
Carnegie Mellon

Protection and security

Erol sahin


Erol sahin


Erol sahin


Erol sahin




Carnegie Mellon

Protection and Security
Security: Preventing the 
access from external agents.

To authenticate the system 
users to protect the integrity 
of the information stored in 
the system.

Protection and security are related but different 
concepts of OS’s.

Protection:  Preventing the 
access of  internal users 
from accessing resources 
that they are not allowed to.

To control the access of 
programs, processes or users 
to the resources provided 
within a computer system. 

Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin




Carnegie Mellon

Goals of Protection
Protection problem stems from multiprogramming OS’s

 untrustworthy users can safely share common resources, such as 
memory, files.

Protection
Prevent violation of access restriction by a user

Distinguish between authorized and unauthorized usage

Provide a mechanism for the enforcement of the policies governing 
resource use

 Some are fixed during the design of the system

 Some are set by the management of the system

 Others are defined by the users of the system

Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin




Carnegie Mellon

Principles of Protection
 Guiding principle – principle of least privilege

Programs, users and systems should be given just enough privileges 
to perform their tasks

 Ask:
 What is the lowest set of privileges allowable for this user’s tasks?
 How long are the privileges required?

 If you hire a gardener, 
 grant them access to your yard – not your bedroom. 
 grant them access for the time they’re working

Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin




Carnegie Mellon

Domain of Protection
 Operating system consists of a collection of objects, 

hardware or software
 Files, directories, hardware, ..

 A file can be readable but not writable..

 Each object has a unique name and can be accessed 
through a well-defined set of operations.

 A CPU can only be executed on

 Memory can be read or written

 CD-ROM can only be read

 Protection problem - ensure that each object is accessed 
correctly and only by those processes that are allowed to 
do so.

Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin




Carnegie Mellon

Domain Structure

 A protection domain specifies the resources that the 
process may access.

 Each domain defines 
 a set of objects and 
 the types of operations that may be invoked on each object.

Domain = {access-right} 
access-right = <object-name, {right}>

right =  {read, write, execute …}

Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin




Carnegie Mellon

Domain structure

Domain1 = { <file-A, {read, write, execute}>,
<file-B, {read, execute}>,
<page-2, {read}>,
< printer-1, {print}>}

Domain2 = { <file-A, {read, write}>,
<file-B, {read, execute}>,
<page-1, {read, execute}>,
< printer-1, {print}>}

 Domains need not be disjoint.
 Both P1 and P2 processes can print on printer-1.
 Only P1 can execute file-A.
 Only P2 can read page-1.

P1

P2

Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin




Carnegie Mellon

Domain Structure - static/dynamic
●Associations between a process and a domain can be

Static
 Fixed at the time of creation of the process
 May need to provide more rights than needed at the run time

Dynamic
 A process can switch from one domain to another
 The content of the domain can also be changed 

Domain1 = { <file-A, {read, write, execute}>,
< printer-1, {print}>}

P1

Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin




Carnegie Mellon

Domain Structure - static/dynamic
●Associations between a process and a domain can be

Static
 Fixed at the time of creation of the process
 May need to provide more rights than needed at the run time

Dynamic
 A process can switch from one domain to another

Domain1 = { <file-A, {read, write, execute}>,
< printer-1, {print}>}

Domain2 = { <file-A, {read, write}>,
<file-B, {read, execute}>,

}

P1

Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin




Carnegie Mellon

Domain Structure - static/dynamic
●Associations between a process and a domain can be

Static
 Fixed at the time of creation of the process
 May need to provide more rights than needed at the run time

Dynamic
 A process can switch from one domain to another
 The content of the domain can also be changed 

Domain1 = { <file-A, {read, write, execute}>,
< printer-1, {print}>}

Domain2 = { <file-A, {read, write}>,
<file-B, {read, execute}>,
< printer-1, {print}>}

P1

Erol sahin


Erol sahin




Carnegie Mellon

Domain design
● Each user may be a domain. 

 Access rights depend on the identity of the user. 
 Domain switching occurs when the user is changed.

● Each process may be a domain. 
 Access rights depend on the identity of the process. 
 Domain switching corresponds to one process sending a message to another

process, and then waiting for a response.

● Each procedure may be a domain. 
 the set of objects that can be accessed corresponds to the local variables

defined within the procedure. 
 Domain switching occurs when a procedure call is made

 As an example, user and kernel modes define a dual domain system 
where the processes that run in kernel mode have the right to execute 
privileged instructions.

 But we also need to protect users from each other!

Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin




Carnegie Mellon

Domain Implementation  (UNIX)
A domain is associated with the user through uid (user id) 

and guid (group id)
Switching domain =  changing user identification temporarily

Domain switch accomplished via file system. 
Each file is associated with 

 An owner identification

 a domain bit (known as the setuid bit).



Carnegie Mellon

setuid bit – how passwd works 

● How does the passwd program work
When executed by the user, the process runs in the user’s domain

 Cannot modify the /etc/passwd file!
 Solution: passwd program has its setuid bit set, that allows it to run 

with root access
 Modify /etc/passwd file 

User (with user-id = A) starts 
executing a file owned by B.

When the setuid bit is off
 the user-id of the process is set 

to A. 
When the setuid bit is on,

 the user-id of the process is set 
to B. 

Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin




Carnegie Mellon

Model of Protection: Access Matrix

 View protection as a matrix
 Rows represent domains

 Columns represent objects

 Access(i, j) is the set of operations that 
 a process executing in Domaini can invoke on Objectj

O1 O2 O3 O5

D1 read, write, execute,
owner

read access read, write

D2 read, execute, 
switch(D1)

read, write, owner access read, write

D3 Read, write, access, 
owner

read

D4 access read, write, owner

D5 access read, write

D6 access read

Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin




Carnegie Mellon

Access Matrix - dynamic protection
Can be expanded to dynamic protection.
Operations to add, delete access rights.
Special access rights:

owner of Oi

copy op from Oi to Oj

control – Di can modify  Dj access rights

switch – switch from domain Di to Dj

Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin




Carnegie Mellon

Example:

 A Unix ls -l output and content of /etc/group


 Access matrix:

Protection  Owner  Group  Object
-rwsr-x--- obi   jedi useforce
-rw-r----- luke jedi 3po.man
drwx--x--x  darth sith ds.plan
-rw-rw-r-- han free   mf.jpeg

GroupName:ShadowPass:UserList
jedi:x:yoda,obi,luke
sith:x:emperor,vader,doku
free:x:han,lea,obi,luke
robot:x:r2d3,3po

useforce 3po.man ds.plan mf.jpeg

obi read, write, execute,
owner

read access read, write

luke read, execute, 
switch(obi)

read, write, owner access read, write

darth Read, write, access, 
owner

read

han access read, write, owner

lea access read, write

r2d2 access read

Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin




Carnegie Mellon

Switching between domains

● A process executing in D2 can switch to domain D3 or D4

● A process executing in D4 can switch to D1

 Linux sudo implements a domain switch controlled in /etc/sudoers

 Allowing controlled change to the contents of the access-matrix 
entries requires three additional operations: copy , owner , and 
control .

Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin




Carnegie Mellon

Access Matrix with Copy Rights

 The ability to copy an access 
right from one domain (or row) 
of the access matrix to another 
is denoted by an asterisk (*) 
appended to the access right.

 A process in D2 can copy the 
read operation into any entry 
associated with file F2

 Example:
SQL GRANT with “GRANT OPTION”:
GRANT INSERT,DELETE ON TABLE mytable WITH GRANT OPTION;

Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin




Carnegie Mellon

Access Matrix with Copy Rights

●Two possible variants:

●A right is copied from access (I,j) to access 
(k,j); it is then removed from access (i,j); 
this action is a transfer of a right, rather 
than a copy.

●Propagation of the copy right may be 
limited. That is, when the right  R* is 
copied from access (i,j) to access (k,j), 
only the right R (not R*) is created. A 
process executing in domain  cannot 
further copy the right R.

Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin




Carnegie Mellon

Access Matrix With Owner Rights

 Owner rights should allow the 
addition of new rights and 
removal of some rights.

 Unix implements
chmod() system call to update 
access matrix by owner.

Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin




Carnegie Mellon

Access Matrix With Control Rights

 D2 can modify D4 row. 
 For example: Unix root has control right on all other domains
 The copy and owner rights provide us with a mechanism to limit the 

propagation of access rights. 
 However, they do not give us the appropriate tools for preventing the 

propagation (or disclosure) of information
 The problem of guaranteeing that no information initially held in an object 

can migrate outside of its execution environment is called 
 the confinement problem.

Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin




Carnegie Mellon

Implementation of Access Matrix

 How can the access matrix be implemented effectively? 
 The matrix will be sparse; that is, most of the entries will

be empty.
 Global table
 Access lists for Objects
 Capability lists for Domains
 A Lock-Key Mechanism

Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin




Carnegie Mellon

Global Table 

 A global table consisting of
 <domain, object, rights-set> triples

D1 O1 read, write, execute, owner

D1 O2 read, write

D1 … …

D2 O1 read, execute, switch(obi)

D2 O2 read, write, owner

D2 … ….

Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin




Carnegie Mellon

Global Table – pros and cons

 Simplest implementation
 The table is usually large and cannot be kept in memory
 Does not take into account special groupings of objects or 

domains 
 If everyone can read a particular object, it must have a separate 

entry in every domain

D1 O1 read, write, execute, owner

D1 O2 read, write

D1 … …

D2 O1 read, execute, switch(obi)

D2 O2 read, write, owner

D2 … ….

Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin




Carnegie Mellon

Access Lists for Objects

For each object store <domain, rights-set>, which define 
all domains with a nonempty set of access rights for that 
object.

can be extended easily to define a list plus a default set of access 
rights.

D1 read, write, execute, owner

D2 read, execute, switch(obi)

D1 read, write

D2 read, write, owner

Object1

Object2

Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin




Carnegie Mellon

Access Lists for Objects - example

For each object store <domain, rights-set>, which define 
all domains with a nonempty set of access rights for that 
object.

can be extended easily to define a list plus a default set of access 
rights.

Domain: User = {A,B,C}
Object: File = {F1, F2, F3}
Rights: {R, W, X}

Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin




Carnegie Mellon

Capability Lists for Domains

 A capability list for a domain is a list of objects together 
with the operations allowed on those objects. 

 The capability list is associated with a domain, but it is never 
directly accessible to a process executing in that domain. 

 Rather, the capability list is itself a protected object, 
maintained by the operating system and accessed by the user 
only indirectly. 

O1 read, write, execute, owner

O2 read, execute, switch(obi)

Domain1

D1 read, write

D2 read, write, owner

Domain2

Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin




Carnegie Mellon

Capability Lists for Domains - example

 A capability list for a domain is a list of objects together 
with the operations allowed on those objects. 

 The capability list is associated with a domain, but it is never 
directly accessible to a process executing in that domain. 

 Rather, the capability list is itself a protected object, 
maintained by the operating system and accessed by the user 
only indirectly. 

Domain: User = {A,B,C}
Object: File = {F1, F2, F3}
Rights: {R, W, X}

Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin




Carnegie Mellon

Lock-Key Mechanism

 The lock–key scheme is a compromise between access lists 
and capability lists. 

 Each object has a list of unique bit patterns, called locks. 
 Similarly, each domain has a list of unique bit patterns, called 

keys. 
 A process executing in a domain can access an object only if 

that domain has a key that matches one of the locks of the 
object.

 The list of keys for a domain must be managed by the OS 
on behalf of the domain. 

 Users are not allowed to examine or modify the list of keys 
(or locks) directly.

Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin




Carnegie Mellon

Access lists vs. Capability lists vs. Lock-key

 Access lists correspond directly to the needs of the users. 
 When a user creates an object, she can specify which domains 

can access the object, as well as the operations allowed. 

 Capability lists do not correspond directly to the needs of 
the users; they are useful, however, for localizing 
information for a given process. 

 The process attempting access must present a capability for 
that access.

 The lock–key mechanism is a compromise between these 
two schemes. 

 The mechanism can be both effective and flexible, depending 
on the length of the keys. 

 The keys can be passed freely from domain to domain. 

Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin




Carnegie Mellon

Authentication

 Crucial part of OS security. 
 If a request is really done by a 

user/host that it claims.
 Host authentication:

Mostly relates to network requests.
Out of scope for this course.

 User authentication: done when user starts a session or 
asks a privileged operation.

 Authentication factors:
 Something (only) you know (password, pin code, TCKN?)
 Something you have (id card, credit card, cell phone, smart card)
 Something you are (finger, retina, blood, DNA sample…)

Erol sahin


Erol sahin


Erol sahin




Carnegie Mellon

Password Authentication
 Relies on only user knows a common 

passphrase.
 User password is compared against the 

information stored on system. 
 A match results in success.

 Password is the critical part of security. 
 Protecting password database is crucial.

 Bad idea: storing passwords in plain.
 If protection of password database is compromised security of system collapses.
 Privileged users can see content. Use it for other systems

 Solution use cryptography.
 Hash/digest functions: map a string of bytes into a fixed string where:

 Given the result, original string cannot be computed
 Small change in input string ends up extensive changes in result, no correlation can 

be found.
 Having two input strings result in same has value is extremely unlikely.



Carnegie Mellon

Password Authentication
 User passwords are stored in database as crypto hashed values.
 With cryptohash() function, authentication becomes:

 Input “uname” and plain password “ppass” from user
 Calculate cpass = cryptohash(ppass)
 Check password database for an entry username==uname and password == cpass

 No cryptohash(cpass) function giving ppass is defined.
 POSIX define crypt(key, salt) functions for password test:

strcmp(crypt(ppass, salt), cpass) == 0

 /etc/shadow is used as password store in a standalone Unix/Linux system
 Not a perfect solution, vulnerable to:

 Dictionary attacks: Test all possible passwords from a dictionary
 Social engineering attacks: Learn information from user, birthday, team he is 

supporting etc.
 Key-loggers intercepting user input and reporting to third parties.



Carnegie Mellon

One Time Passwords (OTP)
 Major problem in password authentication is its lifetime. 

 A user can use same password for year. 
 Frequent changes of password/pin code is required.

 OTP uses cryptography to generate dynamic passwords as user 
is authenticated or by time.

 Sequence based:
OTPt = otpgen(secret, OPTt-1)

 Time based:
OTPt = otpgen(secret, time of day)

 User cannot compute otpgen so either it is precomputed or 
s/he is given a device to generate OTP’s as needed:
 OTP token devices / cell phone applications

 OTPs turn into “something you have” factor authentication 



Carnegie Mellon

Third Party Authentication

 As implementing password or OTP based authentication 
per target system gets complicated, authentication may 
need to be centralized.

 User asking for authentication is sent to authentication 
services on network. 

 User authenticates him/herself in server, gets a ticket. 
 Ticket is given back to the original system to finish 

authentication. 
 Cryptography makes sure ticket is coming from the trusted 

service.
 Protocols and services exists like kerberos, Openid, Oauth



Carnegie Mellon

Multi-factor Authentication

 High security systems and software requires at least two 
factor in authentication:
 password + mobile SMS
 Credit card + pin code
 Retina scan + id card

 Something you have and something you are requires 
hardware devices to implement
 Fingerprint scanners
 Retina scanners
 Smart cards + readers
 Mobile phones
 SIM cards 



Carnegie Mellon

Other Uses of Cryptography in OS

 Cryptographic hash functions/digests: 
 Integrity of data. If a file (i.e. a system binary) has changed in 

system. For example a virus. 
 Software package authentication.

 Symmetric cryptography:
 Data privacy.
 Encrypted content (disk, files, messages)

 Public key cryptography:
 Integrity of data (message signing and verification)
 Authentication (electronic certificates)
 Encryption (encryption without shared key)
 Key exchange


