
Carnegie Mellon

Memory Management and Virtual
Memory

Some of the slides are adapted from Matt Welsh’s.
Some slides are from Tanenbaum, Modern Operating Systems 3 e, (c) 2008
Prentice-Hall, Inc. All rights reserved. 0-13-6006639
Some slides are from Silberschatz, and Gagne.

Carnegie Mellon

Memory Management

 Today we start a series of lectures on memory management
 Goals of memory management

 Convenient abstraction for programming
 Provide isolation between different processes
 Allocate scarce physical memory resources across processes

 Especially important when memory is heavily contended for
 Minimize overheads

 Mechanisms
 Virtual address translation
 Paging and TLBs
 Page table management

 Policies
 Page replacement policies

Carnegie Mellon

Virtual Memory
The basic abstraction provided by the OS for memory management
VM enables programs to execute without requiring their entire

address space to be resident in physical memory
 Program can run on machines with less physical RAM than it “needs”

Many programs don’t use all of their code or data
 e.g., branches they never take, or variables never accessed
 Observation: No need to allocate memory for it until it's used
 OS should adjust amount allocated based on its run-time behavior

Virtual memory also isolates processes from each other
 One process cannot access memory addresses in others
 Each process has its own isolated address space

VM requires both hardware and OS support
 Hardware support: memory management unit (MMU) and translation lookaside buffer

(TLB)
 OS support: virtual memory system to control the MMU and TLB

Carnegie Mellon

Memory Management Requirements

Protection
Restrict which addresses processes can use, so they can't stomp on

each other

Fast translation
Accessing memory must be fast, regardless of the protection

scheme
 It would be a bad idea to have to call into the OS for every memory

access.

Fast context switching
Overhead of updating memory hardware on a context switch must

be low
 For example, it would be a bad idea to copy all of a process's

memory out to disk on every context switch.

Carnegie Mellon

Virtual Addresses
 A virtual address is a memory address that a process uses to access its own

memory
 The virtual address is not the same as the actual physical RAM address in which it is stored
 When a process accesses a virtual address, the MMU hardware translates the virtual address

into a physical address
 The OS determines the mapping from virtual address to physical address

Stack

Heap

Initialized vars
(data segment)

Code
(text segment)

Address space

0x00000000

0xFFFFFFFF

Stack pointer

Program counter

Uninitialized vars
(BSS segment)

(Reserved for OS)

Carnegie Mellon

Virtual Addresses

Stack

Heap

Initialized vars
(data segment)

Code
(text segment)

Uninitialized vars
(BSS segment)

(Reserved for OS)

Physical RAM

MMU

How does this thing work??

 A virtual address is a memory address that a process uses to access its own
memory

 The virtual address is not the same as the actual physical RAM address in which it is stored
 When a process accesses a virtual address, the MMU hardware translates the virtual address

into a physical address
 The OS determines the mapping from virtual address to physical address

Carnegie Mellon

Virtual Addresses
A virtual address is a memory address that a process uses to access its

own memory
 The virtual address is not the same as the actual physical RAM address in which

it is stored
 When a process accesses a virtual address, the MMU hardware translates the

virtual address into a physical address
 The OS determines the mapping from virtual address to physical address

Virtual addresses allow isolation
 Virtual addresses in one process refer to different physical memory than virtual

addresses in another
 Exception: shared memory regions between processes (discussed earlier)

Virtual addresses allow relocation
 A program does not need to know which physical addresses it will use when it's

run
 Compiler can generate relocatable code – code that is independent of physical

location in memory

Carnegie Mellon

MMU and TLB
Memory Management Unit (MMU)

 Hardware that translates a virtual address to a physical address
 Each memory reference is passed through the MMU
 Translate a virtual address to a physical address

 Lots of ways of doing this!

Translation Lookaside Buffer (TLB)
 Cache for MMU virtual-to-physical address translations
 Just an optimization – but an important one!

CPU MMU
Virtual
address

Physical
address Memory

TLB

Cache of translations

Translation
mapping

Carnegie Mellon

Fixed Partitions
Original memory management technique:

Break memory into fixed-size partitions
 Hardware requirement: base register
 Translation from virtual to physical address: simply

add base register to address
partition 0

partition 1

partition 2

partition 3

partition 4

partition 5

0

1K

2K

3K

4K

5K

physical memory

offset +
virtual address

3K
base register

MMU

Advantages and disadvantages of this approach??

Carnegie Mellon

Fixed Partitions

Advantages:
 Fast context switch – only need to update base register
 Simple memory management code: Locate empty partition when

running new process

Disadvantages:
 Internal fragmentation

 Must consume entire partition, rest of partition is “wasted”
 Static partition sizes

 No single size is appropriate for all programs!

Carnegie Mellon

Variable Partitions
Obvious next step: Allow variable-sized partitions

 Now requires both a base register and a limit register for performing memory access
 Solves the internal fragmentation problem: size partition based on process needs

partition 0

partition 1

partition 2

partition 3

partition 4

physical memory

offset +
virtual address

P3’s base
base register

P3’s size
limit register

<?

raise
protection fault

no

yes

MMU

 New problem: external fragmentation
 As jobs run and complete, holes are left in physical memory

Carnegie Mellon

Modern technique: paging

Solve the external fragmentation problem by using fixed-
size chunks of virtual and physical memory

Virtual memory unit called a page
Physical memory unit called a frame (or sometimes page frame)

frame 0

frame 1

frame 2

frame Y

physical memory

…

page 0

page 1

page 2

page X

virtual memory
(for one process)

…

page 3

... ...

Carnegie MellonApplication Perspective
Application believes it has a single, contiguous address space

ranging from 0 to 2P – 1 bytes
Where P is the number of bits in a pointer (e.g., 32 bits)

In reality, virtual pages are scattered across physical memory
 This mapping is invisible to the program, and not even under it's control!

Stack

Heap

Initialized vars
(data segment)

Code
(text segment)

Uninitialized vars
(BSS segment)

(Reserved for OS)

Physical RAM

MMU

Stack

Heap

Initialized vars
(data segment)

Code
(text segment)

Uninitialized vars
(BSS segment)

(Reserved for OS)

Stack

Heap

Initialized vars
(data segment)

Code
(text segment)

Uninitialized vars
(BSS segment)

(Reserved for OS)

Lots of separate processes

Carnegie Mellon

0xdeadbeef = 0xdeadb 0xeef

Virtual page number Offset

page
frame 0

page
frame 1

page
frame 2

page
frame Y

…

page
frame 3

physical memory

offset

physical address

page frame #page frame #

page table

offset

virtual address

virtual page #

...

Page table entry

0
x
d
e
a
d
b

0xeef

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Page Table Entries (PTEs)

Typical PTE format (depends on CPU architecture!)

page frame numberprotVRM

202111

Various bits accessed by MMU on each page access:
Modify bit: Indicates whether a page is “dirty” (modified)
Reference bit: Indicates whether a page has been accessed (read or written)
Valid bit: Whether the PTE represents a real memory mapping
Protection bits: Specify if page is readable, writable, or executable
Page frame number: Physical location of page in RAM

 Why is this 20 bits wide in the above example???

Carnegie Mellon

Page Table Entries (PTEs)
What are these bits useful for?

The R bit is used to decide which pages have been accessed recently.
 Next lecture we will talk about swapping “old” pages out to disk.
 Need some way to keep track of what counts as an “old” page.

 “Valid” bit will not be set for a page that is currently swapped out!

The M bit is used to tell whether a page has been modified
 Why might this be useful?

Protection bits used to prevent certain pages from being written.
 Why might this be useful?

How are these bits updated?

page frame numberprotVRM

202111

Carnegie Mellon

Advantages of paging

Simplifies physical memory management
OS maintains a free list of physical page frames
 To allocate a physical page, just remove an entry from this list

No external fragmentation!
 Virtual pages from different processes can be interspersed in physical

memory
No need to allocate pages in a contiguous fashion

Allocation of memory can be performed at a fine granularity
Only allocate physical memory to those parts of the address space that

require it
 Can swap unused pages out to disk when physical memory is running

low
 Idle programs won't use up a lot of memory (even if their address

space is huge!)

Carnegie MellonPage Tables
Page Tables store the virtual-to-physical address mappings.
Where are they located? In memory!
OK, then. How does the MMU access them?

The MMU has a special register called the page table base pointer.
This points to the physical memory address of the top of the page table

for the currently-running process.

Process A page tbl

Process B page tbl

Physical RAM

MMU pgtbl base ptr

Carnegie Mellon

The TLB

Now we've introduced a high overhead for address
translation

On every memory access, must have a separate access to consult
the page tables!

Solution: Translation Lookaside Buffer (TLB)
Very fast (but small) cache directly on the CPU

 Intel Haswell architecture have separate data and instruction
TLBs

 Caches most recent virtual to physical address translations
A TLB miss requires that the MMU actually try to do the address

translation

Carnegie MellonThe TLB
Now we've introduced a high overhead for address translation

On every memory access, must have a separate access to consult the page
tables!

Solution: Translation Lookaside Buffer (TLB)
Very fast (but small) cache directly on the CPU

 Intel Haswell architecture have separate data and instruction TLBs.
Caches most recent virtual to physical address translations
 Implemented as highly (used to be fully) associative cache
A TLB miss requires that the MMU actually try to do the address

translation

0x002bb

0x49381

0xab790
0xdeadb
0x49200
0xef455
0x978b2
0xef456

0x00200

0x0025b
0x002bb
0x00468
0x004f8
0x0030f
0x0020a

0xdeadb

Virtual page addr Physical frame addr

Virtual Physical

Carnegie Mellon

Loading the TLB
Two ways to load entries into the TLB.

1) MMU does it automatically
 MMU looks in TLB for an entry

 If not there, MMU handles the TLB miss directly

 MMU looks up virtual -> physical page mapping in page tables and loads new entry
into TLB

2) Software-managed TLB
 TLB miss causes a trap to the OS

 OS looks up page table entry and loads new TLB entry

Why might a software-managed TLB be a good thing?

Carnegie Mellon

Loading the TLB
Two ways to load entries into the TLB.

1) MMU does it automatically
 MMU looks in TLB for an entry

 If not there, MMU handles the TLB miss directly

 MMU looks up virtual -> physical page mapping in page tables and loads new entry
into TLB

2) Software-managed TLB
 TLB miss causes a trap to the OS

 OS looks up page table entry and loads new TLB entry

Why might a software-managed TLB be a good thing?
 OS can dictate the page table format!

 MMU does not directly consult or modify page tables.

 Gives a lot of flexibility for OS designers to decide memory management policies

 But ... requires TLB misses even for updating modified/referenced bits in PTE

 OS must now handle many more TLB misses, with some performance impact.

Carnegie Mellon

Page Table Size

 How big are the page tables for a process?
 Well ... we need one PTE per page.
 Say we have a 32-bit address space, and the page size is

4KB
 How many pages?

Carnegie Mellon

Page Table Size
 How big are the page tables for a process?
 Well ... we need one PTE per page.
 Say we have a 32-bit address space, and the page size is 4KB
 How many pages?

 2^32 == 4GB / 4KB per page == 1,048,576 (1 M pages)

 How big is each PTE?
 Depends on the CPU architecture ... on the x86, it's 4 bytes.

 So, the total page table size is: 1 M pages * 4 bytes/PTE = 4
Mbytes
 And that is per process
 If we have 100 running processes, that's over 400 Mbytes of memory

just for the page tables.

 Solution: Swap the page tables out to disk!

Carnegie Mellon

Application Perspective
Remember our three requirements for memory management:
 Isolation

 One process cannot access another's pages. Why?
 Process can only refer to its own virtual addresses.
 O/S responsible for ensuring that each process uses disjoint physical pages

 Fast Translation
 Translation from virtual to physical is fast. Why?

 MMU (on the CPU) translates each virtual address to a physical address.
 TLB caches recent virtual->physical translations

 Fast Context Switching
 Context Switching is fast. Why?

 Only need to swap pointer to current page tables when context switching!
 (Though there is one more step ... what is it?)

Carnegie Mellon

More Issues

What happens when a page is not in memory?

How do we prevent having page tables take up a huge
amount of memory themselves?

Carnegie MellonPage Faults

When a virtual address translation cannot be performed, it's
called a page fault

CPU MMU
Virtual
address

Physical
address Memory

TLB

Translation
mapping

Page fault!!

Carnegie MellonPage Faults
Recall the PTE format:

Valid bit indicates whether a page translation is valid
 If Valid bit is 0, then a page fault will occur
Page fault will also occur if attempt to write a read-only page (based on

the Protection bits, not the valid bit)
 This is sometimes called a protection fault

page frame numberprotVRM

Carnegie MellonDemand Paging
Does it make sense to read an entire program into memory at once?

No! Remember that only a small portion of a program's code may be used!
 For example, if you never use the “print” capability of Powerpoint on this

machine...

Stack

Heap

Initialized vars
(data segment)

Code
(text segment)

Uninitialized vars
(BSS segment)

(Reserved for OS)

Virtual address space Physical Memory

Carnegie MellonDemand Paging
Does it make sense to read an entire program into memory at

once?
No! Remember that only a small portion of a program's code may be used!
For example, if you never use the “print” capability of Powerpoint...

(Reserved for OS)

Virtual address space Physical Memory

Where are the “holes” ??

Carnegie Mellon

Where are the “holes”?

Three kinds of “holes” in a process's page tables:
1. Pages that are on disk

 Pages that were swapped out to disk to save memory
 Also includes code pages in an executable file

 When a page fault occurs, load the corresponding page from
disk

2. Pages that have not been accessed yet
 For example, newly-allocated memory

 When a page fault occurs, allocate a new physical page
 What are the contents of the newly-allocated page???

3. Pages that are invalid
 For example, the “null page” at address 0x0

 When a page fault occurs, kill the offending process

Carnegie MellonStarting up a process
What does a process's address space look like when it first starts

up?

CodeCode

Initialized vars

Uninitialized vars

Heap

Stack

Unmapped pages

Carnegie MellonStarting up a process
What does a process's address space look like when it first starts

up?

Reference next instruction

Carnegie MellonStarting up a process
What does a process's address space look like when it first starts

up?

Page fault!!!

Carnegie MellonStarting up a process
What does a process's address space look like when it first starts

up?

OS reads missing page from
executable file on disk

Carnegie MellonStarting up a process
What does a process's address space look like when it first starts

up?

OS adds page to process's
page table

Carnegie MellonStarting up a process
What does a process's address space look like when it first starts

up?

Process resumes at the next instruction

Carnegie MellonStarting up a process
What does a process's address space look like when it first starts

up?

Over time, more pages are
brought in from the executable as needed

Carnegie Mellon

Uninitialized variables and the heap
Page faults bring in pages from the executable file for:

 Code (text segment) pages
 Initialized variables

What about uninitialized variables and the heap?
Say I have a global variable “int c” in the program ... what happens

when the process first accesses it?

Carnegie Mellon

Uninitialized variables and the heap
Page faults bring in pages from the executable file for:

 Code (text segment) pages
 Initialized variables

What about uninitialized variables and the heap?
Say I have a global variable “int c” in the program ... what happens

when the process first accesses it?
 Page fault occurs
 OS looks at the page and realizes it corresponds to a zero page
 Allocates a new physical frame in memory and sets all bytes to zero

 Why???
 Maps the frame into the address space

What about the heap?
 malloc() just asks the OS to map new zero pages into the address

space
 Page faults allocate new empty pages as above

Carnegie MellonMore Demand Paging Tricks
Paging can be used to allow processes to share memory

A significant portion of many process's address space is identical
For example, multiple copies of your shell all have the same exact code!

Stack

Heap

Initialized vars

Code

Uninitialized vars

(Reserved for OS)

Stack

Heap

Initialized vars

Code

Uninitialized vars

(Reserved for OS)

Stack

Heap

Initialized vars

Code

Uninitialized vars

(Reserved for OS)

Shell #1

Shell #2

Physical Memory

Code for shell

Same page
table mapping!

Carnegie Mellon

More Demand Paging Tricks
This can be used to let different processes share memory

UNIX supports shared memory through the shmget/shmat/shmdt
system calls

Allocates a region of memory that is shared across multiple processes
 Some of the benefits of multiple threads per process, but the rest of

the processes address space is protected
 Why not just use multiple processes with shared memory regions?

Memory-mapped files
 Idea: Make a file on disk look like a block of memory
Works just like faulting in pages from executable files

 In fact, many OS's use the same code for both
One wrinkle: Writes to the memory region must be reflected in the file
How does this work?

 When writing to the page, mark the “modified” bit in the PTE
 When page is removed from memory, write back to original file

Carnegie Mellon

Remember fork()?

fork() creates an exact copy of a process
What does this imply about page tables?

When we fork a new process, does it make sense to make
a copy of all of its memory?

Why or why not?

What if the child process doesn't end up touching most of
the memory the parent was using?

Extreme example: What happens if a process does an exec()
immediately after fork() ?

Carnegie MellonCopy-on-write
Idea: Give the child process access to the same memory, but don't

let it write to any of the pages directly!
1) Parent forks a child process
2) Child gets a copy of the parent's page tables

 They point to the same physical frames!!!

Stack

Heap

Initialized vars

Code

Uninitialized vars

(Reserved for OS)

Parent

Parent's
page tbl

Stack

Heap

Initialized vars

Code

Uninitialized vars

(Reserved for OS)

Child

Child's
page tbl

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie MellonCopy-on-write
All pages (both parent and child) marked read-only

Why???

Stack

Heap

Initialized vars

Code

Uninitialized vars

(Reserved for OS)

Parent

Parent's
page tbl

Stack

Heap

Initialized vars

Code

Uninitialized vars

(Reserved for OS)

Child

Child's
page tbl

RO
RO
RO
RO
RO
RO
RO

RO
RO
RO
RO
RO
RO
RO

Erol sahin

Erol sahin

Carnegie MellonCopy-on-write
What happens when the child reads the page?

 Just accesses same memory as parent niiiiiice

What happens when the child writes the page?
Protection fault occurs (page is read-only!)
OS copies the page and maps it R/W into the child's addr space

Stack

Heap

Initialized vars

Code

Uninitialized vars

(Reserved for OS)

Parent

Parent's
page tbl

Stack

Heap

Initialized vars

Code

Uninitialized vars

(Reserved for OS)

Child

Child's
page tbl

RO
RO
RO
RO
RO
RO
RO

RO
RO
RO
RO
RO
RO
RO

Copy page

Carnegie MellonCopy-on-write
What happens when the child reads the page?

 Just accesses same memory as parent niiiiiice

What happens when the child writes the page?
Protection fault occurs (page is read-only!)
OS copies the page and maps it R/W into the child's addr space

Stack

Heap

Initialized vars

Code

Uninitialized vars

(Reserved for OS)

Parent

Parent's
page tbl

Stack

Heap

Initialized vars

Code

Uninitialized vars

(Reserved for OS)

Child

Child's
page tbl

RO
RO
RO
RO
RO
RO
RO

RO
RO
RO
RO
RO
RO
RO

RWRW

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie MellonPage Tables
Remember how paging works:

page
frame 0

page
frame 1

page
frame 2

page
frame Y

…

page
frame 3

physical memory

offset
physical address
page frame #page frame #

page table

offset
virtual address

virtual page #

...

Page table entry

Recall that page tables for one process can be very large!
2^20 PTEs * 4 bytes per PTE = 4 Mbytes per process

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

page frame #
page frame #

page frame #

Multilevel Page Tables
Problem: Can't hold all of the page tables in memory
Solution: Page the page tables!

Allow portions of the page tables to be kept in memory at one time

page
frame 0

page
frame 1

page
frame 2

page
frame Y

…

page
frame 3

physical memory

offset
physical address

page frame #page table #

offset

virtual address
primary page # secondary page #

...

page frame #

Primary page
table (1) Secondary page

tables (N)

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie MellonMultilevel Page Tables
Problem: Can't hold all of the page tables in memory
Solution: Page the page tables!

Allow portions of the page tables to be kept in memory at one time

page table #

offset

virtual address
primary page # secondary page #

Primary page
table (1)

Secondary page
tables (N)

On disk

On disk

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie MellonMultilevel Page Tables
Problem: Can't hold all of the page tables in memory
Solution: Page the page tables!

Allow portions of the page tables to be kept in memory at one time

page table #

offset

virtual address
primary page # secondary page #

Primary page
table (1)

Secondary page
tables (N)

On disk

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie MellonMultilevel Page Tables
Problem: Can't hold all of the page tables in memory
Solution: Page the page tables!

Allow portions of the page tables to be kept in memory at one time

page table #

offset

virtual address
primary page # secondary page #

Primary page
table (1)

Secondary page
tables (N)

On disk

page
frame 0

page
frame 1

page
frame 2

page
frame Y

…

page
frame 3

physical memory

offset
physical address

page frame #

...

Carnegie Mellon

Multilevel page tables
With two levels of page tables, how big is each table?

 Say we allocate 10 bits to the primary page, 10 bits to the secondary page, 12 bits to
the page offset

 Primary page table is then 2^10 * 4 bytes per PTE == 4 KB
 Secondary page table is also 4 KB

 Hey ... that's exactly the size of a page on most systems ... cool

What happens on a page fault?
 MMU looks up index in primary page table to get secondary page table

 Assume this is “wired” to physical memory
 MMU tries to access secondary page table

 May result in another page fault to load the secondary table!
 MMU looks up index in secondary page table to get PFN
 CPU can then access physical memory address

 Issues
 Page translation has very high overhead

 Up to three memory accesses plus two disk I/Os!!
 TLB usage is clearly very important.

Carnegie Mellon

Intel Core i7 Memory System

32 KB, 8-way
L1 d-cache

32 KB, 8-way

256 KB, 8-way
L2 unified cache

256 KB, 8-way

L3 unified cache
8 MB, 16-way

(shared by all cores)

Main memory

Registers

64 entries, 4-way
L1 d-TLB

64 entries, 4-way 128 entries, 4-way
L1 i-TLB

128 entries, 4-way

512 entries, 4-way
L2 unified TLB

512 entries, 4-way

32 KB, 8-way
L1 i-cache

32 KB, 8-way

(addr translation)
MMU

(addr translation)fetch
Instruction

fetch

Core x4

DDR3 Memory controller
3 x 64 bit @ 10.66 GB/s

32 GB/s total (shared by all cores)

Processor package

QuickPath interconnect
4 links @ 25.6 GB/s each

To other
cores
To I/O
bridge

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Review of Symbols
 Basic Parameters

 N = 2n : Number of addresses in virtual address space
 M = 2m : Number of addresses in physical address space
 P = 2p : Page size (bytes)

 Components of the virtual address (VA)
 TLBI: TLB index
 TLBT: TLB tag
 VPO: Virtual page offset
 VPN: Virtual page number

 Components of the physical address (PA)
 PPO: Physical page offset (same as VPO)
 PPN: Physical page number
 CO: Byte offset within cache line
 CI: Cache index
 CT: Cache tag

Carnegie Mellon

End-to-end Core i7 Address Translation
CPU

VPN VPO
36 12

TLBT TLBI
432

...

L1 TLB (16 sets, 4 entries/set)

VPN1 VPN2
99

PTE

CR3

PPN PPO
40 12

Page tables

TLB

miss

TLB

hit

Physical

address

(PA)

Result
32/64

...

CT CO
40 6

CI
6

L2, L3, and

main memory

L1 d-cache

(64 sets, 8 lines/set)

L1

hit

L1

miss

Virtual address (VA)

VPN3 VPN4
99

PTE PTE PTE

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Core i7 Level 1-3 Page Table Entries

Page table physical base address Unused G PS A CD WT U/S R/W P=1

Each entry references a 4K child page table. Significant fields:

P: Child page table present in physical memory (1) or not (0).

R/W: Read-only or read-write access access permission for all reachable pages.

U/S: user or supervisor (kernel) mode access permission for all reachable pages.

WT: Write-through or write-back cache policy for the child page table.

A: Reference bit (set by MMU on reads and writes, cleared by software).

PS: Page size either 4 KB or 4 MB (defined for Level 1 PTEs only).

Page table physical base address: 40 most significant bits of physical page table
address (forces page tables to be 4KB aligned)

XD: Disable or enable instruction fetches from all pages reachable from this PTE.

51 12 11 9 8 7 6 5 4 3 2 1 0

UnusedXD

Available for OS (page table location on disk) P=0

526263

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Core i7 Level 4 Page Table Entries

Page physical base address Unused G D A CD WT U/S R/W P=1

Each entry references a 4K child page. Significant fields:
P: Child page is present in memory (1) or not (0)

R/W: Read-only or read-write access permission for child page

U/S: User or supervisor mode access

WT: Write-through or write-back cache policy for this page

A: Reference bit (set by MMU on reads and writes, cleared by software)

D: Dirty bit (set by MMU on writes, cleared by software)

Page physical base address: 40 most significant bits of physical page address
(forces pages to be 4KB aligned)

XD: Disable or enable instruction fetches from this page.

51 12 11 9 8 7 6 5 4 3 2 1 0

UnusedXD

Available for OS (page location on disk) P=0

526263

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Core i7 Page Table Translation

CR3

Physical

address

of page

Physical

address

of L1 PT

9

VPO
9 12 Virtual

address

L4 PT

Page

table

L4 PTE

PPN PPO
40 12 Physical

address

Offset into

physical and

virtual page

VPN 3 VPN 4VPN 2VPN 1

L3 PT

Page middle

directory

L3 PTE

L2 PT

Page upper

directory

L2 PTE

L1 PT

Page global

directory

L1 PTE

99

40
/

40
/

40
/

40
/

40
/

12/

512 GB
region

per entry

1 GB
region

per entry

2 MB
region

per entry

4 KB
region

per entry

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Virtual Address Space of a Linux Process

Kernel code and data

Memory mapped region
for shared libraries

Runtime heap (malloc)

Program text (.text)
Initialized data (.data)

Uninitialized data (.bss)

User stack

0

%rsp

Process
virtual
memory

brk

Physical memoryIdentical for
each process

Process-specific data
structs (ptables,

task and mm structs,
kernel stack) Kernel

virtual
memory

0x00400000

Different for
each process

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

vm_next

vm_next

Linux Organizes VM as Collection of “Areas”

task_struct
mm_struct

pgdmm

mmap

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

Text

Data

Shared libraries

0

 pgd:
 Page global directory address
 Points to L1 page table

 vm_prot:
 Read/write permissions for

this area

 vm_flags
 Pages shared with other

processes or private to this
process

vm_flags

vm_flags

vm_flags

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Linux Page Fault Handling

read
1

write
2

read
3

vm_next

vm_next

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

text

data

shared libraries
vm_flags

vm_flags

vm_flags

Segmentation fault:
accessing a non-existing page

Normal page fault

Protection exception:
e.g., violating permission by
writing to a read-only page (Linux
reports as Segmentation fault)

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Page Fault Pseudo Code
 pagefault(vaddr, PTE, acctype):

marea = lookup address in VM areas
if marea == NULL (address is not mapped in VM)

send SIGSEGV to process
return

if PTE.prot == READ and marea->vm_prot == WRITE (cow)
handleCoW(vaddr, PTE ,marea)
return (retry memory access)

if ok(acctype, marea->vm_prot) && (! PTE.valid)
loadpage(vaddr, PTE, marea)
return (retry memory access)

(protection error, not recoverable)
send SIGSEGV or SIGBUS to process
return

1

2

3

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Load an Invalid Page

loadpage(vaddr, PTE, marea):
newpage = page_alloc() (allocate a new page)
if marea is backed by a file

(either a mmap’ed file, code or initialized
data segments, or swapped out)

start IO for loading page from file
make task sleep until I/O completes

else (an anonymous page with 0 content)
memset(newpage,0)

PTE.valid = 1
PTE.prot = marea.vm_prot
PTE.address = newpage.pageno
update_address_translation(vaddr, PTE)

 PTE is invalid. Either:
 Due to demand paging, it is not loaded yet
 Page is evicted, to get free space in system.

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Break Copy on Write (CoW)

handleCoW(vaddr,PTE, marea):
page = PTE.address (frame information)
if page.nrefs == 1: (only one task refers this frame)

(as last task, just mark it as writable)
PTE.prot |= WRITE
update_address_translation(vaddr, PTE)

else (there are others referring this frame)
newpage = page_alloc() (allocate a new frame)
memcopy(page,newpage)
PTE.prot |= WRITE
PTE.valid = 1
PTE.address = newpage
--page.nrefs
update_address_translation(vaddr, PTE)

 We tried to write a CoW page, which is marked as readonly (CoW). We need to
break CoW and mark it as writable

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

