization Using Effect Prototypes
- CEP

In this section, we describe how we derive the condensed
prototype representationfpro of the effects{ f } in an effect
clusterE ∈ E (Figure 6). We call this condensed represen-
tation theeffect prototypeand claim that they correspond to
conceptsrepresented by verbs.

Figure 8 depicts a summarized version of the distribution
of effect features for different effect categories. Examining
the distribution of change in each feature element,i.e., i f
(wherei f is theith element of then-dimensional feature vec-
tor f ), we observe four different characteristics: feature ele-
ments that (i) increase consistently, (ii) decrease consistently,
(iii) remain constant or (iv) change in an unpredictable way.
Therefore, we find it suitable to represent an effect proto-
type using labels ‘+’, ‘-’, ‘0’, ‘*’, corresponding to increase,
decrease, no-change and unpredictable-change in the feature
element, respectively. In addition to these labels, we also
include the mean and the variance of the changes in the rep-
resentation to quantify the amount of the changes.
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Figure 6. Labeled clusters in the effect space. ‘*’ represent all instances of the corresponding objectcategory.

+

+

Figure 7. Clusters in the effect space are used for training an SVM, which allows the effect label to be predicted from a behavior on a novel
object.

As a result, we define aneffect prototypeas a string con-
sisting of labels ‘+’, ‘-’, ‘0’, ‘*’, called “prototype labels” in
the rest of the article, together with two vectors correspond-
ing to the mean and the variance of the observed changes. In
order to assign prototype labels to the feature elements, we
use unsupervised clustering (namely, Robust Growing Neu-
ral Gas (Qin & Suganthan, 2004)) in the space of mean and
variance of the changes (summarized in Algorithm 1). The
prototypes derived from our experiments are shown in Table
2. For the sake of clarity, we will abbreviate these prototypes
as a combination ofsk denotingk consecutive occurrences of
the symbols (which can be ‘+’, ‘-’, ‘0’ or ‘*’).

In order to compare two effect prototypes or an effect pro-
totype with an effect instance, we define a similarity metric
using the Mahalanobis distance (Mahalanobis, 1936). This
modified version of Mahalanobis distance between two ef-
fect clusters (or between an effect prototype and an effect
instance - Equation 8) is calculated by taking the meanµEi of
first effect clusterEi and using the second effect cluster’sE j
meanµE j and varianceσE j :

dEP(Ei ,E j) =

√

(

µEi − f +,−,0pro,E j

)T
S−1

j

(

µEi − f +,−,0pro,E j

)

, (8)
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Figure 8. An illustration of how feature dimensions change in effect clusters. The types of changes are obtained by unsupervised clustering
(using RGNG - see the text) in the space of mean and variance of the changes. The shapes (circle, triangle and star) in this plot correspond
to the mean values of the changes, while the error bars correspond to their variance (in the case of circles and triangles, the error bar looks
like a single line due to small variance). From unsupervised clustering of the changes, we get four change types (clusters): consistently
increasing (upwards triangle), consistently decreasing (downwards triangle), consistently not changing (circle) and inconsistenly changing
(star). The abbreviations on the y-axis stand for some of our effects (NC:“no change”, ML: “moved-left”, MR: “moved-right”, MF:
“moved-forward”, P: “pulled” , G: “grasped”, K: “knocked” and D:“disappeared”) and the abbreviations on the horizontal axis stand for
the feature elements (OP:Object Presence, PX: position-x, PY: position-y, PZ: position-z,Θ: Orientation, WX,WY,WZ: Size alongx, y andz
andH1...H10: Shape Histograms- only a subset of the shape histograms are provided for the sake ofspace, see Table 2 for a complete
listing).

whereS j is the covariance matrix of the second effect cluster
E j . In accordance with (Verguts et al., 2004) who claim that
(i) non-existing features and (ii) dissimilar features arenot
used in computing similarity between categories, in comput-
ing the Mahalanobis distance, the dimensions denoted by a

‘*’ in the prototype strings are disregarded (denoted byf +,−,0pro,Ei

for the effect prototypefpro,Ei of an effect clusterEi), since
these correspond to an unpredictable/inconsistent change in
the feature elements.
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Table 2
Effect prototype strings that are extracted using the effect-prototype conceptualization (CEP) introduced in Section “Verb
Conceptualization”. Note that each feature element has an associated mean and variance of the change (not shown here).

Eff. Cat. ∆ Azimuth ∆ Zenith ∆ Curvature ∆ Shape Index ∆ Position ∆ Orient. ∆ Size ∆ Object
Name Histograms Histograms Histograms Histograms (x-y-z) (x-y-z) Presence
NC *000000000 0000000000 0000000000 0000000000 000 0 000 0

0000000000 0000000*00 00*0000000 000000*000
MR ********** ********** 0000000000 *****0**** *+* * *** 0

******0*0* *******000 00******** **0*0*0***
ML ******0000 0**0**0000 0000000000 00*0**0*0* 0-0 * 000 0

00***0**** **0000*000 0*****0000 **0000*00*
MF ********** ******000* 0000000000 ***0*0**** -00 * 000 0

********** **000**000 00****0*** **00000***
P ********** ******000* 0000000000 ***0*0**** +00 * 000 0

********** **000**000 00****0*** **00000***
K *0***00000 *000000000 0000000000 0000000000 00- * 00- 0

000000**0* 0000000000 000000000* 0000000000
G 0000000000 0000000000 0000000000 0000000000 000 * 000 0

0000000000 0000000000 0000000000 0000000000
D 0000000000 0000000000 0000000000 0000000000 000 0 000 -

0000000000 0000000000 0000000000 0000000000

Algorithm 1 Derivation of Effect Prototypes - forCEP.
Given: Interactions with the environment to collect a set of effects
{

f
b j
oi | ∀bj ∈ B,∀oi ∈ O

}

.
Output: Effect prototypesfpro (i.e., CEP) for each effect category.

- Assign a labelE ∈ E to each effect.
for all E in the set of effect clustersE do

- Compute the meaniµE of the change in each feature element
i:

iµE =
1
N

∑

f∈E

i f , (6)

whereN is the cardinality of the set{ f ∈ E}.
- Compute the varianceiσE of the change in each feature ele-
menti:

iσE =
1
N

∑

f∈E

(i f −i µE)2 . (7)

end for
- Apply Robust Neural Growing Gas (RGNG) algorithm
(Qin & Suganthan, 2004) in the space ofµ × σ.
- Manually assign the labels ‘+’, ‘-’, ‘0’ and ‘*’ to the four clus-
ters that emerge in the previous step.

II - Verb Conceptualization Using Naive Proto-
types - CNP

In order to evaluate our effect-prototype-based verb con-
cepts (CEP), we introduce another prototype representation
of verbs that do not utilize the string representation (i.e., ‘+’,
‘-’, ‘*’, ‘0’). This amounts to pure Mahalanobis distance

which considers all dimensions in a feature:

dNP(Ei ,E j) =

√

(

µEi − fpro,E j

)T
S−1

j

(

µEi − fpro,E j

)

. (9)

III - Verb Conceptualization Using Exemplars -
CEx

For better evaluation, we also introduce conceptualization
of verbs using the exemplars in the categories. In this case,
checking the membership of an instance requires comparing
that instance with all the members of a category and picking
up the category that has the minimum distance. Itemwise
comparison is achieved using Euclidean distance:

dEx( fnew,Ei) = min
f ǫEi

√

√

√ N
∑

n=1

(i fnew−i f )2, (10)

where fnew is the new effect instance;Ei is the effect cluster
fnew is compared against; and,N is the number of dimensions
in a feature.

Understanding an interaction in terms of verbs

An important problem in human-robot interaction is
the correspondence between the different embodiments
(Alissandrakis et al., 2003), which requires, e.g., matching
the different body parts of the human to the parts of the robot.
A practical way around the correspondence problem is to in-
terpret interactions based on their effects using the symbolic
space of effect prototypes. In this study, matching an ob-
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served interaction (effect) with another effect or prototype
(CEP, CNP or CEx) is achieved using the distance functions
dEP,dNP anddEx respectively provided in Equations 8, 9 and
10, as outlined in Algorithm 2.

Goal specification through demonstration and
multi-step planning

A natural way to command a robot is to specify our goal
through demonstration, a form of non-verbal communication
that humans use with babies, with people that we do not have
a common language, or with people that we have to commu-
nicate in loud environments. We term this form of commu-
nication asgoal specification through demonstrationin gen-
eral. Within the context of this study, we would like a human
to demonstrate a desired goal, by demonstrating it in front of
the robot and ask him to “do what I just did”. In this study,
we can achieve this by using verb concepts, which provide
abstraction over the behaviors, eliminating the need to recog-
nize individual behaviors and to handle the correspondence
problem (Alissandrakis et al., 2003).

Our method for “do what I just did” (see also Algorithm
3) relies on (i) predicting the outcome of each behavior, (ii)
comparing the predictions with the desired observed effect
(i.e., what the human has demonstrated) and (iii) repeating
step-(i) for each prediction produced in step-(ii). For com-
paring the predictions with the desired effect, we will use and
compare the distance functionsdEP,dNP anddEx respectively
provided in Equations 8, 9 and 10.

Commanding with verbs or symbols

The SVMs allow the robot to predict the category of the
effect that it can generate on a novel object after executing
a certain behavior. This allows the robot to respond to verb
commands, such as push-right (the object on the table), by
feeding the objects perceptual representation to all the SVMs
and checking whether the specified goal (via giving the ver-
bal command) matches with the predicted effects of any of
the behaviors as outlined in Algorithm 4. Moreover, the robot
can be specified a goal in terms of ‘+’, ‘-’, ‘0’ or ‘*’ symbols,
and satisfy such a goal by finding the behavior yielding the
closest effect to the specified goal (using the distance func-
tions Equations 8, 9 and 10).

Note that the application of more than one behavior may
be predicted to generate the desired effect specified by the
commanding verb. The set of these behaviors provides the
robot with aflexibility that can be useful in cases of failure
or in making multi-step plans (as outlined in Algorithm 3)
subject to other constraints.

Results

In this section, we first demonstrate and evaluate the three
different verb conceptualization methods outlined in the pre-
vious section. Having verbs or verb concepts should enable
an organism (1) to understand, in his own sensory-motor and
symbolic representations, the observed behavior of another

organism, and (2) to achieve goals specified in his own sym-
bolic representations which are grounded in his own sensory-
motor system. We demonstrate and evaluate both aspects on
the iCub platform.

Algorithm 2 Understanding an observed effect/behavior.
Given: Observation of an entityeoi and a behavior applied
oneoi , leading to the effect f j

oi
. Note that this behavior may

not be in the repertoire of the robot.
Output: Determine the verb conceptE∗ (i.e., the effect cat-
egory) that best describes the observed interaction.

- TakeE∗ (the best matching effect category) as the inter-
pretation of the observed effect:

E∗ = arg min
E∈E

dC( f j
oi
, fpro,E), (11)

wheredC(., .) is eitherdEP(), dNP() or dEx() respectively
defined in Equations 8, 9 and 10; and,fpro,E is the proto-
type of the effect categoryE. If required, a threshold on
dC( f j

oi
, fpro,E) can be set as a criteria to determine whether

the observed effect is unknown to the robot.
- (Optional) Given a novel entityeok, find the behaviorb∗

(among the behavior repertoire of the robot) that produces
an effect in the effect cluster represented by the effect pro-
totype fpro,E∗ :

b∗ = arg max
b

dC(SVM(eok ,b), fpro,E∗ ), (12)

wheredC(., .) is eitherdEP(), dNP() or dEx() respectively
defined in Equations 8, 9 and 10; andfpro,E∗ is the proto-
type of the effect categoryE∗. If required, a threshold on
d(SVM(eok ,b), fpro,E∗ ) can be set as a criteria to determine
whether the observed behavior cannot be replicated on the
novel objecteok.

Verb concepts for goal emulation and multi-step
planning

In Figure 9, some novel interactions (leading to novel ef-
fect instances) are shown. For these instances, the robot can
find the best interpretation by matching them against the verb
concepts that it has formed using the distances defined in the
previous section.

For these effect instances, we compare our prototype-
based representation (CEP) with the naive prototype rep-
resentation (CNP) and the exemplar-based representation
(CEx), as shown in Table 3. We see that our prototype-based
representation can find the correct category whereas the
exemplar-based conceptualization and the naive prototype-
based conceptualization fail to find the correct category in
some cases.CEx especially fails because the observed in-
stances are closest to thedisappearedeffect category since
all dimensions in this category are zero.CNP performs better
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(a) Toy box initial state (b) Toy box final state

(c) Toy duck initial state (d) Toy duck final state

(e) Toy bone initial state (f) Toy bone final state
Figure 9. Some novel interactions with novel objects. The effect is simply the difference of final and initial states of the given object. The
novel effect predictions with different distance metrics for these instances are listed in Table 3.

thanCEx; however, we see that inconsistent dimensions that
are not excluded byCNP in distance calculations may lead to
wrong effect categories.

Another advantage of the prototype-based representation
is that iCub can symbolically describe what it has seen. In
Figure 9, iCub is shown two different interactions. Observ-
ing the effects, iCub finds the effect prototype (Figure 10)
that best describes the observed behavior using Algorithm
2. The matching effect prototype is the symbolic represen-
tation (i.e., the verb concept) of the observed behavior and
this symbolic representation is grounded in iCub’s sensori-
motor experiences. Having the sensori-motor grounding of
the effect prototype, iCub is asked to produce the same ef-
fect (Figure 10). Note that with the set of behaviors iCub is
equipped with, there may be more than one way to achieve
the goal, and iCub chooses the one with highest prediction
accuracy, as described in Algorithm 2.

In a scenario requiring multi-step plans, we compare the
prototype with the exemplar-based and naive prototype con-
ceptualization. The multi-step planning results are provided
in Figure 11. We see that, using the verb concepts presented
in Table 2, iCub can successfully find a sequence of effect
prototypes leading to the target state. From these prototypes,
iCub can choose the best behaviors that can generate those
effects. In Figures 13 and 14, we provide the planning results

when naive prototypes (CNP - Equation 9) or exemplars (CEx
- Equation 10) are used for conceptualization. We see that,
in these cases, the planner could not produce proper behav-
ior sequences to achieve the given goals in limited steps (the
distance threshold was constant throughout the experiments).
The multi-step planning is sketched in Algorithm 3.

Verb concepts and goal specification

As if specifying a goal for iCub with a verb (like “push left
the object”), we give iCub the goal with his own symbolic
representations (Algorithm 4). Since they are grounded in
iCub’s sensori-motor experiences, iCub can find the behavior
that satisfies the requested goal (shown in Figure 15).

Discussion

In this article, we have taken an ecological, embodied and
grounded approach to verb conceptualization. We have pro-
posed novel methodologies for linking the notion of affor-
dances with concepts that correspond to verbs in language.
To this end, a humanoid robot, iCub exercised its behavior
repertoire on the objects available in the environment for the
purpose of discovering the affordances of the objects.

The learned affordances allow the derivation of novel con-
densed representations of behaviors’ effects, which we called
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Table 3
Evaluation of the different conceptualization methods (i.e., CEP,CNP,CEx) for the novel interactions in Figure 9. The table
lists the distances between the observed effect and the existing verb concepts. The verb concept with thesmallest distance
is the corresponding interpretation of the corresponding conceptualization method (i.e., one of CEP,CNP,CEx). The correct
predictions are in bold, whereas false predictions are underlined.

Inter. Concept. No Change Moved Moved Moved Pulled Knocked Grasped Disappeared
Right Left Forward

CEP 390.81 146.24 372.24 389.21 215.56 215.50 392.11 410.31
Figure 9(b) CNP 392.16 182.13 386.92 416.43 241.06 219.28 395.04 410.31

CEx 237.01 236.89 237.42 237.24 237.42 237.42 237.25 236.84
CEP 731.36 494.18 416.42 340.71 393.76 358.06 738.04 790.41

Figure 9(d) CNP 732.98 497.02 417.18 426.71 423.17 428.06 741.11 790.41
CEx 789.45 789.08 789.83 789.49 789.83 789.83 789.54 788.84
dEP 925.41 577.51 267.45 328.75 354.85 354.74 928.16 947.51

Figure 9(f) CNP 929.37 580.26 291.77 369.75 373.37 359.88 929.94 947.51
CEx 946.74 946.42 947.03 946.66 947.03 947.03 947.01 946.21

Algorithm 3 Multi-step planning algorithm
Given: estart andegoal.
Output: P, a plan, which is a sequence of behaviors leading to
egoal from estart.

- Initialize: ecurrent← estart.
for all level= 1 : Nlevel do

- Update the remaining effect: fcurrent← egoal − ecurrent.
- Find the verb concept that is closest toegoal:

E∗ = arg min
E∈E

dC( fcurrent,E). //dC(): dEP(), dNP() or dEx()

(13)
wheredC(., .) is eitherdEP(), dNP() or dEx() respectively de-
fined in Equations 8, 9 and 10.
- Find the behavior that takes us closer toegoal. This behavior
is the one that best produces an effect corresponding to the
verb conceptE∗:

b∗ = arg min
b∈B

dC(S VM(ecurrent,b),E∗). (14)

wheredC(., .) is eitherdEP(), dNP() or dEx() respectively de-
fined in Equations 8, 9 and 10.
- Update the plan by adding the new behavior:P← P+ b∗.
- Update the current state of the object using the predicted verb
conceptE∗:
if CEP then

ecurrent← ecurrent+ f +,−,0proto,E∗

else
// CNP or CEx

ecurrent← ecurrent+ µE∗

end if
end for

effect prototypes. We proposed that effect prototypes corre-
spond to verb concepts. We demonstrated that, with these
concepts, the robot can generalize/abstract over its behav-

Algorithm 4 Satisfying a given symbolic goal specification.
Given: fgoal, which is a rough description of what should
change in what direction (marked with ‘+’ and ‘-’). If re-
quired, the user can also specify what should not change
(with a ‘0’). The other elements are marked as ‘*’.
Output: Findb∗ (among the behavior repertoire of the
robot) that satisfies the goalfgoal.

- Take f ∗pro (the best matching effect prototype) as the in-
terpretation of the goal:

f ∗pro = arg min
fpro

dEP( fgoal, fpro), (15)

wheredEP(., .) is the Mahalanobis distance in Equation 8.
If required, a threshold ondEP( fgoal, fpro) can be set as a
criteria to determine whether the goal cannot be satisfied
by the robot.
- Given a novel entityeok, find the behaviorb∗ (among the
behavior repertoire of the robot) that produces an effect in
the effect cluster represented by the effect prototypef ∗pro:

b∗ = arg max
b

dEP(SVM(eok ,b), f ∗pro), (16)

wheredEP(., .) is the Mahalanobis distance in Equation 8.
If required, a threshold ondEP(SVM(eok ,b), f ∗pro) can be
set as a criteria to determine whether the goal cannot be
achieved on the novel objecteok.

iors, and represent the behaviors (and what they are useful
for) using symbols, which then allow the robot to interpret its
own or others’ interactions with the environment. These con-
cepts can easily be linked to words (i.e., verbs like “push”,
“lift”, etc.) through which the robot can interact with humans
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iCub computes the category of the effect iCub chooses and appliespush-righton the object
in Figures 9(a)-9(b) as

“moved right”

iCub computes the category of the effect iCub chooses and appliespush-lefton the object left
in Figures 9(e)-9(f) as

“moved left”

Figure 10. “Do what I just did” Demonstration.First row: iCub interprets the interaction in Figures 9(a)-9(b) as an instance of
“moved-right” verb concept, i.e., which only has the change iny position as consistently increasing, more specifically:∗16[0∗]2 ∗17

015 ∗13 0 ∗6 [0∗]3 ∗3 + ∗5 0 (For the sake of space, we denotek consecutive occurrences of a symbols with sk). Then, iCub is asked to
create the same effect on a novel object. The columns show iCub executing thepush rightbehavior which it successfully chose among the
behaviors in its repertoire leading to the effect category “moved-right”. Second row:Similarly, iCub interprets the interaction in Figures
9(e)-9(f)) as an instance of “moved left” verb concept (i.e.,∗606 ∗3 0 ∗4 0[∗ ∗ 0]203 ∗2 04 ∗ 014 ∗5 06 ∗ 0 ∗2 [0∗]2 ∗2 04 ∗ 02 ∗ 0− 0 ∗ 04), and
a new object is put in front of it. It then chose to execute thepush leftbehavior to produce the same effect.

more naturally without the designer being worried about how
a certain verb is executed by the robot. For better evalu-
ation of our proposal, we compared our effect prototypes
with naive prototypes and exemplar-based conceptualization
in goal emulation and multi-step planning tasks. Our eval-
uation showed that the regular-expression like nature of our
conceptualization proposal combined with Mahalanobis dis-
tance performs better than the alternatives considered in the
article.

Our prototypical representation of concepts is novel in that
they represent the overall feature distribution in a category
in a compact and efficient manner. This has several advan-
tages: (i) Unimportant features can be discarded in similar-
ity computation as also argued by (Verguts et al., 2004). (ii)
Feature elements can be grouped and segmented together;
other inter-feature relations and dependencies can be easily
interpreted and recovered. (iii) Such a symbolic condensed
representation is very suitable for goal specification. With
these advantages at hand, we have demonstrated the advan-
tages of our prototype-based concepts over exemplar-based
and naive-prototype-based verb concepts.

Verb concepts from effects: Biological Relevance

Our proposal of linking verb concepts to the effects of be-
haviors is in line with psychological ideomotor theories (e.g.,

Hommel et al. (2001)), according to which a behavior is rep-
resented in distal terms,i.e., in terms of overall goals, not in
proximal terms,i.e., in terms of the kinematics of the move-
ments and of the effectors required to reach the goal (see also
(Hamilton et al., 2007)).

The neural underpinnings of this claim can be found in ev-
idence on mirror neurons in monkeys, showing that they are
activated preferentially when the behavior or the goal is clear
(Umiltà et al., 2001, 2008). Such an association strongly in-
dicates that the concept being conveyed by the verb is the
request for a certain effect to be generated through the use
of an appropriate behavior. In this sense, when we ask the
robot to lift an object, we specify the goal as an increase of
the object position in the vertical axis and leave the choice
of the particular behavior to the robot itself. This is referred
to asgoal emulationin the literature as a form of imitation
characterized by the replication of the observed end effect
(Want & Harris, 2002), and is observed in infants after 12
months (Elsner, 2007).

Verb concepts from effects: Robotic and Computa-
tional Advantages

We claim that our proposal of linking verb concepts to the
effects of behaviors and representing these concepts in terms
of effect prototypes provides the following advantages, some
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(a) Initial State (b) Goal State

(c) First Step (d) Second and Final Step
Figure 11. A sample execution of multi step planning usingCEP - i.e., effect prototype based verb concepts. First, the initial state (a) and
final state are shown (b). Then, the robot makes a plan involvingpush-rightandpush-forwardbehaviors, which are executed as shown in
(c) and (d). When a simple Euclidian distance or naive prototype is used,the robot could not derive a plan.

of which have been demonstrated in this article:

• Condensation: The prototypes represent the distribu-
tion of features in a category using less storage. However, we
have shown that, compared to exemplar-based conceptual-
ization, this does not degrade the performance requirements
expected from a humanoid (as listed below).
• Low computational complexity: A concept allows

checking whether an item is of that concept or not. The
fact that the information in a category is represented in a
condensed manner facilitates faster checking of membership,
hence faster interpretation of an observed event in terms of
verb concepts.
The complexity of checking the membership of an effect in-
stancef in n verb concepts isO(n) in our proposal. However,
that of exemplar-based conceptualization (CEx) is O(n×m),
wherem is the average number of items in a verb concept.
The complexity of checking membership in the case of naive
prototype conceptualization (CNP) has also the complexity of
O(n); however, (i) the distance metric in Equation 9 requires
more computations than the one in Equation 8 on average
and (ii) Equation 9 leads to worse matching performance (as
shown in Section “Results”).
• Flexibility:

Our verb concepts provide flexibility in different aspects: (i)
The same set of methods can be applied to another robot with
a different embodiment having a different perceptual system
and a different set of behaviors since the concepts are derived

from the distribution of features and are not dependent on the
set of behaviors and the features used. (ii) The prototypes al-
low a human to interact with the robot at a more symbolic
and abstract level.
• Robustness:

Since in our proposal irrelevant changes in features are
marked and not taken into consideration while interpreting
effects and verb concepts, our prototype-based proposal of
verb concepts is robust to changes in appearance and spatial
changes, as demonstrated especially by the multi-step plan-
ning scenario where the alternatives failed to converge to a
target state in 10 steps whereas our proposal (by comparing
the most relevant and consistent features) converged to the
target states in 2-3 steps.

The effect-prototype-based verb concepts, being an ab-
straction over behaviors, are beneficial for the following
problems:

• Goal specification and satisfaction:
The robot provides flexibility to the user to provide com-
mands at different levels: (i) at the language level, using
verbs, in which case the robot can choose the best behav-
ior that satisfies the corresponding effect, (ii) at the symbolic
level, using strings of ‘+’, ‘-’, ‘0’ and ‘*’, making it easy
for a human to specify in more detail what is expected to
change, in which case the robot can again find the best be-
havior leading to the required change specification, (iii) at
the low sensorimotor level, using exact values for features’
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Figure 12. Multi-Step planning demonstration with effect prototype based verb concepts -CEP (and the modified Mahalanobis distance
in Equation 9). The behaviors are abbreviated asPR (push-right), PL (push-left), PF (push-forward), PB (pull), TG (top-grasp), SG(side-
grasp). The planner successfully terminates with a reasonably small sequence of behaviors executed. The trial is also visualized in Figure
11.

final state, which again can be achieved using the conceptu-
alization we have proposed. Moreover, as we have shown,
the human can demonstrate an effect on any object and the
robot can generate the same effect on a completely different
object.
• Language and human-robot interaction:

An important cornerstone in language and seamless human-
robot interaction is sharing the same meaning for the words
that are used by humans and robots. With the verb concepts
proposed in this article, we have addressed how verbs can be
grounded in the sensorimotor system of the robot such that
the robot can interpret in his own system the meaning associ-
ated with the word and utilize that meaning in various tasks
involving interactions with humans.

Limitations and Future Directions

An important aspect of the system is the inclusion of su-
pervision. The only supervision we put into the system is the
effect labels that are provided by a human after each inter-
action. Although a developing infant gets such supervision
throughout most of his development, it is worthwhile to in-
vestigate what the different effect categories could have been
in the lack of supervision. The simplest idea would be to
cluster the effect instances using an unsupervised clustering
method. In (Akg̈un et al., 2009), we attempted an unsuper-
vised approach to clustering the effect space; however, such

an approach does not guarantee that the set of verb concepts
would converge to be similar to the ones used by humans,
and even if it did, it would take a longer time span. In a
developing infant, both supervised and unsupervised mecha-
nisms are used in the development of concepts, and we leave
the integration of unsupervised categorization of effects as a
future work. However, it should be noted that if we wish a
robot to have the same concepts as we, humans, do, then we
should provide supervision for the sensorimotor interactions.

For any computational system, representation is very im-
portant in that a suitable representation can simplify many
tasks, and an unsuitable one can complicate many simple
tasks unnecessarily. In fact, one can argue that cognitive de-
velopment is about learning “suitable” representations from
sensorimotor interactions. A representational requirement
for our method is that the features extracted from the ob-
jects must be a fixed-length vector, and that the information
extracted from the objects have fixed positions in this vector.
For more complex objects, especially those with articulated
parts, our methods can work with a hierarchical representa-
tion where the abstraction processes described in this article
can be modified to work over the nodes of the hierarchy. For
a scenario involving different behaviors or effects, a different
set of features might be required to be able to represent the
changes. However, the same abstraction process can be used
as long as the features have fixed length and positions.
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Figure 13. Multi-Step planning demonstration with naive prototype based verb concepts -CNP (and the pure cMahalanobis distance in
Equation 9). The behaviors are abbreviated asPR(push-right), PL (push-left), PF (push-forward), PB (pull), TG (top-grasp) andSG(side-
grasp). The initial and the target states for the objects are the same with the one provided in Figure 11. Since the distance calculations yield
wrong results due to irrelevant changes between the initial and goal states, the search does not terminate with success.

The current planning method is designed just to demon-
strate the usefulness of verb concepts. Our planner makes
plans in terms of “what” changes are required in the environ-
ment in order to reach to a target state, and finds a sequence
of verb concepts to satisfy them. In a full-fledged cognitive
system, the planning must be able to take into account also
“how” some changes are performed in the environment. This
can be achieved by having the behaviors parametric such that
the same behavior with different parameters can yield differ-
ent effects. The planner then can treat different parameter
settings as different behaviors while making plans and de-
termine the behavior with the parameters conforming to the
required task.
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Footnotes
1In this paper, we will assume that the subject is given through

gaze or other means.
2For simplicity, assume that the object is pointed through mech-

anisms such as shared gaze.
3The reaching part of these behaviors is achieved using a mod-

ified form of Dynamic Movement Primitives (Akgün et al., 2010)
and the remaining parts of the behaviors are pre-coded. Due to Dy-
namic Movement Primitives, there is a feedback loop in the system
allowing the robot to adapt to changes in position.
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to irrelevant changes between the initial and goal states, the search doesnot terminate with success.
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Umiltà, M., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers,
C., et al. (2001). I know what you are doing: A neurophysiolog-
ical study.Neuron, 31(1), 155–165.

Verguts, T., Ameel, E., & Storms, G. (2004). Measures of similarity
in models of categorization.Memory& Cognition, 32(3), 379.

Want, S. C., & Harris, P. L. (2002). How do children ape? Applying
concepts from the study of non-human primates to the develop-
mental study of imitation in children.Developmental Science,
5(1), 1–13.

Zwaan, R., & Taylor, L. (2006). Seeing, acting, understanding:
Motor resonance in language comprehension.Journal of Exper-
imental Psychology-General, 135(1), 1–11.


