Virtualization

Virtualization

e A single computer
system hosting multiple
virtual machines each
potentially running a
different OS.

e A 40 year old technology
dating back to IBM/370
that is making a come-
back in the recent years.

e Robustness against software failures

e Able to run legacy applications on OS’ s that are not supported on current
hardware or available OS’s.

e Good for software development that targets different OS’ s.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Protection Rings — x86

Protection rings

APPS User space (lower privilege: ring 3) applications

Systeml|call/ trap

Kernel space (high privilege: ring 0)
OS
(supervisor mode)

Have rights to access some special CPU instructions

\

't/l/t \
interfup

Hardware

I

Requirements for virtualization

e Approach: trap the “privileged instructions” in the user

mode

= typically related to kernel functions, such as I/O instructions or
instructions that changes MMU settings

= emulate them within the guest OS

e Requires help from hardware
= AMD and Intel CPU’s have created virtualization support after 2005
= Containers in which virtual machines can run

= The program runs until it creates a trap

= Traps handled by the hypervisor to emulate the desired
behavior

Two approaches

Guest OS process

Excel Word Mplayer Apollon Host OS
é 5 O O process

Guest OS
Type 2 hypervisor O

Windows
Type 1 hypervisor Host operating system
‘ Hardware Hardware

e Virtualization is implemented by hypervisors that act just like the real hardware.
e Type 1 hypervisor

= Virtualization is implemented as part of the hosting OS at the kernel level.
= Support multiple copies of the actual machine, called virtual machines.

e Type 2 hypervisor

® Virtualization is implemented as a user program running at the user level.
" |t “interprets” the machine’s instruction set which also creates a virtual machine.

https://www.youtube.com/watch?v=FZR0rG3HKIk

Type 1 Hypervisors

«The hypervisor runs on the

/ User process

bare hardware as part of 4 — .
the OS () } Virtual user mode
o _ Vitual _/ _/ User
[he virtual machine runs machine L _ } , mode
) Guest operating system - Virtual kernel mode
as a user process in user N
mode. Type 1 hypervisor }) Trap on privileged instruction ﬁ%@g !
.Is not allowed to -
execute “privileged Hardware
instructions”.
-The guest OS thinks it is
running in kernel mode, - The hypervisor inspects the instruction if it was
although itis in user mode. jssued by the guest OS running in the virtual
(virtual kernel mode) machine.

When the guest OS

executes a “privileged .
instruction”, it generates a .If so, the hypervisor emulates what the real

trap (thanks to the VT hardware would do when confronted with that

support from hardware) in “privileged instruction” executed in user mode.
the host OS kernel.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Type I: The structure of IBM VM/370

Virtual 370s

System calls here

/O instructions here Trap here

Trap here —p> VM/370

370 Bare hardware

- When a CMS program executed a system call, the call is trapped by the
CMS (guest OS)

« CMS then issued the normal hardware 1/O instructions for reading its virtual
disk, etcetera.

. These I/O instructions were trapped by the VM/370, which then performed
them as part of its simulation of the real hardware.

. In its modern incarnation, z/VM can run multiple OS’ s such as AIX’ s or
Linux.

Type 2 Hypervisors

« The hypervisor runs as a user process on Guest OS process
the host OS. (g
Host OS
 The virtual machine runs as a user O O Process
process inuser mode. [
s Guest OS
. Is not allowed to execute “privileged
instructions”. Type 2 hypervisor O
« The guest OS thinks it is running in kernel Host operating system

mode, although it is in user mode. (virtual
kernel mode)

« When the guest OS executes a
“privileged instruction”, the hypervisor
emulates it.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

x86 virtualization

l

Device drivers

APPS User space (ring 3)

Applications

X Systemrcalif trap

Privilege (ring 1/2)

OS (VM)
Have rights to access some special instructions
Hypervisor \ \‘

Privilege: ring 0 Have rights to access
‘ some \special instructions

/ interrupt 4 \
Hardware

Type Il: VMware: A case study

mVMware runs as a User program s s ——
on the host OS, such as Windows ' -
or Linux.

mWhen it starts it acts like a newly
booted computer, and expects to
find a CD-ROM containing an OS. It
then installs the (guest) OS on a et e
virtual disk. ST e

mOnce the guest OS is installed on J=lass Gma

. . . "Emf%gwgg“ e R S M e it 8 M 4 et 407 i G o |
the virtual disk, it can be booted to '® "= *# -
run.

nnnnn

VMware: A case study

m When executing a binary program, it scans
the code looking for basic blocks, that is
straight runs of instructions ending in a jump,
call, trap or other instructions that change
the flow of execution.

m The basic block is inspected if it contains any
“privileged instructions”. If so, each one is
replaced with a call to VMware procedure
that handles it. The final instruction is also

nnnnn

replaced with a call into VMware. R A S R
_ atioral "
m Once these steps are made, the basic block is _
cached inside VMware, and then executed. R Lol
].‘ "%ﬁ@ &iﬁ% & g% Eﬁm,ﬁuw.smm:d?!m|'x'm B ezt bt A0 o [}} 231 AN

m A basic block not containing any “privileged
instructions” will execute as fast as it will on
a bare machine, because it is running on the
bare machine.

m “Privileged instructions” that are caught in
this way are emulated. This is known as
binary translation.

VMware: A case study

m After the execution of a basic block is
completed, the control returns back to
VMware, which picks its successor that
comes next.

m If the successor is already translated, it
can be executed immediately.

m Eventually, most of the program will be
in cache and will run at close to full
speed.

m Thereis no need to replace sensitive
instructions in user programs. The
hardware will ignore them any way.

x rdn .I 1
nu-.r p.:lms-mnrt t-um s symr_-u-pmu: uuru:]

I'KﬁDmM
e

e IO

| ;ﬂy..:t“_.ﬂﬁl"" ﬁ Artate Phokaskap

e-mas\,_sp-; o s SoRy y §

(SR

]‘ %@@ ' ﬁ% .Bi. ﬁ b Wokats Bﬂ'm:ﬁhm|' HMME B s bezats 0T Il?:; ﬂ JERLIT] |

Type | vs Type 2 hypervisors

* Unlike what you would expect, Type 1 is not a winner at all
times.

* [t turns our that trap-and-emulate approach creates a lot
of overhead due to the handling of the traps (including
context switches) and that the binary translation approach
(combined with caching of translated blocks) can run faster.

* For this reason, some type 1 hypervisors also perform
binary translation for speeding up.

Paravirtualization

mBoth type 1 and type 2 hypervisors work with unmodified
guest OS’s.

mA recent approach is to modify the source code of the
guest OS such that it makes hypervisor calls instead of
executing “privileged instructions”.

mFor this the hypervisors have to define an API, as an
interface to the guest OS’s.
"But this approach is similar to the microkernel approach.

= A guest OS whose “privileged instructions” are replaced with
hypervisor calls is said to be paravirtualized.

Paravirtualization

True virtualization

Paravirtualization

. i
"< ~ e ~
Q/ Q Trap due O \) Trap due
to sensitive -
Unmodified Windows —_| i e Modified Linux \/f LZRB’PEWISW
J)
Type 1 hypervisor : Microkernel
Hardware

L A hypervisor supporting both true virtualization and paravirtualization.

Virtualization issues

e Memory virtualization

" How to integrate the paging of the host OS with the paging of the
guest OS

e 1/0 virtualization

" Do we use the device drivers of the host OS or the guest OS?

e Multi-core
= Each core can run a number of virtual machines
= Sharing memory among virtual machines?
e Licensing
= Some software is licensed per-CPU basis.
" What is you run multiple virtual machines?

For those who are curious...

m Virtualization
" https://www.youtube.com/watch?v=FZROrG3HKIlk
m Cgroups

" https://en.wikipedia.org/wiki/Cgroups
m Container
" https://www.youtube.com/watch?v=EnJ7gX9fkcU

m Containers versus Containers

" https://www.youtube.com/watch?v=L1lie8negCjc

