
Carnegie Mellon

Storage - Disks

Slides include materials from Operating System Concepts, 7th ed., by
Silbershatz, Galvin, & Gagne, Distributed Systems: Principles & Paradigms,
2nd ed. By Tanenbaum and Van Steen, and
Modern Operating Systems, 2nd ed., by Tanenbaum

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Storage

 Where is your stuff when you turn your machine off?
 In “the cloud”!

 Where does the cloud store your stuff?
 Various storage devices

 Magnetic tape
 “Hard disk”
 CD-ROM
 Flash memory

 What do they have in common? How do they differ?

Carnegie Mellon

Storage characteristics

 “Non-volatile”
 Write; power-off; read: should return same value

 Years later!

 Slow (compared to RAM)
 Milliseconds or seconds instead of nanoseconds Can't execute

programs from it (must fetch first)

 “Block oriented”
 Fetch and store large clumps of data

 Spinning disk: 512/4096 bytes
 CD-ROM: 2048 bytes
 Flash: “hard to say”

Time to fetch 1 byte == time to fetch 1 block

Carnegie Mellon

Storage Model

 Address space
 Blocks have numbers
 Ancient times: (C,H,S) tuple

 C, H, S were geometric features of old disks
 Modern: (LBA)

 “Logical Block Address” runs from 0..N

Carnegie Mellon

Storage Model

 Reading and writing
 Read-block(N) [huge delay] block else failure

 Sometimes a re-try helps (usually not)
 Write-block(N) [huge delay] “ok” else failure

 Failures usually indicate “obvious” bad things
– The disk motor stopped

 “Successful” write doesn't guarantee a later read
 Devices usually contain a power buffer

– A write operation either completes or has no effect
 Modern devices support “tagged command queueing”

 OS can issue multiple requests, each has a “tag”
 Device can return results in any order, with the OS's tag

Carnegie Mellon

Command Queueing In Act

 Disks serve read requests out of order
 OS queues: “read 37”, “read 83”, “read 2”

 Disk returns 37, 2, 83
– Great! That's why we buy smart disks and queue multiple

requests

 Disks serve write requests out of order, too
 OS queues “write 23”, “write 24”, “write 1000”, “read 4-8”, ...

 Disk writes 24, 23 (!!), gives you 4, 5, 6, 7, 8, writes 1000
 What if power fails before last write?
 What if power fails between first two writes?

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Command Queueing In Action

 How can OS ensure data-structure integrity?
 Special commands

 “Flush all pending writes”
– Think “my disk is 'modern'”, think “disk barrier”
– Can even queue a flush to apply to all before now
– Can apply these “barrier” flushes to subsets of requests
– Rarely used by operating system

 “Disable write cache”
– Think “please don't be quite so modern”

Carnegie Mellon

Examples

 “Hard drive”
 Parts
 Execution model

 NAND flash memory
 Challenges

 Write amplification
 Wear leveling

Carnegie Mellon

Anatomy of a Hard Drive

 Information is
written to and read
from the platters by
the read/write
heads on the end of
the disk arm

https://www.youtube.com/watch?v=NtPc0jI21i0

Carnegie Mellon

Anatomy of a Hard Drive

 The arm is moved by a voice
coil actuator

 Slow, as computers go
 Acceleration time
 Travel time

Carnegie Mellon

Anatomy of a Hard Drive

 Both sides of each
platter store
information

 Each side of a platter is
called a surface

 Each surface has its own
read/write head

Carnegie Mellon

Anatomy of a Hard Drive
 Each surface is divided by

concentric circles, creating
tracks

 These tracks are further
divided into sectors

 A sector is the smallest unit
of data transfer to or from
the disk
 512 bytes – traditional disks
 2048 bytes – CD-ROMs
 4096 bytes – 2010 disks

 (pretend to be 512!)
 “Sector address”

 “C/H/S”

Carnegie Mellon

Anatomy of a Hard Drive, Actual

 Modern hard drives use zoned
bit recording
 Disk has tables to map track# to

#sectors
 Sectors are all roughly the same

linear length
 LBA “sector address” names a

sector, like “page number”
names a frame

Carnegie Mellon

Anatomy of a Hard Drive

 We need to do two things to transfer a sector
1. Move the read/write head to the appropriate track (“seek time”)
2. Wait until the desired sector spins around (“rotational delay”/“rotational

latency”)

 Observe
 Average seeks are 2 – 10 msec
 Rotation of 5400/7200/10K/15K rpm means rotational delay of 11/8/6/4

msec
 Rotation dominates short seeks, matches average seeks

Carnegie Mellon

Anatomy of a Hard Drive

 Observe
 Average seeks are 2 – 10 msec
 Rotation of 5400/7200/10K/15K rpm means rotational delay of 11/8/6/4

msec
 Rotation dominates short seeks, matches average seeks

Carnegie Mellon

Anatomy of a “Sector”

 Finding a sector involves real work
Locate correct track; scan sector headers for number

 After sector is read, compare data to checksum

Carnegie Mellon

Disk Cylinder

 Matching tracks
across surfaces
are collectively
called a cylinder

Carnegie Mellon

Access Within A Cylinder is Faster

 Heads share one single arm
 All heads always on same

cylinder
 Active head is aligned, others

are “close”

 Switching heads is “cheap”
 Deactivate head I, activate J
 Read a few sector headers to

fine-tune arm position for J's
track

 Optimal transfer rate?
 Transfer all sectors on a track
 Transfer all tracks on a cylinder
 Then move the arm

Carnegie Mellon

Access Time

 On average, we will have to move the read/write head
over one third of the tracks
 The time to do this is the “average seek time”

 5400 rpm: ~10 ms
 7200 rpm: ~8.5 ms

 We will also must wait half a rotation, on average
 The time to do this is “average rotational delay”

 5400 rpm: ~5.5 ms
 7200 rpm: ~4 ms

 These numbers don't exactly add
 While arm moves sideways, disk spins below it

Carnegie Mellon

Access Time

 Total random access time is ~7 to 20 milliseconds
 1000 ms/second, 20 ms/access = 50 accesses/second
 50 1⁄2-kilobyte transfers per second = 25 KByte/sec

 Disks are slow!
 But Disk transfer rates are hundreds of MBytes/sec!

 What can we, as OS programmers, do about this?
 Read/write more per seek (multi-sector transfers)

 Disk cache can read ahead and delay/coalesce writes
 Don't seek so randomly

 Place data near also-relevant data
 Re-order requests

– OS may do “disk scheduling” instead of a FIFO queue
– (Disks internally schedule too)

Carnegie Mellon

Solid-State Disks (SSD)

 What is “solid state”?
 Original meaning: “no vacuum tubes”
 Modern meaning: “no moving parts”

 What is “solid state” storage?
 RAM backed by a battery!
 “NOR flash”
 “NAND flash”
 Newer things

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Solid-State Disks (SSD)

 What is “solid state” storage?
 RAM backed by a battery!

 Fast

 “NOR flash”
 Word-accessible
 Writes are slow, density is low
 Used to boot embedded devices, store configuration

 “NAND flash”
 Read/write “pages” (512 B), erase “blocks” (16 KB)
 Most SSDs today are NAND flash

Carnegie Mellon

Solid-State Disks (SSD)

 Architectural features of NAND flash
 No moving parts means no “seek time” / “rotational delay”
 Read is faster than write
 Write and “erase” are different

 A blank page can be written to (once)
 A written page must be erased before rewriting
 But pages can't be individually erased!

– “Erase” works on multi-page blocks (16 KB)
– “Erase” is very slow
– “Erase” damages the block each time

 Implications
 “Write amplification”
 “Wear leveling”

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

SSD Concepts

SSD

…………………
…………………
…………………
…………………
…………………
…………………
…………………
…………………
…………………
…………………
…………………

PAGE

BLOCK

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

SSD: Updating data via read/erase/write

 Goal: update 8 pages (4 KB) in a block (16 KB)

Update
these
pages

SSD

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

SSD: Updating data via read/erase/write

 Goal: update 8 pages (4 KB) in a block (16 KB)

Fast

READ

RAM MemorySSD

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

SSD: Updating data via read/erase/write

 Goal: update 8 pages (4 KB) in a block (16 KB)

Update

RAM MemorySSD

Erol sahin

Erol sahin

Carnegie Mellon

SSD: Updating data via read/erase/write

 Goal: update 8 pages (4 KB) in a block (16 KB)

ERASE!

Slow

RAM MemorySSD

Wears
out

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

SSD: Updating data via read/erase/write

 Goal: update 8 pages (4 KB) in a block (16 KB)

WRITE

Slow

RAM MemorySSD

Erol sahin

Carnegie Mellon

“Write Amplification”

 Goal: update 8 pages (4 KB) in a block (16 KB)

 Result
 Logical: wrote 4 KB
 Physical: erased and write 16 KB
 “Amplification factor”: 4

 Why do we care? Device will
wear out 4X faster!

SSD

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Hot-Spot Wear and Wear Leveling
 The bad case

 File systems like to write the same block repeatedly
 Erasing damages part of the flash

 ~10,000 erases destroys a block

 Strategy: lie to the OS!
 Host believes it is writing to specific “disk blocks” - LBA
 Store the information somewhere else!

 Secretly re-map host address onto NAND address
 FTL - “flash translation layer”

 Each part of the “disk” moves from one part of the flash to another over
time
 “Over-provision”

 Advertise less space than there really is
 Use spare space to replace worn-out blocks

 Use up overprovisioning as blocks wear out
 Device eventually gets slower and then fails

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Managing - Write Amplification

 The bad case
 Small random writes

 Strategy: lie to the OS!
 Group multiple small writes into full blocks

 Write at sequential write rates
 To update a “disk block”, store a new copy somewhere else

 Leaves “holes” in other blocks (stale old block versions)
 At some point, “clean out” the holes by reading a bunch of old

blocks and writing back a smaller number of whole pages
 Rate of cleaning depends amount of unallocated space

 Controller reserves X% hidden space (ie. 10, 20, 50%)

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

SSD vs Disk

 SSD's implement “regular disk” model
 LBA sectors
 Write-sector, read-sector, “park heads”, etc.

 Read operations are extremely fast (100X faster), no
“seek time” or “rotational delay” (every sector is
“nearby”)

 Write operations “vary widely” (maybe 100X faster,
maybe not faster at all)

 SSD's use less power than actual disks (~1/5?)
 SSD's are shock-resistant
 Writing to an SSD wears it out much faster than a disk
 SSD's are expensive (20X or more)

Carnegie Mellon

SSD Drives - Summary

 Solid State disks have no moving parts and mechanical
delays.

 SSD’s have other problems due to the following
characteristics:
 Block based read only read access, fast, no restriction.
 Only empty blocks can be written, slower than read but still fast
 Non-empty blocks needs to be erased.
 Erasing has to be done in larger units (segments/clusters). i.e.

512byte vs. 32KByte.
 Erasing is slow and each segment has a erase cycle limit (i.e. 10000

erases).

 Single bit update requires:
 Erase a whole segment , write all (32K) content with modified bit.

Carnegie Mellon

SSD Drives - Summary

 Erase/write problem solution:
 Write modified blocks on already erased segments
 Logical block number and actual block on disk differs.
 Keep and internal table for actual block to logical block mapping.
 OS asks for logical block content, SDD controller returns actual

block content.

 Called Wear Leveling or Write Amplification.
 FTL: Flash Translation Layer implemented on Flash

hardware does the translation. OS does not know about
it.

 OS based solution: Use a Log Structured File System.
 To be discussed in detail in FileSystems

Carnegie Mellon

Disk Management
 Managing disks on a system gets complicated as space requirement increases by

time.
 Adding new disks to system, changing failed disks, deleting disks, adjusting

partitions with new layout is an issue.
 A solution is Logical Volume Management.

 A layer in OS maps a group of physical disk partitions into a large contiguous logical volume.
 E.g. add 5 4T disks to get a 20T as a single partition.

 LVM helps getting OS independent from underlying disk organization.

 RAID (Redundant Array of Independent Disks) is another solution which also
respects disk failures and efficiency.

 Common RAID levels:
 0 stripe (distribute I/O requests on two or more disks for efficiency)
 1 mirror (execute same I/O on two or more disks for failure recovery)
 5 distributed parity (distribute operation on multiple disk with parity, both efficiency and filure

recovery)

 RAID is best implemented in HW. OS implementation is called Soft RAID

Carnegie Mellon

Further reading

 Reliably Erasing Data from Flash-based Solid State Drives
 Wei et al., UCSD

FAST '11
http://www.usenix.org/legacy/events/fast11/tech/full_papers/We
i.pdf

 A Conversation with Jim Gray
 Dave Patterson
 ACM Queue, June 2003

http://queue.acm.org/detail.cfm?id=864078

 Terabyte Territory
 Brian Hayes
 American Scientist, May/June 2002

http://www.americanscientist.org/issues/pub/terabyte-territory

