
Carnegie Mellon

I/O systems

Some of the following slides adapted from Matt Welsh.
Some slides are from Tanenbaum, Modern Operating Systems 3 e, (c)
2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Carnegie Mellon

I/O systems
l The two main jobs of a computer are I/O and processing.

l In many cases, the main job is I/O and the processing is merely
incidental, e.g.
§ browse a web page or
§ edit a file

¢ I/O system provides the means for the computer to
interact with the rest of the world.

Carnegie Mellon

I/O devices in OS
I/O devices vary greatly
¢ Data rate:

§ may vary by several orders of magnitude

¢ Complexity of control:
§ exclusive vs. shared devices

¢ Unit of transfer:
§ stream of bytes vs. block-I/O

¢ Data representations:
§ character encoding, error codes, parity conventions

¢ Error conditions:
§ consequences, range of responses

¢ Applications:
§ impact on resource scheduling, buffering schemes

Carnegie Mellon

I/O systems in OS
¢ I/O system in the OS should

§ abstract away the detailed differences in I/O devices by identifying a
few general types,

§ Provide access to each type through a standardized set of
functions—an interface

§ Provide a modular software structure to support vendor-specific
software

Carnegie Mellon

I/O system in OS
¢ Users should not be allowed to issue illegal I/O

instructions.
¢ All I/O instructions should be priviliged to provide a proper

protection.
¢ Note that the kernel cannot simply deny all user access.

§ Most graphics games and video editing/playback software need
direct access to memory-mapped graphics controller memory to
speed access.
§ The kernel may provide a locking mechanism to allow a section

of graphics memory to be allocated to a process at a time.

Carnegie Mellon

I/O system
¢ Converts the I/O

request of the
application into low-
level commands for
the device and send
it to the device
controller,

¢ Take the response of
the I/O device and
send it to the
application.

Carnegie Mellon

Issues related to I/O system

¢ How to access I/O devices in HW?
¢ How to interact with I/O devices?
¢ How are I/O devices categorized?

§ Character vs. Block

Carnegie Mellon

How to access I/O devices in HW?
¢ OS needs to send/receive commands and control to device

controller to accomplish I/O.
¢ Device controller* has one or more registers for control

and data. (*will be described later)
¢ Processor communicates controller through

reading/writing to these registers
¢ How to address these registers?

§ Memory-based I/O
§ Port-based I/O
§ Hybrid I/O

Carnegie Mellon

Memory-mapped/ Port-based/Hybrid I/O

¢ How to read/write registers:
a) Special CPU instructions (IN/OUT)
b) Memory mapped: Regions of memory is reserved for HW I/O

registers. Standard memory instructions update them.
c) Hybrid: Some controllers mapped to memory, some uses I/O

instructions

Carnegie Mellon

Memory-mapped IO on Intel Architecture

Carnegie Mellon

Single Bus and dual bus I/O

¢ Memory mapped I/O has a single address space,
§ Memory mapped I/O is simpler to implement and use.
§ Frame buffers, or similar devices, are more suitable for memory mapped I/O.

¢ Port based I/O has two address spaces: one for memory, one for ports.
§ Dual bus allows parallel read/write of data and devices.

Carnegie Mellon

I/O Hardware interfaces

Video
controller

Network
controller

IDE disk
controller

CPU PCI bridge/
memory
controller

Memory
Cache

SCSI
controller

SCSI disk

SCSI disk

SCSI disk

PCI bus

SCSI bus

Memory
bus

USB ports

USB
interface/
controller

Keyboard
+

USB controller

Mouse
+

USB controller
USB bus

Carnegie Mellon

I/O Hardware interfaces - Bus
¢ Bus: An interconnection between components (including CPU)

§ More than one device can be connected

Video
controller

Network
controller

IDE disk
controller

CPU PCI bridge/
memory
controller

Memory
Cache

SCSI
controller

SCSI disk

SCSI disk

SCSI disk

PCI bus

SCSI bus

Memory
bus

USB ports

USB
interface/
controller

Keyboard
+

USB controller

Mouse
+

USB controller
USB bus

Carnegie Mellon

I/O Hardware - Single Bus

CPU Memory Video
Controller

Keyboard
Controller

Floppy
Controller

Disk
Controller

System bus

Monitor Keyboard Floppy
drive

Disk
drive

All addresses (memory and I/O) go here.
Memory is just another I/O.

Carnegie Mellon

I/O Hardware – Dual bus

Video
controller

Network
controller

IDE disk
controller

CPU PCI bridge/
memory
controller

Memory
Cache

SCSI
controller

SCSI disk

SCSI disk

SCSI disk

PCI bus

SCSI bus

Memory
bus

USB ports

USB
interface/
controller

Keyboard
+

USB controller

Mouse
+

USB controller
USB bus

CPU reads and writes to the memory takes
place through this high-speed bus.

This bridge/controller
allows I/O devices to

access memory
directly w/o going

through CPU

Carnegie Mellon

I/O Hardware interfaces - Port
¢ Port: An interface for plugging in only one I/O device

Video
controller

Network
controller

IDE disk
controller

CPU PCI bridge/
memory
controller

Memory
Cache

SCSI
controller

SCSI disk

SCSI disk

SCSI disk

PCI bus

SCSI bus

Memory
bus

USB ports

USB
interface/
controller

Keyboard
+

USB controller

Mouse
+

USB controller
USB bus

Carnegie Mellon

I/O Hardware interfaces - Device Controller
¢ Device controller: Connects physical device to system bus/port.

Video
controller

Network
controller

IDE disk
controller USB

interface/
controller

Keyboard
+

USB controller

Mouse
+

USB controller

CPU PCI bridge/
memory
controller

Memory
Cache

SCSI
controller

SCSI disk

SCSI disk

SCSI disk

PCI bus

USB bus

SCSI bus

Memory
bus

USB ports

Carnegie Mellon

Issues related to I/O system
¢ How to access I/O devices in HW?

§ Device controllers and device drivers
¢ How to interact with I/O devices?

§ Poll based vs. Interrupt based I/O
§ CPU checks if I/O is complete
§ An interrupt is generated when I/O is complete

§ Programmed vs. DMA based I/O
§ Data is transferred to/from CPU
§ DMA controller transfers data from device buffer to main

memory without CPU intervention

¢ How are I/O devices categorized?
§ Character vs. Block

§ Streams of chars (e.g. printer, modem)
§ Units of blocks (e.g. disks)

Carnegie Mellon

Device controllers and device drivers
¢ There is always a device controller and a device

driver for each device to communicate with the
OS.

¢ Device drivers are software modules that can be
plugged into an OS to handle a particular device.

¢ Device controllers works as an interface
between a device and a device driver.
§ A device controller may be able to handle multiple

devices.
§ As an interface its main task is to convert serial bit

stream to block of bytes, perform error correction as
necessary.

Operating system

device
driver

device
controller

Device

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

De
vi

ce

de
vi

ce
dr

iv
er

de
vi

ce
co

nt
ro

lle
r

Op
er

at
in

g
sy

st
em

I/O port registers
¢ status register

§ Read by the host.
¢ command register

§ Written by the host
¢ data-in register

§ Read by the host to get input.
¢ data-out register

§ Written by the host to send output.

status

data-in

command

data-out

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

De
vi

ce

de
vi

ce
dr

iv
er

de
vi

ce
co

nt
ro

lle
r

Op
er

at
in

g
sy

st
em

I/O port registers - status register

¢ status register
§ Read by the host.
§ Bits indicate states such as

§ whether the current command has completed,
§ whether a byte is available to be read from the data-in register,
§ whether there has been a device error.

status

data-in

command

data-out

Carnegie Mellon

De
vi

ce

de
vi

ce
dr

iv
er

de
vi

ce
co

nt
ro

lle
r

Op
er

at
in

g
sy

st
em

I/O port registers - command register

¢ command register
§ Written by the host

§ The command requested from the device
§ E.g. read or write for a disk

status

data-in

command

data-out

Carnegie Mellon

De
vi

ce

de
vi

ce
dr

iv
er

de
vi

ce
co

nt
ro

lle
r

Op
er

at
in

g
sy

st
em

I/O port registers - data-in register

¢ data-in register
§ Read by the host to get input.

§ E.g. the data read from the disk when the command is read

status

data-in

command

data-out

Carnegie Mellon

De
vi

ce

de
vi

ce
dr

iv
er

de
vi

ce
co

nt
ro

lle
r

Op
er

at
in

g
sy

st
em

I/O port registers - data-out register

¢ data-out register
§ Written by the host to send output.

§ E.g. the data to be written on the the disk when the command is
write

status

data-in

command

data-out

Carnegie Mellon

I/O device communication
¢ Note that both the device driver and the device controller

are running as “separate processes” to access the
registers.

¢ Hence need to ensure the atomicity of register updates.
§ For example, how can the device controller know that the data to

be written on the disk is fully copied onto its registers?

De
vi

ce

de
vi

ce
dr

iv
er

de
vi

ce
co

nt
ro

lle
r

Op
er

at
in

g
sy

st
em

status

data-in

command

data-out

Carnegie Mellon

Polling: I/O interfacing in software

De
vi

ce

de
vi

ce
dr

iv
er

de
vi

ce
co

nt
ro

lle
r

Op
er

at
in

g
sy

st
em

status

data-in

command

data-out

/* DEVICE DRIVER CODE */
while (*deviceStatus&BUSY); /* POLL:repeatedly check the busy bit */
deviceDataOut = data_byte; / write a byte into the data-out register */
deviceCommand |= WRITE; / sets the command as WRITE */
deviceCommand |= READY; / sets the command-ready bit */

/* DEVICE CONTROLLER CODE */
while(TRUE){

while (*deviceCommand&READY); /* repeatedly check the command ready bit*/
deviceStatus = BUSY; / set the busy bit */
/* …................ */

}

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Polling: I/O interfacing in software
/* DEVICE DRIVER CODE */
while (*deviceStatus&BUSY); /* repeatedly check the busy bit in status */
deviceDataOut = data_byte; / write a byte into the data-out register */
deviceCommand |= WRITE; / sets the command as WRITE */
deviceCommand |= READY; / sets the command-ready bit */

/* DEVICE CONTROLLER CODE */
while(TRUE){

while (*deviceCommand&READY); /* repeatedly check the command ready bit*/
deviceStatus |= BUSY; / set the busy bit */

Command = *deviceCommand; /* read the command */
if (Command&WRITE) /* if the command is WRITE */

dataOut = *deviceDataOut; /* read the data put by the OS */
success= WriteToDevice(dataOut); /* do the I/O on the device */
if (success){

deviceCommand &= !READY; / clear the command-ready bit */
deviceStatus &= !ERROR; / clear the error bit */
deviceStatus &= !BUSY; / clear the busy bit */

}else{
deviceCommand &= !READY; / clear the command-ready bit */
deviceStatus |= ERROR; / SET the error bit */
deviceStatus &= !BUSY; / clear the busy bit */

}
}
/* code for other commands */

}

Carnegie Mellon

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Polling I/O example: Steps in printing a string

a) Copy the string to be printed into a buffer in the kernel space
b) Poll the printer and send a character if not busy.
c) Loop until the end of the string.

Carnegie Mellon

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

/* p is the kernel buffer */
copyFromUser(buffer, p, count);

/* loop on every character */
for (i=0; i<count; i++){

/* loop until device is ready */
while (*printerStatusRegister != READY);

/* POLLING/BUSY WAITING! */

/* output one char */
*printerDataRegister = p[i];

}

returnToUser();

Programmed Polling I/O example:
Pseudocode for printing a string

¢ Polling is essentially busy waiting and wastes CPU time!
§ Any ideas how to fix it?

Carnegie Mellon

Interrupts - refresher
¢ Interrupts are hardware exceptions.
¢ CPU has an interrupt wire

§ Connected to an interrupt controller, which in turn is
§ connected to I/O devices

¢ When one of the devices generate an interrupt signal, the controller informs the CPU
§ The CPU acknowledges the interrupt and
§ Jumps to the interrupt service routine (ISR) if needed.

Carnegie Mellon

d
e

vi
ce

d
ri

ve
r

O
p

e
ra

ti
n

g
sy

st
e

m

Interrupt-Driven I/O

¢ Use interrupts!

§ Recall that interrupts are “hardware exceptions” that allow I/O devices to
signal the CPU that they need attention!

¢ The device driver initiates the I/O and resume (instead of busy
waiting)

¢ When done, the device raises an interrupt to let the CPU (hence OS)
know that it’s ready to accept more

¢ The interrupt service routine (handler) sends some more.

D
e

vi
ce

d
e

vi
ce

co
n

tr
o

ll
e

r

status

data-in

command

data-out

In
te

rr
u

p
t

h
a

n
d

le
r

Carnegie Mellon

Interrupt Based I/O
¢ CPU is not blocked during I/O.

Schedules user tasks.
¢ Upon interrupt:

§ Current CPU state is saved
§ Interrupt Service Routine

corresponding to device is
jumped.

§ Necessary actions are executed.
§ Return from Interrupt instruction

restores the state prior to the
interrupt.

§ Depending on the architecture a separate stack can be used as ISR
context

¢ Task requesting I/O is put into sleep until interrupt handler
marks I/O ready and wakes up the task.

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

/* Code executed when the print system call is made */
copyFromUser(buffer, p, count);
enableInterrupts();
while (*printerStatusRegister != READY);
*printerDataRegister = p[i];
scheduler();

/* Interrupt Service Routine (ISR) for the printer */
if (count == 0)

unblockUser();
else{

*printerDataRegister = p[i];
count = count -1;
i++;

}
acknowledgeInterrupt();
returnFromInterrupt();

Interrupt-Driven I/O

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Interrupt servicing: Advanced
¢ Modern interrupt controllers provide

§ The ability to defer interrupt handling during critical processing
§ Efficient way to dispatch the proper interrupt handle w/o polling all

the devices
§ Multi-level interrupts, to distinguish low and high priority interrupts

¢ Most CPU’s have two interrupt request lines
§ Nonmaskable

§ Reserved for unrecoverable errors
§ Maskable

§ Used by device controllers
§ Can be turned off before the execution of critical instruction

sequences

Carnegie Mellon

Interrupt servicing: Advanced (cont)
¢ Interrupt mechanism needs

§ Address: to select a specific interrupt handling routine
§ Typically an offset in a table called interrupt vector which

contains addresses of interrupt handlers
¢ What if there are more devices than the interrupt vector

size?
§ Interrupt chaining

¢ Interrupt priority levels
§ defer the handling of low-priority interrupts without masking off all

interrupts,
§ and makes it possible for a high-priority interrupt to pre-empt the

execution of a low-priority interrupt.

Carnegie Mellon

Direct Memory Access (DMA)
¢ For a device that does large transfers, such as a disk drive,

§ it seems wasteful to use an expensive general-purpose processor to
watch status bits and

§ to feed data into a controller register 1 byte at a time —a process termed
programmed I/O

¢ Interrupt-based I/O is not a remedy since, each byte would
create a context switch to the Interrupt Handler Routine.

¢ In both polling-based and interrupt-based I/O, all the bytes
need to be passed through the CPU and has a lot of overhead
§ I/O device <-> CPU <-> Memory

¢ It would be nice if we can off-load this mundane task to a
special-purpose processor that can move the data from/to I/O
device to memory directly!
§ Direct-memory-access (DMA) controller.

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Direct Memory Access
¢ To initiate a DMA transfer, the host writes a DMA command

block into memory.
§ a pointer to the source of a transfer,
§ a pointer to the destination of the transfer, and
§ a count of the number of bytes to be transferred.

¢ The CPU writes the address of this command block to the DMA
controller, then goes on with other work.

¢ The DMA controller proceeds to operate the memory bus
directly,
§ placing addresses on the bus to perform transfers without the help of the

main CPU.
§ A simple DMA controller is a standard component in PCs, and bus-

mastering I/O boards for the PC usually contain their own high-speed
DMA hardware

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

/* Code executed when the print system call is made */

copyFromUser(buffer, p, count);
setupDMAController();
scheduler();

/* Interrupt Service Routine Procedure for the printer */

acknowledgeInterrupt();
unblockUser();
returnFromInterrupt();

I/O Using DMA

¢ Note that the interrupt is generated once per I/O task as
opposed to once per byte (in the case of interrupt-based I/O).

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

I/O Hardware interfaces
¢ Device driver is told to transfer disk data to buffer at address X
¢ Device driver tells the disk controller to transfer C bytes from disk to buffer at

address X
¢ Disk controller initiates DMA transfer
¢ Disk controller sends each byte to DMA controller
¢ DMA controller transfers bytes to buffer X

§ Incrementing memory address and decrementing C until 0.
¢ When C == 0, DMA interrupts CPU to signal transfer completion.

CPU PCI bridge/
memory
controller

Memory
Cache

Disk
controller

Disk

PCI bus

DMA
controller

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Application I/O Interface

System Calls Kernel (other subsytems)

I/O Subsystem

SCSI
Device
Driver

Keyboard
Device
Driver

Mouse
Device
Driver

… PCI bus
Device
Driver

USB bus
Device
Driver

Graphic
Card

Device
Driver

SCSI
Controller

Keyboard
Controller

Mouse
Controller

… PCI
Controller

USB
controller

Graphics
Adapter

SCSI
Devices

Keyboard Mouse USB
Devices

Screen
Devices

Ke
rn

el
Ha

rd
w

ar
e

User processes

Internal or external
cabling/connectors

Carnegie Mellon

Application I/O Interface
¢ OS needs to provide the interface and I/O subsystem from user

area down to the HW and the device controller.
¢ Interface and I/O subsystem should:

§ Cover all different device types
§ E.g. graphic cards, network interface cards, disk controllers, HCI

devices, etc.
§ Allow addition of new devices.

§ A vendor introduced a new product, support it.
§ Provide device driver development interfaces for HW vendors.

§ Plug and play support for different device types and buses (i.e. PCI, USB).
§ Dynamic loading of device drivers.

§ A kernel supporting all possible HW will be huge.
§ Load device drivers on demand or selectively.

Carnegie Mellon

Application I/O Interface
¢ System calls are the basic kernel interface for user applications.
¢ A different set of system calls for each different:

§ Device vendor?
§ Device driver?
§ Device type?
§ Device class?

¢ Set of system calls should be minimum. A uniform and simple
I/O interface is required.

¢ Simple set of device types:
§ Character devices (character special files)
§ Block devices (block special files)
§ Network devices (socket interface)
§ Special hardware (graphics/GPU)

Carnegie Mellon

Application I/O Interface
¢ Unix solution: Use simple file interface:

§ open/read/write/seek/close/mmap + ioctl (for
configuring device)

¢ Handler/Entry point for a device:
§ a special file on file system which resides traditionally under /dev

¢ All system calls on special files are directed on device drivers.
crw------- 1 root root 10, 1 Mar 21 13:43 /dev/psaux
brw-rw---- 1 root disk 8, 16 Mar 21 13:43 /dev/sdb
brw-rw---- 1 root disk 8, 17 Mar 21 13:43 /dev/sdb1
brw-rw---- 1 root disk 8, 18 Mar 21 13:43 /dev/sdb2
brw-rw---- 1 root disk 8, 19 Mar 21 13:44 /dev/sdb3
crw--w---- 1 root tty 4, 0 Mar 21 13:43 /dev/tty0
crw------- 1 onur tty 4, 3 May 22 13:35 /dev/tty3

¢ A special file is either a character or a block device.
¢ Each file has a major and minor number

§ Major number selects device driver code.
§ Minor number selects between multiple devices handled by same driver.

Carnegie Mellon

Device Driver Switch

Major

0

1

..

8

…

struct
cdeviceops

…

open

read

..

write

ioctl

… ..

Device Driver Code
int sd_open(maj,min,…){

...
}
int sd_read(maj,min,…){

...
}
int sd_write(maj,min,…)
{

...
}
int sd_ioctl(maj,min,…){

...
}

A read on block special file major 8, minor 4 translates:
bdevsw[8]->read(8,4,…)

Carnegie Mellon

Device drivers
¢ Each I/O device attached to a computer needs some device-

specific code for controlling it.
§ written by device manufacturer
§ each OS needs its own device drivers

¢ Each device driver supports a specific type or class of I/O
devices.
§ A mouse driver can support different types of mice but cannot be used for

a webcam.
¢ The OS defines what a driver does and how it interacts with the

rest of the OS.
¢ A device driver has several functions

§ to accept abstract read and write requests from device-independent
software above it and make sure that they are carried out, +
§ initialization of the device
§ manage is power requirements and log events

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Device driver structure
¢ check whether input parameters are valid
¢ translation from abstract to concrete terms

§ for a disk driver, converting a block id into head, track, sector and cylinder
numbers for the disk's geometry

¢ check if the device is currently in use by checking its status register
§ if not, insert the request into queue
§ if the device is not on, turn it on

¢ issue the sequence of commands
§ after issuing each command, check whether the device is ready to accept the

next one
§ [in most cases] the driver blocks itself until an interrupt comes

§ [in fewer cases] the driver waits for the completion of the command
¢ the driver is awakened up by the driver to continue its operation
¢ the data and the error information is passed to the device-

independent OS I/O software

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Device drivers - issues
¢ Note that

§ an I/O device may complete while the device driver is running and
create an interrupt

§ the interrupt may cause the current driver to run
¢ device drivers must be reentrant,

§ a running driver has to expect that it will be called a second time
before the first call has completed.

¢ Drivers cannot make system calls but are allowed to call
some kernel procedures for interaction.

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

I/O devices - character and block devices

¢ From units of transfer perspective, I/O devices can be
divided into two categories:
§ Block devices − A block device is one with which the driver

communicates by sending entire blocks of data.
§ Hard disks, USB cameras, Disk-On-Key etc.

§ Character devices − A character device is one with which the driver
communicates by sending and receiving single characters.
§ serial ports, parallel ports, sounds cards etc.

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Block devices
¢ The block-device interface captures all the aspects necessary for

accessing disk drives and other block-oriented devices.
§ read() and write() , and, if it is a random-access device, it has a seek()

command to specify which block to transfer next.

¢ Applications normally access such a device through a file-
system interface.
§ The operating system itself, and special applications such as database-

management systems, may prefer to access a block device as a simple
linear array of blocks (also called raw I/O).

¢ OS device cache is used to accelerate block device operations.
§ Block based I/O is tightly coupled with paging.

¢ File systems require block devices.

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Character devices
¢ A keyboard is an example of a device that is accessed

through a character-stream interface.
§ get() or put() one character.

l Character device drivers implements their own buffers and
caching internally.
l for example, when a user types a backspace, the preceding

character is removed from the input stream.
l Example devices:

§ Keyboard, modem, mouse

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Character vs. Block Devices
¢ Character and Block device switches are separate.
¢ Interface is also different.

§ Block devices can combine read and write functions (see I/O
scheduling later)

¢ Character vs. Block devices:
§ Character devices can transfer data 1 byte at a time. Block devices

work in block units (i.e. 4K)
§ Character device devices have buffering and caching internal, block

devices use systems page cache.
§ Block devices can contain file system partitions and swap area.
§ Block device drivers may implement I/O scheduling algorithms,

system call interface support it.

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

ioctl()
¢ A single function configuration interface for all devices.

int ioctl(int fd, unsigned long request, ...);

¢ Types of requests and optional parameter is driver or
even vendor specific.

¢ Each driver implements its own set of configuration
requests and parameter types.

¢ Devices and drivers change but libc and kernel interface is
fixed.

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Windows I/O subsystem
¢ Microsoft Windows uses device shortcuts on filesystem to

address devices.
¢ Device Access API provides an interface to application

programmers to inspect and interact with the devices.
¢ WDK, Windows Device Framework provides user and

kernel interfaces for device driver development.

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

I/O Categorization (OS perspective)
¢ Character stream vs block.
¢ Sequential vs Random access

device driver allow seeking to an offset in device
¢ Synchronous vs Asynchronous

I/O operation on device driver is synchronized with I/O
completion on device controller. Asynchronous I/O returns
earlier and report success/failure later.

¢ Buffered vs Direct
The reported operation result is completed on buffers or on
device controller.

¢ Shareable or Dedicated
I/O on each device instance is mutually exclusive. (i.e. printer)

¢ Read only, Write only, Read-write
i.e: mouse, printer, hard disk

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Kernel I/O System
Kernels provide many services related to I/O:

§ scheduling,
§ buffering,
§ caching,
§ pooling,
§ device reservation, and
§ error handling

built on the hardware and device-driver infrastructure.

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

I/O scheduling
¢ I/O is usually slow and some devices have physical

characteristics requiring optimizations.
§ E.g. hard disks: Mechanical devices and delays caused by head movement

and rotation.
§ If I/O is executed in a FIFO strategy, mechanical zigzag movements can

overrule the I/O operations.
¢ I/O scheduling gets a set of I/O requests on a device and

determines an optimal order and timing to execute the
requests on the device.
§ Operating-system developers implement scheduling by maintaining a

queue of requests for each device.
§ When an application issues a blocking I/O system call, the request is

placed on the queue for that device.
§ The I/O scheduler rearranges the order of the queue to improve the

overall system efficiency and the average response time experienced by
applications.

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Disk I/O Scheduling
¢ Given multiple outstanding I/O requests, what order to issue them?

§ Why does it matter?
¢ Major goals of disk scheduling:

§ Minimize latency for small transfers
§ Primarily: Avoid long seeks by ordering accesses according to disk head

locality
§ Maximize throughput for large transfers

§ Large databases and scientific workloads often involve enormous files
and datasets

¢ Note that disk block layout (where we place file blocks, directories,
file system metadata, etc.) has a large impact on performance

¢ On modern (smart) disk drives, I/O scheduling is done by the disk
controller, which executes incoming I/O requests in a out-of-order
fashion.
§ More on this will be discussed in the Disk Technology slides.

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Disk I/O Scheduling
¢Given multiple outstanding I/O requests, what order to issue them?
¢FIFO: Just schedule each I/O in the order it arrives

§ What's wrong with this?
§ Potentially lots of seek time!

¢SSTF: Shortest seek time first
§ Issue I/O with the nearest cylinder to the current one

§ Favors middle tracks: Head rarely moves to edges of disk
¢SCAN (or Elevator) Algorithm:

§ Head has a current direction and current cylinder
§ Sort I/Os according to the track # in the current direction of the head
§ If no more I/Os in the current direction, reverse direction

¢CSCAN Algorithm:
§ Always move in one direction, “wrap around” to beginning of disk when

moving off the end
§ Reduce variance in seek times, avoid discrimination against the highest and

lowest tracks

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie MellonFIFO example

tim
e

Tracks

Current track: 9 I/O queue at t0: 9,1,14,6,5,21,17,12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie MellonSSTF: Shortest seek time first example

tim
e

Tracks

Current track: 9 I/O queue at t0: 9,1,5,21,11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie MellonSSTF: Shortest seek time first example

tim
e

Tracks

Current track: 9 Direction: -> I/O queue at t0: 9,1,14,6,5,21,17,12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Erol sahin

Erol sahin

Carnegie MellonSCAN example

tim
e

Tracks

Current track: 9 Current direction: I/O queue at t0: 9,1,14,6,5,21,17,12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Direction
switch

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie MellonCSCAN example

tim
e

Tracks

Current track: 9 Current direction: I/O queue at t0: 9,1,14,6,5,21,17,12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Move back
fast and switch
direction

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie MellonSCAN example
Current track

Direction

Erol sahin

Erol sahin

Erol sahin

Carnegie MellonSCAN example
Current track

Direction

Carnegie MellonSCAN example

Direction

Current track

Carnegie MellonSCAN example

Direction

Current track

Carnegie MellonSCAN example

Direction

Current track

Carnegie MellonSCAN example

Direction

Current track

Carnegie MellonSCAN example

Direction

Current track

Carnegie MellonSCAN example

Direction

Current track

Erol sahin

Erol sahin

Erol sahin

Carnegie MellonSCAN example

Direction

Current track

Carnegie MellonSCAN example

Direction

Current track

Carnegie MellonSCAN example

Direction

Current track

Carnegie MellonSCAN example

Direction

Current track

¢What is the overhead of the SCAN algorithm?
§ Count the total amount of seek time to service all I/O requests
§ In this case, 12 tracks in --> direction
§ 15 tracks for long seek back
§ 5 tracks in <-- direction

§ Total: 12+15+5 = 32 tracks

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Page Cache : Caching Block devices
¢ Block device operations are tightly coupled with virtual memory

and paging.
¢ Some of the frames are used as page cache and keeps data of

block devices in systems.
¢ I/O in a block device:

§ Search if block is already in page cache (in physical memory):
§ if found read/write buffer from/to existing frame
§ Else allocate a frame,

read device block into frame,
mark frame as caching device-block pair
read/write bufffer from/to this frame.

¢ Dirty pages are written on block device periodically.
¢ Accelerates I/O operations significantly, especially file system

meta data operations.

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

File Cache
¢ Page cache idea also couples with memory mapped I/O.
mmap()’ed files work in a similar mechanism.

¢ Virtual memory of a process map a page backed as a file
(instead of a block device). Changes are updated on
memory, cached frames are forced on disk periodically.

¢ VM system keeps track of frames of page and file caches
together with other (resident and free) pages.

¢ VM system adapts sizes of file and device cache based on
memory state of the system.

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Buffering
¢ A buffer is a memory area that stores data while they are transferred

between two devices or between a device and an application.
¢ Buffering is done for three reasons.

§ to cope with a speed mismatch between the producer and consumer of a data stream.
§ a file is being received via modem for storage on the hard disk

§ to adapt between devices that have different data-transfer sizes.
§ networking: messages are typically fragmented during sending and receiving

§ to support copy semantics for application I/O.
§ application calls the write()system call, providing a pointer to the buffer and

an integer specifying the number of bytes to write.
§ After the system call returns, what happens if the application changes the

contents of the buffer?
§ When processing write() system call, OS copy the application data into a

kernel buffer before returning control to the application.
§ The disk write is performed from the kernel buffer, so that subsequent changes to

the application buffer have no effect.

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Buffering

a) Unbuffered input:
b) Buffering in user space.
c) Buffering in the kernel followed by copying to user space.
d) Double buffering in the kernel.

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Buffering: Unbuffered input

¢ I/O device writes directly into the user’s address space.
¢ If the page frame that the I/O device need to write is not in the memory,

then a page fault is generated.
¢ The I/O device may fail to write the incoming data, if new data arrives and

overwrites the unwritten data in the memory/registers of the device.

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Buffering: Buffering in user space

¢ I/O device writes directly into the user’s address space. The
page frame that the I/O device need to write is «pinned» into
the memory, i.e. The page frame is never evicted.

¢ If all such page frames (of all the processes) are «pinned», then
the physical memory will become tight!

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Buffering: Buffering in kernel space

¢ I/O device writes directly into the kernel’s address space.
¢ The kernel page frame that the I/O device need to write is «pinned» into the memory, i.e.

The page frame is never evicted.
¢ Note that the kernel can combine many such buffers into a single kernel page frame,

minimizing the number of «pinned» kernel page frames in the physical memory!
¢ When the kernel buffer becomes full, it is copied to the user’s address space, and emptied.
¢ What if, during copying, new data arrives?

§ It may be lost!

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Buffering: Double buffering in kernel space

¢ I/O device writes directly into the kernel’s address space.
¢ The kernel page frame that the I/O device need to write is «pinned» into the

memory, i.e. The page frame is never evicted.
¢ When the kernel buffer becomes full, it is copied to the user’s address space,

and emptied.
¢ During copying, the I/O device is directed to write into a second buffer!

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Caching vs. Buffering
¢The difference between a buffer and a cache is that

§ a buffer may hold the only existing copy of a data item,
§ whereas a cache, by definition, just holds a copy on faster storage of
an item that resides elsewhere.

¢Caching and buffering are distinct functions, but sometimes
a region of memory can be used for both purposes.

§For instance, to preserve copy semantics and to enable efficient
scheduling of disk I/O, the operating system uses buffers in main
memory to hold disk data.

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

I/O call semantic
¢ I/O calls can be categorized into two based on their

semantics
§ Blocking
§ Non-blocking

¢ For most I/O calls, both types of semantics are available

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Blocking I/O semantic
¢ When an application issues a blocking system call, the

execution of the application is suspended.
§ The application is moved from the operating system's ready

queue to a wait queue.
§ After the system call completes, the application is moved back

to the ready queue.
§ Easy to understand

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Nonblocking I/O semantic
¢ A nonblocking call does not halt the execution of the application for an

extended time.

¢ The call returns immediately
§ Either the call returns the available data (may be none) along with a return value

indicated how many bytes were transferred.
§ E.g. user interface that receives keyboard and mouse input while processing and

displaying data on the screen.
§ The completion of the I/O at some future time is communicated to the application,

§ either through the setting of some variable in the address space of the
application,

§ or through the triggering of a signal or software interrupt
§ or a call-back routine that is executed outside the linear control flow of the

application.

¢ In either case, after the return from the call, the application continues to
execute its code.

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Spooling
¢ A spool is a buffer that holds output for a device, such

as a printer, that cannot accept interleaved data
streams.
§ Although a printer can serve only one job at a time, several

applications may wish to print their output concurrently,
without having their output mixed together.

§ The operating system solves this problem by intercepting
all output to the printer.

§ Each application's output is spooled to a separate disk file.
§ When an application finishes printing, the spooling system

queues the corresponding spool file for output to the
printer.

§ The spooling system copies the queued spool files to the
printer one at a time.

§ In some operating systems, spooling is managed by a
system daemon process.

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Error handling
¢ An operating system that uses protected memory can

guard against many kinds of hardware and application
errors, so that a complete system failure is not the usual
result of each minor mechanical glitch.
§ Devices and I/O transfers can fail in many ways, either for transient

reasons, such as a network becoming overloaded, or for
“permanent” reasons, such as a disk controller becoming defective.

§ Operating systems can often compensate effectively for transient
failures.
§ For instance, a disk read() failure results in a read() retry, and a

network send() error results in a resend() , if the protocol so
specifies.

§ Unfortunately, if an important component experiences a
permanent failure, the operating system is unlikely to recover.

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

I/O system in OS: Summary
¢ How to access I/O devices in HW

§ Device controllers and device drivers
¢ How to interact with I/O devices?

§ Poll based vs. Interrupt based I/O
§ CPU checks if I/O is complete
§ An interrupt is generated when I/O is complete

§ Programmed vs. DMA based I/O
§ Data is transferred to/from CPU
§ DMA controller transfers data from device buffer to main memory without CPU

intervention

¢ How are I/O devices categorized?
§ Character vs. Block

§ Streams of chars (e.g. printer, modem)
§ Units of blocks (e.g. disks)

¢ Caching and Buffering
¢ Blocking and non-blocking semantics
¢ Other issues

§ Error handling,

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

