Slides include materials from *Operating System Concepts*, 7th ed., by Silbershatz, Galvin, & Gagne, *Distributed Systems: Principles & Paradigms*, 2nd ed. By Tanenbaum and Van Steen, and *Modern Operating Systems*, 2nd ed., by Tanenbaum

Storage

- Where is your stuff when you turn your machine off?
 - In "the cloud"! Disk
- Where does the cloud store your stuff?
- Various storage devices
 - Magnetic tape |
 - "Hard disk"
 - CD-ROMI
 - Flash memory (

■ What do they have in common? How do they differ?

Storage characteristics

- "Non-volatile"
 - Write; power-off; read: should return same value
 - Years later!
- Slow (compared to RAM)
 - Milliseconds or seconds instead of nanoseconds Can't execute programs from it (must fetch first)
- \"Block oriented"
 - Fetch and store large clumps of data
 - Spinning disk: 512/4096 bytes
 - CD-ROM: 2048 bytes
 - Flash: "hard to say"

Time to fetch 1 byte == time to fetch 1 block

Storage Model

Address space

- Blocks have numbers
- Ancient times: (C,H,S) tuple
 - C, H, S were geometric features of old disks
- Modern: (LBA)
 - "Logical Block Address" runs from 0..N

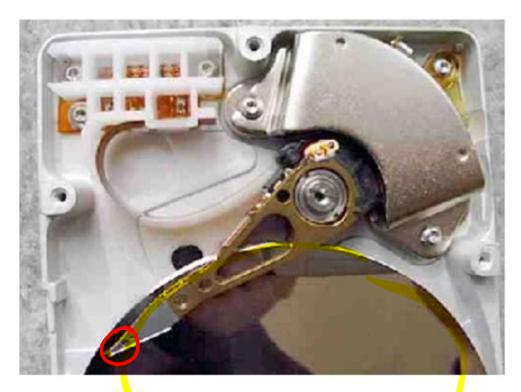
Storage Model

- Reading and writing
- msecont
- Read-block(N) \Rightarrow [huge delay] \Rightarrow block else failure
 - Sometimes a re-try helps (usually not)
- Write-block(N) ⇒ [huge delay] ⇒ "ok" else failure.
 - Failures usually indicate "obvious" bad things
 - The disk motor stopped
 - "Successful" write doesn't guarantee a later read
 - Devices usually contain a power buffer
 - A write operation either completes or has no effect
- Modern devices support "tagged command queueing"
 - OS can issue multiple requests, each has a "tag"
 - Device can return results in any order, with the OS's tag.

Command Queueing In Act

- Disks serve read requests out of order
 - OS queues: "read 37", "read 83", "read 2"
 - Disk returns 37, 2, 83
 - Great! That's why we buy smart disks and queue multiple requests
- Disks serve write requests out of order, too
 - OS queues "write 23", "write 24", "write 1000", "read 4-8", ...
 - Disk writes 24, 23 (!!), gives you 4, 5, 6, 7, 8, writes 1000
 - What if power fails before last write?
 - What if power fails between first two writes?

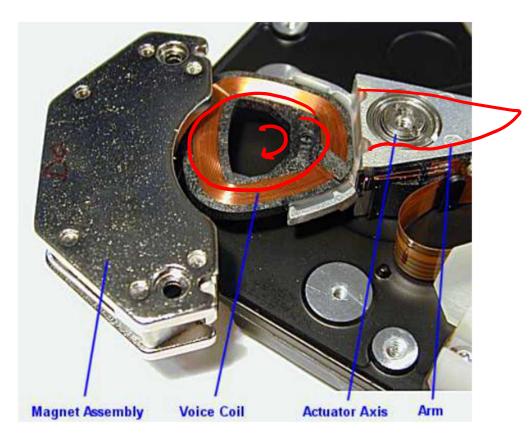
Command Queueing In Action


- How can OS ensure data-structure integrity?
 - Special commands
 - "Flush all pending writes"
 - Think "my disk is 'modern'", think "disk barrier"
 - Can even queue a flush to apply to all before now
 - Can apply these "barrier" flushes to subsets of requests
 - Rarely used by operating system
 - "Disable write cache"
 - Think "please don't be quite so modern"

Examples

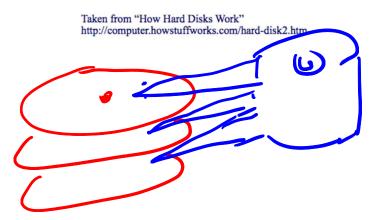
- "Hard drive"
 - Parts
 - Execution model
- NAND flash memory
- 550

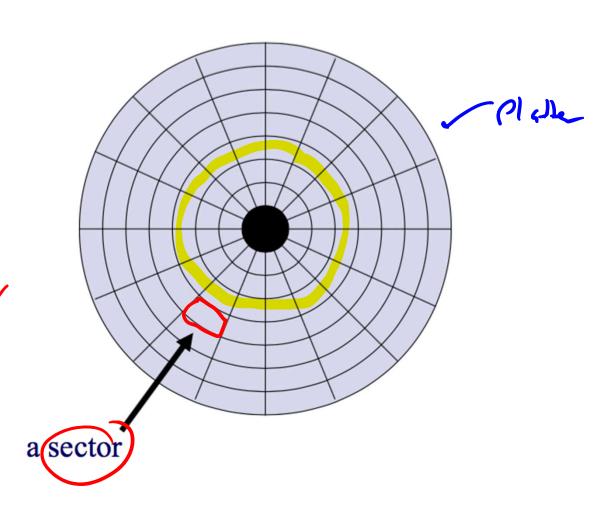
- Challenges
 - Write amplification
 - Wear leveling


Information is written to and read from the platters by the read/write heads on the end of the disk arm

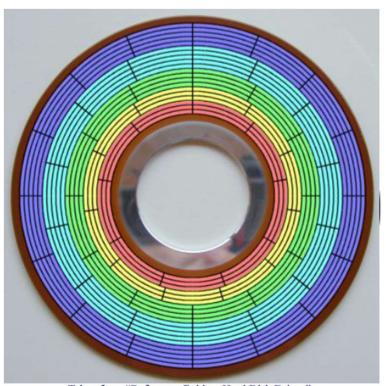
Taken from "How Hard Disks Work"
http://computer.howstuffworks.com/hard-disk2.htm

https://www.youtube.com/watch?v=NtPc0jl21i0

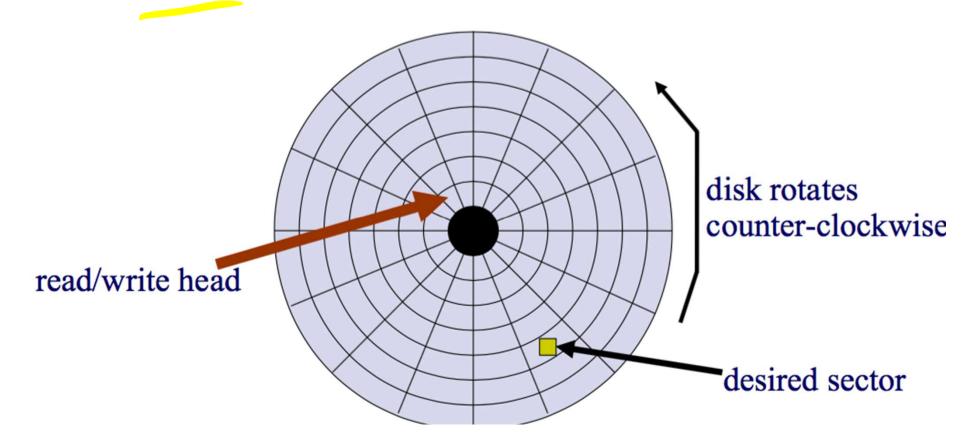

- The arm is moved by a voice coil actuator
- Slow, as computers go
 - Acceleration time
 - Travel time

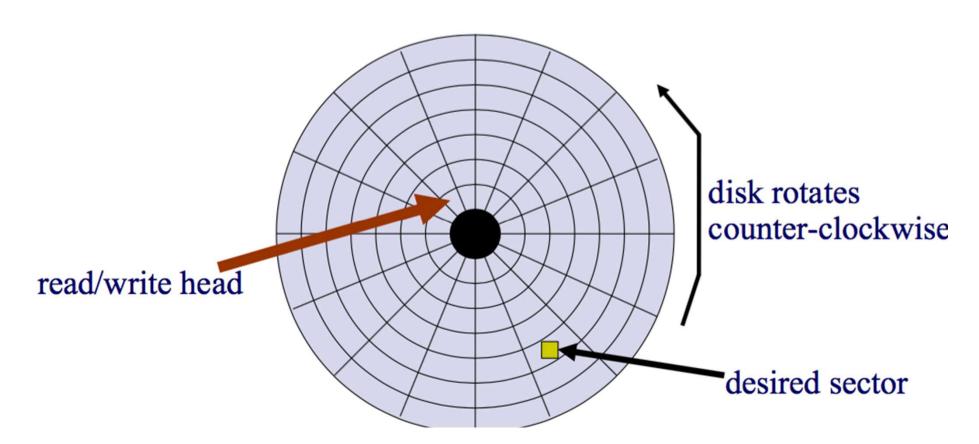

Taken from "Hard Disk Drives" http://www.pcguide.com/ref/hdd

- Both sides of each platter store information
- Each side of a platter is called a *surface*
- Each surface has its own read/write head

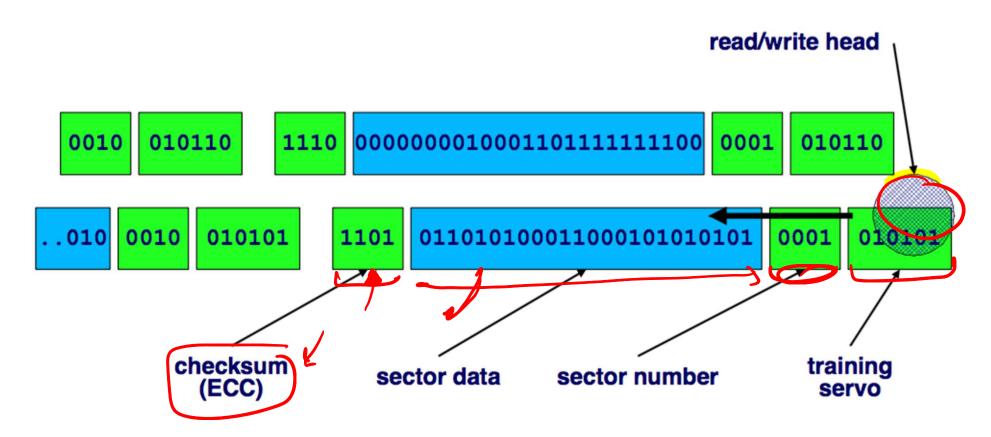

- Each surface is divided by concentric circles, creating tracks
- These tracks are further divided into sectors
- A sector is the smallest unit of data transfer to or from the disk
 - 512 bytes traditional disks
 - 2048 bytes CD-ROMs
 - 4096 bytes 2010 disks
 - (pretend to be 512!)
- "Sector address"
 - "C/H/S"

Anatomy of a Hard Drive, Actual

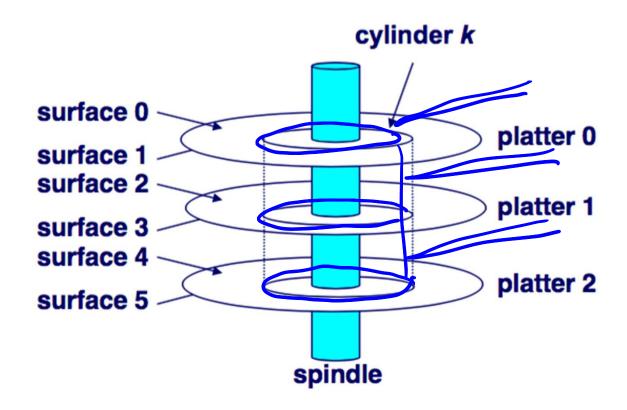

- Modern hard drives use zoned bit recording
 - Disk has tables to map track# to #sectors
 - Sectors are all roughly the same linear length
 - LBA "sector address" names a sector, like "page number" names a frame


Taken from "Reference Guide – Hard Disk Drives" http://www.storagereview.com/map/lm.cgi/zone

- We need to do two things to transfer a sector
 - 1. Move the read/write head to the appropriate track ("seek time")
 - Wait until the desired sector spins around ("rotational delay"/"rotational latency")


Observe

- Average seeks are 2 10 msec
- Rotation of 5400/7200/10K/15K rpm means rotational delay of 11/8/6/4 msec


Anatomy of a "Sector"

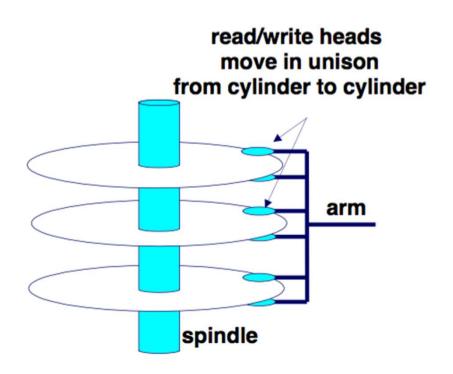
- Finding a sector involves real work
 Locate correct track; scan sector headers for number
- After sector is read, compare data to checksum

Disk Cylinder

 Matching tracks across surfaces are collectively called a cylinder

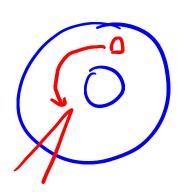
Access Within A Cylinder is Faster

Heads share one single arm


- All heads always on same cylinder
- Active head is aligned, others are "close"

Switching heads is "cheap"

- Deactivate head I, activate J
- Read a few sector headers to fine-tune arm position for J's track


Optimal transfer rate?

- Transfer all sectors on a track
- Transfer all tracks on a cylinder
- Then move the arm

Access Time

- On average, we will have to move the read/write head over one third of the tracks
 - The time to do this is the "average seek time"
 - 5400 rpm: ~10 ms _M
 - 7200 rpm: ~8.5 ms
- We will also must wait half a rotation, on average
 - The time to do this is "average rotational delay"
 - 5400 rpm: ~5.5 ms **(**
 - 7200 rpm: ~4 ms
- These numbers don't exactly add
 - While arm moves sideways, disk spins below it

Access Time

- Total random access time is ~7 to 20 milliseconds
 - 1000 ms/second, 20 ms/access = 50 accesses/second
 - 50 1/2-kilobyte transfers per second = 25 KByte/sec
- Disks are slow!
 - But Disk transfer rates are hundreds of MBytes/sec!
- What can we, as OS programmers, do about this?
 - Read/write more per seek (multi-sector transfers)
 - Disk cache can read ahead and delay/soalesce writes
 - Don't seek so randomly
 - Place data near also-relevant daţa
 - Re-order requests,
 - OS may do "disk scheduling" instead of a FIFO queue
 - (Disks internally schedule too)

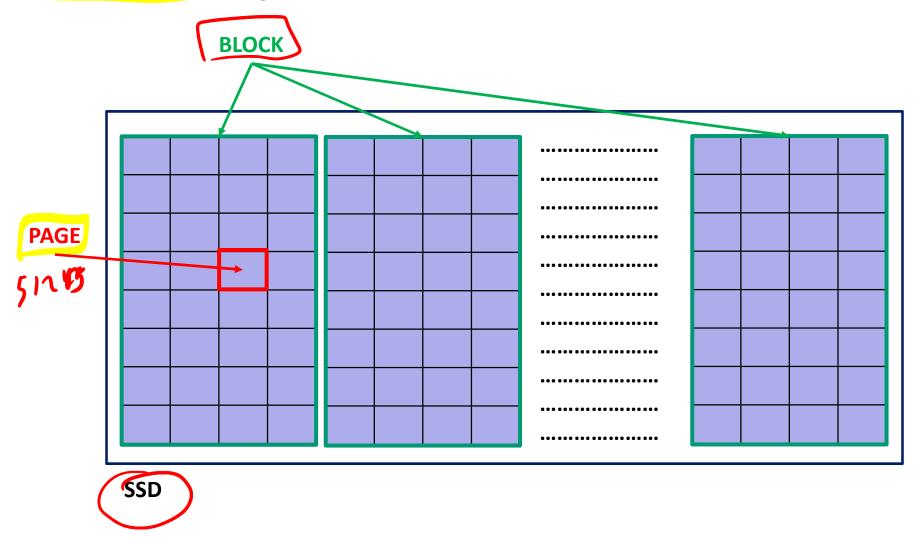
Solid-State Disks (SSD)

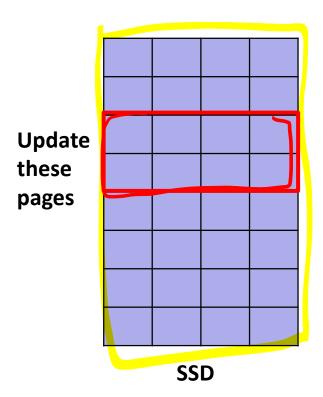
- What is "solid state"?
 - Original meaning: "no vacuum tubes"
 - Modern meaning: "no moving parts"
- What is "solid state" storage?
 - RAM backed by a battery!
 - "NOR flash"
 - "NAND flash"
 - Newer things

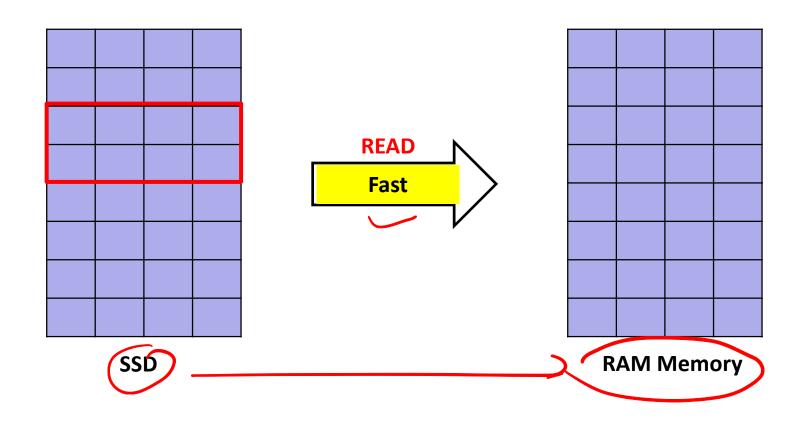
Solid-State Disks (SSD)

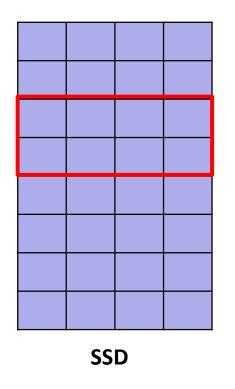
- What is "solid state" storage?
 - RAM backed by a battery!
 - Fast
- "NOR flash"
 - Word-accessible
 - Writes are slow, density is low
 - Used to boot embedded devices, store configuration.
- "NAND flash"
 - Read/write "pages" (512 B), erase "blocks" (16 KB)
 - Most SSDs today are NAND flash

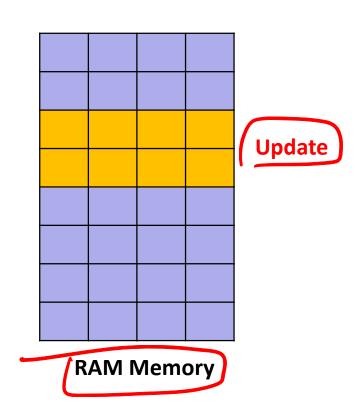
Solid-State Disks (SSD)

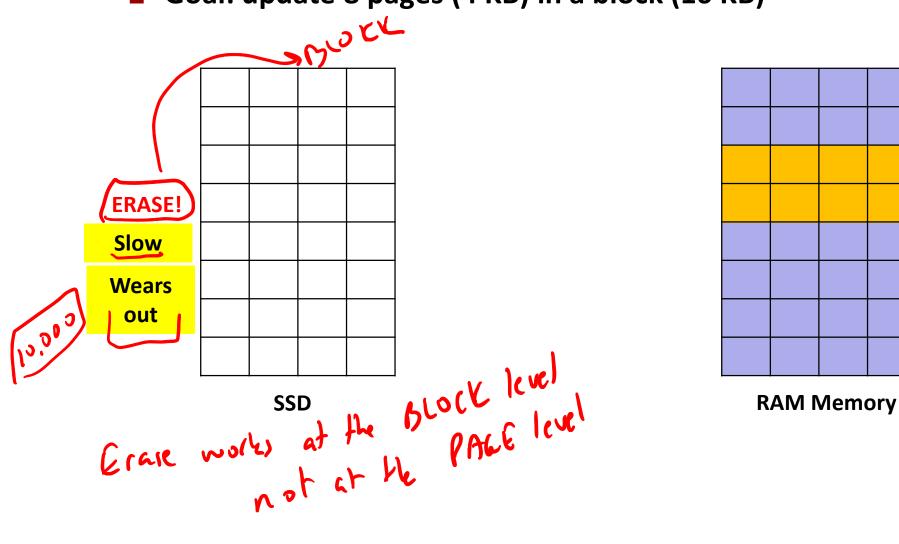

Architectural features of NAND flash

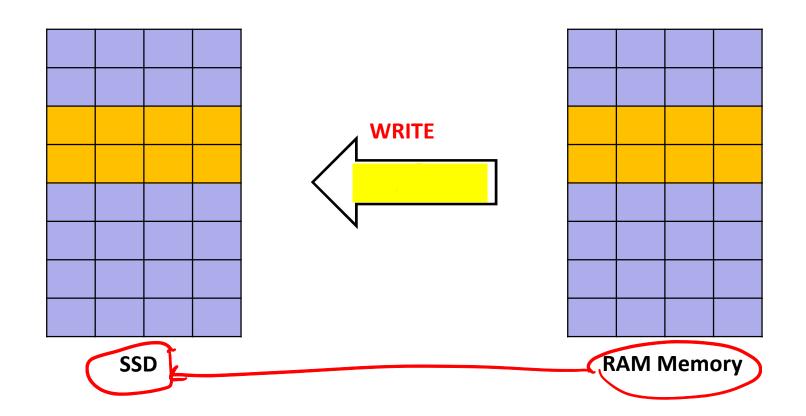

- No moving parts means no "seek time" / "rotational delay"
- Read is faster than write
- Write and "erase" are different
 - A blank page can be written to (once)
 - A written page must be erased before rewriting
 - But pages can't be individually erased!
 - "Erase" works on multi-page blocks (16 KB)
 - "Erase" is very slow
 - "Erase" damages the block each time

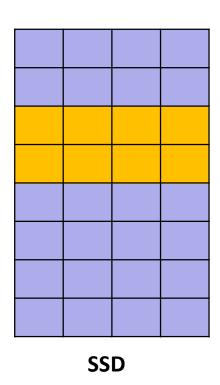

Implications


- "Write amplification"
- "Wear leveling"


SSD Concepts







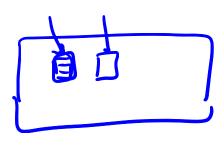
"Write Amplification"

Goal: update 8 pages (4 KB) in a block (16 KB)

Result

Logical: wrote 4 KB

Physical: erased and write 16 KB

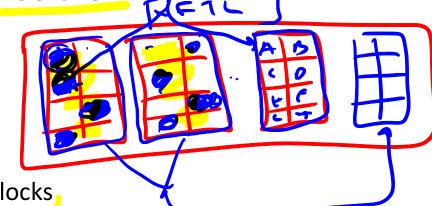

"Amplification factor": 4

Why do we care? Device will wear out 4X faster!

Hot-Spot Wear and Wear Leveling

- The bad case
 - File systems like to write the same block repeatedly
 - Erasing damages part of the flash
 - ~10,000 erases destroys a block
- Strategy: lie to the OS!
 - Host believes it is writing to specific "disk blocks" LBA
 - Store the information somewhere else!
 - Secretly re-map host address onto NAND address
 - FTL "flash translation layer"
- Each part of the "disk" moves from one part of the flash to another over time
 - "Over-provision"
 - Advertise less space than there really is
 - Use spare space to replace worn-out blocks
 - Use up overprovisioning as blocks wear out
 - Device eventually gets slower and then fails

DIL.



Managing - Write Amplification

- The bad case
 - Small random writes
- Strategy: lie to the OS!
 - Group multiple small writes into full blocks
 - Write at sequential write rates
 - To update a "disk block", store a new copy somewhere else
 - Leaves "holes" in other blocks (stale old block versions)
 - At some point, "clean out" the holes by reading a bunch of old blocks and writing back a smaller number of whole pages

510

- Rate of cleaning depends amount of unallocated space
 - Controller reserves X% hidden space (ie. 10, 20, 50%)

SSD vs Disk

- SSD's implement "regular disk" model
 - LBA sectors
 - Write-sector, read-sector, "park heads", etc.
- Read operations are extremely fast (100X faster), no "seek time" or "rotational delay" (every sector is "nearby")
- Write operations "vary widely" (maybe 100X faster, maybe not faster at all)
- SSD's use less power than actual disks (~1/5?)
- SSD's are shock-resistant
- Writing to an SSD wears it out much faster than a disk
- SSD's are expensive (20X or more)

Further reading

- Reliably Erasing Data from Flash-based Solid State Drives
 - Wei et al., UCSD
 FAST '11
 http://www.usenix.org/legacy/events/fast11/tech/full_papers/Wei.pdf
- A Conversation with Jim Gray
 - Dave Patterson
 - ACM Queue, June 2003
 http://queue.acm.org/detail.cfm?id=864078
- Terabyte Territory
 - Brian Hayes
 - American Scientist, May/June 2002
 http://www.americanscientist.org/issues/pub/terabyte-territory