
Carnegie Mellon

Storage - Disks

Slides include materials from Operating System Concepts, 7th ed., by
Silbershatz, Galvin, & Gagne, Distributed Systems: Principles & Paradigms,
2nd ed. By Tanenbaum and Van Steen, and
Modern Operating Systems, 2nd ed., by Tanenbaum

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Storage

 Where is your stuff when you turn your machine off?
 In “the cloud”!

 Where does the cloud store your stuff?
 Various storage devices

 Magnetic tape
 “Hard disk”
 CD-ROM
 Flash memory

 What do they have in common? How do they differ?

Carnegie Mellon

Storage characteristics

 “Non-volatile”
 Write; power-off; read: should return same value

 Years later!

 Slow (compared to RAM)
 Milliseconds or seconds instead of nanoseconds Can't execute

programs from it (must fetch first)

 “Block oriented”
 Fetch and store large clumps of data

 Spinning disk: 512/4096 bytes
 CD-ROM: 2048 bytes
 Flash: “hard to say”

Time to fetch 1 byte == time to fetch 1 block

Carnegie Mellon

Storage Model

 Address space
 Blocks have numbers
 Ancient times: (C,H,S) tuple

 C, H, S were geometric features of old disks
 Modern: (LBA)

 “Logical Block Address” runs from 0..N

Carnegie Mellon

Storage Model

 Reading and writing
 Read-block(N) [huge delay] block else failure

 Sometimes a re-try helps (usually not)
 Write-block(N) [huge delay] “ok” else failure

 Failures usually indicate “obvious” bad things
– The disk motor stopped

 “Successful” write doesn't guarantee a later read
 Devices usually contain a power buffer

– A write operation either completes or has no effect
 Modern devices support “tagged command queueing”

 OS can issue multiple requests, each has a “tag”
 Device can return results in any order, with the OS's tag

Carnegie Mellon

Command Queueing In Act

 Disks serve read requests out of order
 OS queues: “read 37”, “read 83”, “read 2”

 Disk returns 37, 2, 83
– Great! That's why we buy smart disks and queue multiple

requests

 Disks serve write requests out of order, too
 OS queues “write 23”, “write 24”, “write 1000”, “read 4-8”, ...

 Disk writes 24, 23 (!!), gives you 4, 5, 6, 7, 8, writes 1000
 What if power fails before last write?
 What if power fails between first two writes?

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Command Queueing In Action

 How can OS ensure data-structure integrity?
 Special commands

 “Flush all pending writes”
– Think “my disk is 'modern'”, think “disk barrier”
– Can even queue a flush to apply to all before now
– Can apply these “barrier” flushes to subsets of requests
– Rarely used by operating system

 “Disable write cache”
– Think “please don't be quite so modern”

Carnegie Mellon

Examples

 “Hard drive”
 Parts
 Execution model

 NAND flash memory
 Challenges

 Write amplification
 Wear leveling

Carnegie Mellon

Anatomy of a Hard Drive

 Information is
written to and read
from the platters by
the read/write
heads on the end of
the disk arm

https://www.youtube.com/watch?v=NtPc0jI21i0

Carnegie Mellon

Anatomy of a Hard Drive

 The arm is moved by a voice
coil actuator

 Slow, as computers go
 Acceleration time
 Travel time

Carnegie Mellon

Anatomy of a Hard Drive

 Both sides of each
platter store
information

 Each side of a platter is
called a surface

 Each surface has its own
read/write head

Carnegie Mellon

Anatomy of a Hard Drive
 Each surface is divided by

concentric circles, creating
tracks

 These tracks are further
divided into sectors

 A sector is the smallest unit
of data transfer to or from
the disk
 512 bytes – traditional disks
 2048 bytes – CD-ROMs
 4096 bytes – 2010 disks

 (pretend to be 512!)
 “Sector address”

 “C/H/S”

Carnegie Mellon

Anatomy of a Hard Drive, Actual

 Modern hard drives use zoned
bit recording
 Disk has tables to map track# to

#sectors
 Sectors are all roughly the same

linear length
 LBA “sector address” names a

sector, like “page number”
names a frame

Carnegie Mellon

Anatomy of a Hard Drive

 We need to do two things to transfer a sector
1. Move the read/write head to the appropriate track (“seek time”)
2. Wait until the desired sector spins around (“rotational delay”/“rotational

latency”)

 Observe
 Average seeks are 2 – 10 msec
 Rotation of 5400/7200/10K/15K rpm means rotational delay of 11/8/6/4

msec
 Rotation dominates short seeks, matches average seeks

Carnegie Mellon

Anatomy of a Hard Drive

 Observe
 Average seeks are 2 – 10 msec
 Rotation of 5400/7200/10K/15K rpm means rotational delay of 11/8/6/4

msec
 Rotation dominates short seeks, matches average seeks

Carnegie Mellon

Anatomy of a “Sector”

 Finding a sector involves real work
Locate correct track; scan sector headers for number

 After sector is read, compare data to checksum

Carnegie Mellon

Disk Cylinder

 Matching tracks
across surfaces
are collectively
called a cylinder

Carnegie Mellon

Access Within A Cylinder is Faster

 Heads share one single arm
 All heads always on same

cylinder
 Active head is aligned, others

are “close”

 Switching heads is “cheap”
 Deactivate head I, activate J
 Read a few sector headers to

fine-tune arm position for J's
track

 Optimal transfer rate?
 Transfer all sectors on a track
 Transfer all tracks on a cylinder
 Then move the arm

Carnegie Mellon

Access Time

 On average, we will have to move the read/write head
over one third of the tracks
 The time to do this is the “average seek time”

 5400 rpm: ~10 ms
 7200 rpm: ~8.5 ms

 We will also must wait half a rotation, on average
 The time to do this is “average rotational delay”

 5400 rpm: ~5.5 ms
 7200 rpm: ~4 ms

 These numbers don't exactly add
 While arm moves sideways, disk spins below it

Carnegie Mellon

Access Time

 Total random access time is ~7 to 20 milliseconds
 1000 ms/second, 20 ms/access = 50 accesses/second
 50 1⁄2-kilobyte transfers per second = 25 KByte/sec

 Disks are slow!
 But Disk transfer rates are hundreds of MBytes/sec!

 What can we, as OS programmers, do about this?
 Read/write more per seek (multi-sector transfers)

 Disk cache can read ahead and delay/coalesce writes
 Don't seek so randomly

 Place data near also-relevant data
 Re-order requests

– OS may do “disk scheduling” instead of a FIFO queue
– (Disks internally schedule too)

Carnegie Mellon

Solid-State Disks (SSD)

 What is “solid state”?
 Original meaning: “no vacuum tubes”
 Modern meaning: “no moving parts”

 What is “solid state” storage?
 RAM backed by a battery!
 “NOR flash”
 “NAND flash”
 Newer things

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Solid-State Disks (SSD)

 What is “solid state” storage?
 RAM backed by a battery!

 Fast

 “NOR flash”
 Word-accessible
 Writes are slow, density is low
 Used to boot embedded devices, store configuration

 “NAND flash”
 Read/write “pages” (512 B), erase “blocks” (16 KB)
 Most SSDs today are NAND flash

Carnegie Mellon

Solid-State Disks (SSD)

 Architectural features of NAND flash
 No moving parts means no “seek time” / “rotational delay”
 Read is faster than write
 Write and “erase” are different

 A blank page can be written to (once)
 A written page must be erased before rewriting
 But pages can't be individually erased!

– “Erase” works on multi-page blocks (16 KB)
– “Erase” is very slow
– “Erase” damages the block each time

 Implications
 “Write amplification”
 “Wear leveling”

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

SSD Concepts

SSD

…………………
…………………
…………………
…………………
…………………
…………………
…………………
…………………
…………………
…………………
…………………

PAGE

BLOCK

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

SSD: Updating data via read/erase/write

 Goal: update 8 pages (4 KB) in a block (16 KB)

Update
these
pages

SSD

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

SSD: Updating data via read/erase/write

 Goal: update 8 pages (4 KB) in a block (16 KB)

Fast

READ

RAM MemorySSD

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

SSD: Updating data via read/erase/write

 Goal: update 8 pages (4 KB) in a block (16 KB)

Update

RAM MemorySSD

Erol sahin

Erol sahin

Carnegie Mellon

SSD: Updating data via read/erase/write

 Goal: update 8 pages (4 KB) in a block (16 KB)

ERASE!

Slow

RAM MemorySSD

Wears
out

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

SSD: Updating data via read/erase/write

 Goal: update 8 pages (4 KB) in a block (16 KB)

WRITE

Slow

RAM MemorySSD

Erol sahin

Carnegie Mellon

“Write Amplification”

 Goal: update 8 pages (4 KB) in a block (16 KB)

 Result
 Logical: wrote 4 KB
 Physical: erased and write 16 KB
 “Amplification factor”: 4

 Why do we care? Device will
wear out 4X faster!

SSD

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Hot-Spot Wear and Wear Leveling
 The bad case

 File systems like to write the same block repeatedly
 Erasing damages part of the flash

 ~10,000 erases destroys a block

 Strategy: lie to the OS!
 Host believes it is writing to specific “disk blocks” - LBA
 Store the information somewhere else!

 Secretly re-map host address onto NAND address
 FTL - “flash translation layer”

 Each part of the “disk” moves from one part of the flash to another over
time
 “Over-provision”

 Advertise less space than there really is
 Use spare space to replace worn-out blocks

 Use up overprovisioning as blocks wear out
 Device eventually gets slower and then fails

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Managing - Write Amplification

 The bad case
 Small random writes

 Strategy: lie to the OS!
 Group multiple small writes into full blocks

 Write at sequential write rates
 To update a “disk block”, store a new copy somewhere else

 Leaves “holes” in other blocks (stale old block versions)
 At some point, “clean out” the holes by reading a bunch of old

blocks and writing back a smaller number of whole pages
 Rate of cleaning depends amount of unallocated space

 Controller reserves X% hidden space (ie. 10, 20, 50%)

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

SSD vs Disk

 SSD's implement “regular disk” model
 LBA sectors
 Write-sector, read-sector, “park heads”, etc.

 Read operations are extremely fast (100X faster), no
“seek time” or “rotational delay” (every sector is
“nearby”)

 Write operations “vary widely” (maybe 100X faster,
maybe not faster at all)

 SSD's use less power than actual disks (~1/5?)
 SSD's are shock-resistant
 Writing to an SSD wears it out much faster than a disk
 SSD's are expensive (20X or more)

Carnegie Mellon

SSD Drives - Summary

 Solid State disks have no moving parts and mechanical
delays.

 SSD’s have other problems due to the following
characteristics:
 Block based read only read access, fast, no restriction.
 Only empty blocks can be written, slower than read but still fast
 Non-empty blocks needs to be erased.
 Erasing has to be done in larger units (segments/clusters). i.e.

512byte vs. 32KByte.
 Erasing is slow and each segment has a erase cycle limit (i.e. 10000

erases).

 Single bit update requires:
 Erase a whole segment , write all (32K) content with modified bit.

Carnegie Mellon

SSD Drives - Summary

 Erase/write problem solution:
 Write modified blocks on already erased segments
 Logical block number and actual block on disk differs.
 Keep and internal table for actual block to logical block mapping.
 OS asks for logical block content, SDD controller returns actual

block content.

 Called Wear Leveling or Write Amplification.
 FTL: Flash Translation Layer implemented on Flash

hardware does the translation. OS does not know about
it.

 OS based solution: Use a Log Structured File System.
 To be discussed in detail in FileSystems

Carnegie Mellon

Disk Management
 Managing disks on a system gets complicated as space requirement increases by

time.
 Adding new disks to system, changing failed disks, deleting disks, adjusting

partitions with new layout is an issue.
 A solution is Logical Volume Management.

 A layer in OS maps a group of physical disk partitions into a large contiguous logical volume.
 E.g. add 5 4T disks to get a 20T as a single partition.

 LVM helps getting OS independent from underlying disk organization.

 RAID (Redundant Array of Independent Disks) is another solution which also
respects disk failures and efficiency.

 Common RAID levels:
 0 stripe (distribute I/O requests on two or more disks for efficiency)
 1 mirror (execute same I/O on two or more disks for failure recovery)
 5 distributed parity (distribute operation on multiple disk with parity, both efficiency and filure

recovery)

 RAID is best implemented in HW. OS implementation is called Soft RAID

Carnegie Mellon

Further reading

 Reliably Erasing Data from Flash-based Solid State Drives
 Wei et al., UCSD

FAST '11
http://www.usenix.org/legacy/events/fast11/tech/full_papers/We
i.pdf

 A Conversation with Jim Gray
 Dave Patterson
 ACM Queue, June 2003

http://queue.acm.org/detail.cfm?id=864078

 Terabyte Territory
 Brian Hayes
 American Scientist, May/June 2002

http://www.americanscientist.org/issues/pub/terabyte-territory

