
Carnegie Mellon

Virtualization

Carnegie Mellon

Virtualization

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

A single computer
system hosting multiple
virtual machines each
potentially running a
different OS.

A 40 year old technology
dating back to IBM/370
that is making a come-
back in the recent years.

Robustness against software failures

Able to run legacy applications on OS’s that are not supported on current
hardware or available OS’s.

Good for software development that targets different OS’s.

Carnegie Mellon

Protection Rings – x86

User space (lower privilege: ring 3)

Kernel space (high privilege: ring 0)

Have rights to access some special CPU instructions

APPS

OS
(supervisor mode)

System call/ trap

Hardware

interrupt

Protection rings

Carnegie Mellon

Requirements for virtualization

 Approach: trap the “privileged instructions” in the user
mode
 typically related to kernel functions, such as I/O instructions or

instructions that changes MMU settings
 emulate them within the guest OS

 Requires help from hardware
 AMD and Intel CPU’s have created virtualization support after 2005

 Containers in which virtual machines can run
 The program runs until it creates a trap
 Traps handled by the hypervisor to emulate the desired

behavior

Carnegie Mellon

Two approaches

 Virtualization is implemented by hypervisors that act just like the real hardware.
 Type 1 hypervisor

 Virtualization is implemented as part of the hosting OS at the kernel level.
 Support multiple copies of the actual machine, called virtual machines.

 Type 2 hypervisor
 Virtualization is implemented as a user program running at the user level.
 It “interprets” the machine’s instruction set which also creates a virtual machine.

Hardware Hardware

https://www.youtube.com/watch?v=FZR0rG3HKIk

Carnegie Mellon

Type 1 Hypervisors

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The hypervisor runs on the
bare hardware as part of
the OS.
The virtual machine runs
as a user process in user
mode.

Is not allowed to
execute “privileged
instructions”.

The guest OS thinks it is
running in kernel mode,
although it is in user mode.
(virtual kernel mode)
When the guest OS
executes a “privileged
instruction”, it generates a
trap (thanks to the VT
support from hardware) in
the host OS kernel.

The hypervisor inspects the instruction if it was
issued by the guest OS running in the virtual
machine.

If so, the hypervisor emulates what the real
hardware would do when confronted with that
“privileged instruction” executed in user mode.

Carnegie Mellon

Type I: The structure of IBM VM/370

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

 When a CMS program executed a system call, the call is trapped by the
CMS (guest OS)

 CMS then issued the normal hardware I/O instructions for reading its virtual
disk, etcetera.

 These I/O instructions were trapped by the VM/370, which then performed
them as part of its simulation of the real hardware.

 In its modern incarnation, z/VM can run multiple OS’s such as AIX’s or
Linux.

Carnegie Mellon

Type 2 Hypervisors

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

 The hypervisor runs as a user process on
the host OS.

 The virtual machine runs as a user
process in user mode.

 Is not allowed to execute “privileged
instructions”.

 The guest OS thinks it is running in kernel
mode, although it is in user mode. (virtual
kernel mode)

 When the guest OS executes a
“privileged instruction”, the hypervisor
emulates it.

Carnegie Mellon

x86 virtualization

User space (ring 3)

Privilege (ring 1/2)

Have rights to access some special instructions

APPS

OS (VM)

System call/ trap

Hardware

interrupt

Hypervisor
Privilege: ring 0 Have rights to access

some special instructions

Carnegie Mellon

Type II: VMware: A case study

VMware runs as a user program
on the host OS, such as Windows
or Linux.
When it starts it acts like a newly
booted computer, and expects to
find a CD-ROM containing an OS. It
then installs the (guest) OS on a
virtual disk.
Once the guest OS is installed on
the virtual disk, it can be booted to
run.

Carnegie Mellon

VMware: A case study

 When executing a binary program, it scans
the code looking for basic blocks, that is
straight runs of instructions ending in a jump,
call, trap or other instructions that change
the flow of execution.

 The basic block is inspected if it contains any
“privileged instructions”. If so, each one is
replaced with a call to VMware procedure
that handles it. The final instruction is also
replaced with a call into VMware.

 Once these steps are made, the basic block is
cached inside VMware, and then executed.

 A basic block not containing any “privileged
instructions” will execute as fast as it will on
a bare machine, because it is running on the
bare machine.

 “Privileged instructions” that are caught in
this way are emulated. This is known as
binary translation.

Carnegie Mellon

VMware: A case study

 After the execution of a basic block is
completed, the control returns back to
VMware, which picks its successor that
comes next.

 If the successor is already translated, it
can be executed immediately.

 Eventually, most of the program will be
in cache and will run at close to full
speed.

 There is no need to replace sensitive
instructions in user programs. The
hardware will ignore them any way.

Carnegie Mellon

Type I vs Type 2 hypervisors

• Unlike what you would expect, Type 1 is not a winner at all
times.
• It turns our that trap-and-emulate approach creates a lot
of overhead due to the handling of the traps (including
context switches) and that the binary translation approach
(combined with caching of translated blocks) can run faster.
• For this reason, some type 1 hypervisors also perform
binary translation for speeding up.

Carnegie Mellon

Paravirtualization

Both type 1 and type 2 hypervisors work with unmodified
guest OS’s.
A recent approach is to modify the source code of the
guest OS such that it makes hypervisor calls instead of
executing “privileged instructions”.
For this the hypervisors have to define an API, as an
interface to the guest OS’s.

But this approach is similar to the microkernel approach.
A guest OS whose “privileged instructions” are replaced with
hypervisor calls is said to be paravirtualized.

Carnegie Mellon

 A hypervisor supporting both true virtualization and paravirtualization.

Paravirtualization

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Carnegie Mellon

Virtualization issues

 Memory virtualization
 How to integrate the paging of the host OS with the paging of the

guest OS

 I/O virtualization
 Do we use the device drivers of the host OS or the guest OS?

 Multi-core
 Each core can run a number of virtual machines
 Sharing memory among virtual machines?

 Licensing
 Some software is licensed per-CPU basis.
 What is you run multiple virtual machines?

Carnegie Mellon

For those who are curious…

 Virtualization
 https://www.youtube.com/watch?v=FZR0rG3HKIk

 Cgroups
 https://en.wikipedia.org/wiki/Cgroups

 Container
 https://www.youtube.com/watch?v=EnJ7qX9fkcU

 Containers versus Containers
 https://www.youtube.com/watch?v=L1ie8negCjc

