
Carnegie Mellon

Virtualization

Carnegie Mellon

Virtualization

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

A single computer
system hosting multiple
virtual machines each
potentially running a
different OS.

A 40 year old technology
dating back to IBM/370
that is making a come-
back in the recent years.

Robustness against software failures

Able to run legacy applications on OS’s that are not supported on current
hardware or available OS’s.

Good for software development that targets different OS’s.

Carnegie Mellon

Protection Rings – x86

User space (lower privilege: ring 3)

Kernel space (high privilege: ring 0)

Have rights to access some special CPU instructions

APPS

OS
(supervisor mode)

System call/ trap

Hardware

interrupt

Protection rings

Carnegie Mellon

Requirements for virtualization

 Approach: trap the “privileged instructions” in the user
mode
 typically related to kernel functions, such as I/O instructions or

instructions that changes MMU settings
 emulate them within the guest OS

 Requires help from hardware
 AMD and Intel CPU’s have created virtualization support after 2005

 Containers in which virtual machines can run
 The program runs until it creates a trap
 Traps handled by the hypervisor to emulate the desired

behavior

Carnegie Mellon

Two approaches

 Virtualization is implemented by hypervisors that act just like the real hardware.
 Type 1 hypervisor

 Virtualization is implemented as part of the hosting OS at the kernel level.
 Support multiple copies of the actual machine, called virtual machines.

 Type 2 hypervisor
 Virtualization is implemented as a user program running at the user level.
 It “interprets” the machine’s instruction set which also creates a virtual machine.

Hardware Hardware

https://www.youtube.com/watch?v=FZR0rG3HKIk

Carnegie Mellon

Type 1 Hypervisors

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The hypervisor runs on the
bare hardware as part of
the OS.
The virtual machine runs
as a user process in user
mode.

Is not allowed to
execute “privileged
instructions”.

The guest OS thinks it is
running in kernel mode,
although it is in user mode.
(virtual kernel mode)
When the guest OS
executes a “privileged
instruction”, it generates a
trap (thanks to the VT
support from hardware) in
the host OS kernel.

The hypervisor inspects the instruction if it was
issued by the guest OS running in the virtual
machine.

If so, the hypervisor emulates what the real
hardware would do when confronted with that
“privileged instruction” executed in user mode.

Carnegie Mellon

Type I: The structure of IBM VM/370

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

 When a CMS program executed a system call, the call is trapped by the
CMS (guest OS)

 CMS then issued the normal hardware I/O instructions for reading its virtual
disk, etcetera.

 These I/O instructions were trapped by the VM/370, which then performed
them as part of its simulation of the real hardware.

 In its modern incarnation, z/VM can run multiple OS’s such as AIX’s or
Linux.

Carnegie Mellon

Type 2 Hypervisors

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

 The hypervisor runs as a user process on
the host OS.

 The virtual machine runs as a user
process in user mode.

 Is not allowed to execute “privileged
instructions”.

 The guest OS thinks it is running in kernel
mode, although it is in user mode. (virtual
kernel mode)

 When the guest OS executes a
“privileged instruction”, the hypervisor
emulates it.

Carnegie Mellon

x86 virtualization

User space (ring 3)

Privilege (ring 1/2)

Have rights to access some special instructions

APPS

OS (VM)

System call/ trap

Hardware

interrupt

Hypervisor
Privilege: ring 0 Have rights to access

some special instructions

Carnegie Mellon

Type II: VMware: A case study

VMware runs as a user program
on the host OS, such as Windows
or Linux.
When it starts it acts like a newly
booted computer, and expects to
find a CD-ROM containing an OS. It
then installs the (guest) OS on a
virtual disk.
Once the guest OS is installed on
the virtual disk, it can be booted to
run.

Carnegie Mellon

VMware: A case study

 When executing a binary program, it scans
the code looking for basic blocks, that is
straight runs of instructions ending in a jump,
call, trap or other instructions that change
the flow of execution.

 The basic block is inspected if it contains any
“privileged instructions”. If so, each one is
replaced with a call to VMware procedure
that handles it. The final instruction is also
replaced with a call into VMware.

 Once these steps are made, the basic block is
cached inside VMware, and then executed.

 A basic block not containing any “privileged
instructions” will execute as fast as it will on
a bare machine, because it is running on the
bare machine.

 “Privileged instructions” that are caught in
this way are emulated. This is known as
binary translation.

Carnegie Mellon

VMware: A case study

 After the execution of a basic block is
completed, the control returns back to
VMware, which picks its successor that
comes next.

 If the successor is already translated, it
can be executed immediately.

 Eventually, most of the program will be
in cache and will run at close to full
speed.

 There is no need to replace sensitive
instructions in user programs. The
hardware will ignore them any way.

Carnegie Mellon

Type I vs Type 2 hypervisors

• Unlike what you would expect, Type 1 is not a winner at all
times.
• It turns our that trap-and-emulate approach creates a lot
of overhead due to the handling of the traps (including
context switches) and that the binary translation approach
(combined with caching of translated blocks) can run faster.
• For this reason, some type 1 hypervisors also perform
binary translation for speeding up.

Carnegie Mellon

Paravirtualization

Both type 1 and type 2 hypervisors work with unmodified
guest OS’s.
A recent approach is to modify the source code of the
guest OS such that it makes hypervisor calls instead of
executing “privileged instructions”.
For this the hypervisors have to define an API, as an
interface to the guest OS’s.

But this approach is similar to the microkernel approach.
A guest OS whose “privileged instructions” are replaced with
hypervisor calls is said to be paravirtualized.

Carnegie Mellon

 A hypervisor supporting both true virtualization and paravirtualization.

Paravirtualization

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Carnegie Mellon

Virtualization issues

 Memory virtualization
 How to integrate the paging of the host OS with the paging of the

guest OS

 I/O virtualization
 Do we use the device drivers of the host OS or the guest OS?

 Multi-core
 Each core can run a number of virtual machines
 Sharing memory among virtual machines?

 Licensing
 Some software is licensed per-CPU basis.
 What is you run multiple virtual machines?

Carnegie Mellon

For those who are curious…

 Virtualization
 https://www.youtube.com/watch?v=FZR0rG3HKIk

 Cgroups
 https://en.wikipedia.org/wiki/Cgroups

 Container
 https://www.youtube.com/watch?v=EnJ7qX9fkcU

 Containers versus Containers
 https://www.youtube.com/watch?v=L1ie8negCjc

