
Carnegie Mellon

I/O systems

Some of the following slides adapted from Matt Welsh.
Some slides are from Tanenbaum, Modern Operating Systems 3 e, (c) 
2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Carnegie Mellon

I/O systems
l The two main jobs of a computer are I/O and processing.

l In many cases, the main job is I/O and the processing is merely 
incidental, e.g.
§ browse a web page or
§ edit a file

¢ I/O system provides the means for the computer to 
interact with the rest of the world. 
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I/O devices  in OS
I/O devices vary greatly 
¢ Data rate: 

§ may vary by several orders of magnitude

¢ Complexity of control: 
§ exclusive vs. shared devices

¢ Unit of transfer: 
§ stream of bytes vs. block-I/O

¢ Data representations: 
§ character encoding, error codes, parity conventions

¢ Error conditions: 
§ consequences, range of responses

¢ Applications: 
§ impact on resource scheduling, buffering schemes
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I/O systems  in OS
¢ I/O system in the OS should

§ abstract away the detailed differences in I/O devices by identifying a 
few general types,

§ Provide access to each type through a standardized set of 
functions—an interface

§ Provide a modular software structure to support vendor-specific 
software



Carnegie Mellon

I/O system in OS
¢ Users should not be allowed to issue illegal I/O 

instructions.
¢ All I/O instructions should be priviliged to provide a proper 

protection.
¢ Note that the kernel cannot simply deny all user access.

§ Most graphics games and video editing/playback software need 
direct access to memory-mapped graphics controller memory to 
speed access.
§ The kernel may provide a locking mechanism to allow a section 

of graphics memory to be allocated to a process at a time.
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I/O system
¢ Converts the I/O 

request of the 
application into low-
level commands for 
the device and send 
it to the device 
controller, 

¢ Take the response of 
the I/O device and 
send it to the 
application. 
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Issues related to I/O system

¢ How to access I/O devices in HW?
¢ How to interact with I/O devices?
¢ How are I/O devices categorized?

§ Character vs. Block
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How to access I/O devices in HW?
¢ OS needs to send/receive commands and control to device 

controller to accomplish I/O.
¢ Device controller* has one or more registers for control 

and data. (*will be described later)
¢ Processor communicates controller through 

reading/writing to these registers
¢ How to address these registers?

§ Memory-based I/O
§ Port-based I/O
§ Hybrid I/O
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Memory-mapped/ Port-based/Hybrid I/O

¢ How to read/write registers:
a) Special CPU instructions (IN/OUT) 
b) Memory mapped: Regions of memory is reserved for HW I/O 

registers. Standard memory instructions update them.
c) Hybrid: Some controllers mapped to memory, some uses I/O 

instructions
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Memory-mapped IO on Intel Architecture
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Single Bus and dual bus I/O

¢ Memory mapped I/O has a single address space, 
§ Memory mapped I/O is simpler to implement and use.
§ Frame buffers, or similar devices, are more suitable for memory mapped I/O.

¢ Port based I/O has two address spaces: one for memory, one for ports.
§ Dual bus allows parallel read/write of data and devices.
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I/O Hardware interfaces
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I/O Hardware interfaces - Bus
¢ Bus: An interconnection between components (including CPU) 

§ More than one device can be connected
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I/O Hardware - Single Bus
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All addresses (memory and I/O) go here.
Memory is just another I/O.
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I/O Hardware – Dual bus 
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I/O Hardware interfaces - Port
¢ Port: An interface for plugging in only one I/O device
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I/O Hardware interfaces - Device Controller
¢ Device controller: Connects physical device to system bus/port.
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Issues related to I/O system
¢ How to access I/O devices in HW?

§ Device controllers and device drivers
¢ How to interact with I/O devices?

§ Poll based vs. Interrupt based I/O
§ CPU checks if I/O is complete
§ An interrupt is generated when I/O is complete

§ Programmed vs. DMA based I/O
§ Data is transferred to/from CPU
§ DMA controller transfers data from device buffer to main 

memory without CPU intervention

¢ How are I/O devices categorized?
§ Character vs. Block

§ Streams of chars (e.g. printer, modem)
§ Units of blocks (e.g. disks)
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Device controllers and device drivers
¢ There is always a device controller and a device 

driver for each device to communicate with the 
OS. 

¢ Device drivers are software modules that can be 
plugged into an OS to handle a particular device. 

¢ Device controllers works as an interface 
between a device and a device driver. 
§ A device controller may be able to handle multiple 

devices.
§ As an interface its main task is to convert serial bit 

stream to block of bytes, perform error correction as 
necessary.
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I/O port registers
¢ status register 

§ Read by the host. 
¢ command register 

§ Written by the host 
¢ data-in register 

§ Read by the host to get input.
¢ data-out register 

§ Written by the host to send output.
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I/O port registers - status register

¢ status register 
§ Read by the host. 
§ Bits indicate states such as 

§ whether the current command has completed, 
§ whether a byte is available to be read from the data-in register, 
§ whether there has been a device error.
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I/O port registers - command register

¢ command register 
§ Written by the host 

§ The command requested from the device
§ E.g. read or write for a disk
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I/O port registers - data-in register

¢ data-in register 
§ Read by the host to get input.

§ E.g. the data read from the disk when the command is read
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I/O port registers - data-out register

¢ data-out register 
§ Written by the host to send output.

§ E.g. the data to be written on the the disk when the command is 
write
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I/O device communication
¢ Note that both the device driver and the device controller 

are running as “separate processes” to access the 
registers.

¢ Hence need to ensure the atomicity of register updates.
§ For example, how can the device controller know that the data to 

be written on the disk is fully copied onto its registers?
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Polling: I/O interfacing in software
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/* DEVICE DRIVER CODE */
while (*deviceStatus&BUSY); /* POLL:repeatedly check the busy bit */
*deviceDataOut = data_byte; /* write a byte into the data-out register */
*deviceCommand |= WRITE;    /* sets the command as WRITE */
*deviceCommand |= READY;    /* sets the command-ready bit */

/* DEVICE CONTROLLER CODE */
while(TRUE){

while (*deviceCommand&READY); /* repeatedly check the command ready bit*/
*deviceStatus = BUSY;         /* set the busy bit */
/* …................ */

}
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Polling: I/O interfacing in software
/* DEVICE DRIVER CODE */
while (*deviceStatus&BUSY); /* repeatedly check the busy bit in status */
*deviceDataOut = data_byte; /* write a byte into the data-out register */
*deviceCommand |= WRITE;    /* sets the command as WRITE */
*deviceCommand |= READY;    /* sets the command-ready bit */

/* DEVICE CONTROLLER CODE */
while(TRUE){

while (*deviceCommand&READY); /* repeatedly check the command ready bit*/
*deviceStatus |= BUSY;         /* set the busy bit */

Command = *deviceCommand;     /* read the command */
if (Command&WRITE)            /* if the command is WRITE */

dataOut = *deviceDataOut; /* read the data put by the OS */
success= WriteToDevice(dataOut); /* do the I/O on the device */
if (success){

*deviceCommand &= !READY;    /* clear the command-ready bit */
*deviceStatus &= !ERROR;     /* clear the error bit */
*deviceStatus &= !BUSY;      /* clear the busy bit */

}else{
*deviceCommand &= !READY;    /* clear the command-ready bit */
*deviceStatus |= ERROR;      /* SET the error bit */
*deviceStatus &= !BUSY;      /* clear the busy bit */

}
}
/* code for other commands */

}
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Polling I/O example: Steps in printing a string

a) Copy the string to be printed into a buffer in the kernel space
b) Poll the printer and send a character if not busy.
c) Loop until the end of the string.
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/* p is the kernel buffer */
copyFromUser(buffer, p, count); 

/* loop on every character */
for (i=0; i<count; i++){

/* loop until device is ready */
while (*printerStatusRegister != READY);

/* POLLING/BUSY WAITING! */

/* output one char */
*printerDataRegister =  p[i];

}

returnToUser();

Programmed Polling I/O example: 
Pseudocode for printing a string 

¢ Polling is essentially busy waiting and wastes CPU time!
§ Any ideas how to fix it?
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Interrupts - refresher
¢ Interrupts are hardware exceptions. 
¢ CPU has an interrupt wire

§ Connected to an interrupt controller, which in turn is 
§ connected to I/O devices

¢ When one of the devices generate an interrupt signal, the controller informs the CPU
§ The CPU acknowledges the interrupt and
§ Jumps to the interrupt service routine (ISR)  if needed.
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Interrupt-Driven I/O

¢ Use interrupts!

§ Recall that interrupts are “hardware exceptions” that allow I/O devices to 
signal the CPU that they need attention!

¢ The device driver initiates the I/O and resume (instead of busy 
waiting)

¢ When done, the device raises an interrupt to let the CPU (hence OS) 
know that it’s ready to accept more

¢ The interrupt service routine (handler) sends some more.
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Interrupt Based I/O
¢ CPU is not blocked during I/O. 

Schedules user tasks.
¢ Upon interrupt:

§ Current CPU state is saved
§ Interrupt Service Routine 

corresponding  to device is 
jumped.

§ Necessary actions are executed.
§ Return from Interrupt instruction 

restores the state prior to the 
interrupt.

§ Depending on the architecture a separate stack can be used as ISR 
context

¢ Task requesting I/O is put into sleep until interrupt handler 
marks I/O ready and wakes up the task.
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/* Code executed when the print system call is made */
copyFromUser(buffer, p, count); 
enableInterrupts();
while (*printerStatusRegister != READY); 
*printerDataRegister =  p[i];
scheduler();

/* Interrupt Service Routine (ISR) for the printer */
if (count == 0)

unblockUser();
else{

*printerDataRegister = p[i];
count =  count -1;
i++;

}
acknowledgeInterrupt();
returnFromInterrupt();

Interrupt-Driven I/O
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Interrupt servicing: Advanced
¢ Modern interrupt controllers provide

§ The ability to defer interrupt handling during critical processing
§ Efficient way to dispatch the proper interrupt handle w/o polling all 

the devices
§ Multi-level interrupts, to distinguish low and high priority interrupts

¢ Most CPU’s have two interrupt request lines
§ Nonmaskable

§ Reserved for unrecoverable errors
§ Maskable

§ Used by device controllers
§ Can be turned off before the execution of critical instruction 

sequences
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Interrupt servicing: Advanced (cont)
¢ Interrupt mechanism needs

§ Address: to select a specific interrupt handling routine
§ Typically an offset in a table called interrupt vector which 

contains addresses of interrupt handlers
¢ What if there are more devices than the interrupt vector 

size?
§ Interrupt chaining

¢ Interrupt priority levels
§ defer the handling of low-priority interrupts without masking off all 

interrupts,
§ and makes it possible for a high-priority interrupt to pre-empt the 

execution of a low-priority interrupt.
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Direct Memory Access (DMA)
¢ For a device that does large transfers, such as a disk drive,

§ it seems wasteful to use an expensive general-purpose processor to 
watch status bits and 

§ to feed data into a controller register 1 byte at a time —a process termed 
programmed I/O

¢ Interrupt-based I/O is not a remedy since, each byte would 
create a context switch to the Interrupt Handler Routine.

¢ In both polling-based and interrupt-based I/O, all the bytes 
need to be passed through the CPU and has a lot of overhead
§ I/O device <-> CPU <-> Memory

¢ It would be nice if we can off-load this mundane task to a 
special-purpose processor that can move the data from/to I/O 
device to memory directly!
§ Direct-memory-access (DMA) controller. 
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Direct Memory Access
¢ To initiate a DMA transfer, the host writes a DMA command 

block into memory. 
§ a pointer to the source of a transfer, 
§ a pointer to the destination of the transfer, and 
§ a count of the number of bytes to be transferred. 

¢ The CPU writes the address of this command block to the DMA 
controller, then goes on with other work. 

¢ The DMA controller proceeds to operate the memory bus 
directly, 
§ placing addresses on the bus to perform transfers without the help of the 

main CPU. 
§ A simple DMA controller is a standard component in PCs, and bus-

mastering I/O boards for the PC usually contain their own high-speed 
DMA hardware
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/* Code executed when the print system call is made */

copyFromUser(buffer, p, count); 
setupDMAController();
scheduler();

/* Interrupt Service Routine Procedure for the printer */

acknowledgeInterrupt();
unblockUser();
returnFromInterrupt();

I/O Using DMA

¢ Note that the interrupt is generated once per I/O task as 
opposed to once per byte (in the case of interrupt-based I/O).
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I/O Hardware interfaces
¢ Device driver is told to transfer disk data to buffer at address X
¢ Device driver tells the disk controller to transfer C bytes from disk to buffer at 

address X
¢ Disk controller initiates DMA transfer
¢ Disk controller sends each byte to DMA controller
¢ DMA controller transfers bytes to buffer X

§ Incrementing memory address and decrementing C until 0.
¢ When C == 0, DMA interrupts CPU to signal transfer completion.
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Application I/O Interface
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Application I/O Interface
¢ OS needs to provide the interface and I/O subsystem from user 

area down to the HW and the device controller.
¢ Interface and I/O subsystem should:

§ Cover all different device types
§ E.g. graphic cards, network interface cards, disk controllers, HCI 

devices, etc.
§ Allow addition of new devices. 

§ A vendor introduced a new product, support it. 
§ Provide device driver development interfaces  for HW vendors.

§ Plug and play support for different device types and buses  (i.e. PCI, USB). 
§ Dynamic loading of device drivers. 

§ A kernel supporting all possible HW will be huge. 
§ Load device drivers on demand or selectively. 
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Application I/O Interface
¢ System calls are the basic kernel interface for user applications.
¢ A different set of system calls for each different:

§ Device vendor?
§ Device driver?
§ Device type?
§ Device class?

¢ Set of system calls should be minimum. A uniform and simple 
I/O interface is required.

¢ Simple set of device types:
§ Character devices (character special files)
§ Block devices (block special files)
§ Network devices (socket interface)
§ Special hardware (graphics/GPU)
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Application I/O Interface
¢ Unix solution: Use simple file interface:

§ open/read/write/seek/close/mmap + ioctl (for 
configuring device)

¢ Handler/Entry point  for a device: 
§ a special file on file system which resides traditionally under /dev

¢ All system calls on special files are directed on device drivers.
crw------- 1 root root 10,  1 Mar 21 13:43 /dev/psaux
brw-rw---- 1 root disk  8, 16 Mar 21 13:43 /dev/sdb
brw-rw---- 1 root disk  8, 17 Mar 21 13:43 /dev/sdb1
brw-rw---- 1 root disk  8, 18 Mar 21 13:43 /dev/sdb2
brw-rw---- 1 root disk  8, 19 Mar 21 13:44 /dev/sdb3
crw--w---- 1 root tty 4,  0 Mar 21 13:43 /dev/tty0
crw------- 1 onur tty 4,  3 May 22 13:35 /dev/tty3

¢ A special file is either a character or a block device.
¢ Each file has a major and minor number

§ Major number selects device driver code. 
§ Minor number selects between multiple devices handled by same driver.
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Device Driver Switch

Major

0

1

..

8

…

struct
cdeviceops

…

open

read

..

write

ioctl

… ..

Device Driver Code
int sd_open(maj,min,…){

...
}
int sd_read(maj,min,…){

...
}
int sd_write(maj,min,…) 
{

...
}
int sd_ioctl(maj,min,…){

...
}

A read on block special file major 8, minor 4 translates:
bdevsw[8]->read(8,4,…)



Carnegie Mellon

Device drivers
¢ Each I/O device attached to a computer needs some device-

specific code for controlling it. 
§ written by device manufacturer
§ each OS needs its own device drivers

¢ Each device driver supports a specific type or class of I/O 
devices.
§ A mouse driver can support different types of mice but cannot be used for 

a webcam.
¢ The OS defines what a driver does and how it interacts with the 

rest of the OS.
¢ A device driver has several functions

§ to accept abstract read and write requests from device-independent 
software above it and make sure that they are carried out, + 
§ initialization of the device
§ manage is power requirements and log events
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Device driver structure
¢ check whether input parameters are valid
¢ translation from abstract to concrete terms

§ for a disk driver, converting a block id into head, track, sector and cylinder 
numbers for the disk's geometry

¢ check if the device is currently in use by checking its status register
§ if not, insert the request into queue
§ if the device is not on, turn it on

¢ issue the sequence of commands
§ after issuing each command, check whether the device is ready to accept the 

next one
§ [in most cases] the driver blocks itself until an interrupt comes

§ [in fewer cases] the driver waits for the completion of the command
¢ the driver is awakened up by the driver to continue its operation
¢ the data and the error information is passed to the device-

independent OS I/O software
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Device drivers - issues
¢ Note that 

§ an I/O device may complete while the device driver is running and 
create an interrupt

§ the interrupt may cause the current driver to run
¢ device drivers must be reentrant, 

§ a running driver has to expect that it will be called a second time 
before the first call has completed.

¢ Drivers cannot make system calls but are allowed to call 
some kernel procedures for interaction.

Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin


Erol sahin




Carnegie Mellon

I/O devices - character and block devices

¢ From units of transfer perspective, I/O devices can be 
divided into two categories:
§ Block devices − A block device is one with which the driver 

communicates by sending entire blocks of data. 
§ Hard disks, USB cameras, Disk-On-Key etc.

§ Character devices − A character device is one with which the driver 
communicates by sending and receiving single characters. 
§ serial ports, parallel ports, sounds cards etc.
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Block devices
¢ The block-device interface captures all the aspects necessary for 

accessing disk drives and other block-oriented devices. 
§ read()  and write() , and, if it is a random-access device, it has a seek()  

command to specify which block to transfer next. 

¢ Applications normally access such a device through a file-
system interface. 
§ The operating system itself, and special applications such as database-

management systems, may prefer to access a block device as a simple 
linear array of blocks (also called raw I/O).

¢ OS  device cache is used to accelerate block device operations.
§ Block based I/O is tightly coupled with paging.

¢ File systems require block devices.
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Character devices
¢ A keyboard is an example of a device that is accessed 

through a character-stream interface. 
§ get()  or put()  one character. 

l Character device drivers implements their own buffers and 
caching internally.
l for example, when a user types a backspace, the preceding 

character is removed from the input stream. 
l Example devices:

§ Keyboard, modem, mouse
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Character vs. Block Devices
¢ Character and Block device switches are separate.
¢ Interface is also different. 

§ Block devices can combine read and write functions (see I/O 
scheduling later)

¢ Character vs. Block devices:
§ Character devices can transfer data 1 byte at a time. Block devices 

work in block units (i.e. 4K)
§ Character device devices have buffering and caching  internal, block 

devices use systems page cache.
§ Block devices can contain file system partitions and swap area.
§ Block device drivers may implement I/O scheduling algorithms, 

system call interface support it.
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ioctl()
¢ A single function configuration interface for all devices.

int ioctl(int fd, unsigned long request, ...);

¢ Types of requests and optional parameter is driver  or 
even vendor specific. 

¢ Each driver implements its own set of configuration 
requests and parameter types.

¢ Devices and drivers change but libc and kernel interface is 
fixed.
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Windows I/O subsystem
¢ Microsoft Windows uses device shortcuts on filesystem to 

address devices.
¢ Device Access API provides an interface to application 

programmers to inspect and interact with the devices.
¢ WDK, Windows Device Framework provides user and 

kernel interfaces for device driver development.
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I/O Categorization (OS perspective)
¢ Character stream vs block.
¢ Sequential vs Random access

device driver allow seeking to an offset in device
¢ Synchronous vs Asynchronous

I/O operation on device driver is synchronized with I/O 
completion on device controller. Asynchronous I/O returns 
earlier  and report success/failure later.

¢ Buffered vs Direct
The reported operation result is completed on buffers or on 
device controller. 

¢ Shareable or Dedicated
I/O on each device instance is mutually exclusive. (i.e. printer)

¢ Read only, Write only, Read-write
i.e: mouse, printer, hard disk
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Kernel I/O System
Kernels provide many services related to I/O:

§ scheduling, 
§ buffering, 
§ caching, 
§ pooling, 
§ device reservation, and 
§ error handling

built on the hardware and device-driver infrastructure.
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I/O scheduling
¢ I/O is usually slow  and some devices have physical 

characteristics requiring optimizations.
§ E.g. hard disks:  Mechanical devices and delays caused by head movement 

and rotation.
§ If I/O is executed in a FIFO strategy, mechanical zigzag movements can 

overrule the I/O operations.
¢ I/O scheduling gets a set of I/O requests on a device and 

determines an optimal order and timing to execute the 
requests on the device.
§ Operating-system developers implement scheduling by maintaining a 

queue of requests for each device. 
§ When an application issues a blocking I/O system call, the request is 

placed on the queue for that device. 
§ The I/O scheduler rearranges the order of the queue to improve the 

overall system efficiency and the average response time experienced by 
applications.
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Disk I/O Scheduling
¢ Given multiple outstanding I/O requests, what order to issue them?

§ Why does it matter?
¢ Major goals of disk scheduling:

§ Minimize latency for small transfers
§ Primarily: Avoid long seeks by ordering accesses according to disk head 

locality
§ Maximize throughput for large transfers

§ Large databases and scientific workloads often involve enormous files 
and datasets

¢ Note that disk block layout (where we place file blocks, directories, 
file system metadata, etc.) has a large impact on performance

¢ On modern (smart) disk drives, I/O scheduling is done by the disk 
controller, which executes incoming I/O requests in a out-of-order 
fashion.
§ More on this will be discussed in the Disk Technology slides.
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Disk I/O Scheduling
¢Given multiple outstanding I/O requests, what order to issue them?
¢FIFO: Just schedule each I/O in the order it arrives

§ What's wrong with this? 
§ Potentially lots of seek time!

¢SSTF: Shortest seek time first
§ Issue I/O with the nearest cylinder to the current one

§ Favors middle tracks: Head rarely moves to edges of disk
¢SCAN (or Elevator) Algorithm:

§ Head has a current direction and current cylinder
§ Sort I/Os according to the track # in the current direction of the head
§ If no more I/Os in the current direction, reverse direction

¢CSCAN Algorithm:
§ Always move in one direction, “wrap around” to beginning of disk when 

moving off the end
§ Reduce variance in seek times, avoid discrimination against the highest and 

lowest tracks
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tim
e

Tracks

Current track: 9                          I/O queue at t0: 9,1,14,6,5,21,17,12 

0     1     2      3     4     5     6      7     8     9    10   11  12    13   14    15   16   17   18   19   20  21   22  23 
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tim
e

Tracks

Current track: 9                                          I/O queue at t0: 9,1,5,21,11 

0     1     2      3     4     5     6      7     8     9    10   11  12    13   14    15   16   17   18   19   20  21   22  23 
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tim
e

Tracks

Current track: 9  Direction: ->                        I/O queue at t0: 9,1,14,6,5,21,17,12 

0     1     2      3     4     5     6      7     8     9    10   11  12    13   14    15   16   17   18   19   20  21   22  23 
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tim
e

Tracks

Current track: 9   Current direction:                       I/O queue at t0: 9,1,14,6,5,21,17,12 

0     1     2      3     4     5     6      7     8     9    10   11  12    13   14    15   16   17   18   19   20  21   22  23 

Direction
switch
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tim
e

Tracks

Current track: 9   Current direction:                       I/O queue at t0: 9,1,14,6,5,21,17,12 

0     1     2      3     4     5     6      7     8     9    10   11  12    13   14    15   16   17   18   19   20  21   22  23 

Move back
fast and switch
direction
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Direction

Current track

¢What is the overhead of the SCAN algorithm?
§ Count the total amount of seek time to service all I/O requests
§ In this case, 12 tracks in --> direction
§ 15 tracks for long seek back
§ 5 tracks in <-- direction

§ Total: 12+15+5 = 32 tracks
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Page Cache : Caching Block devices
¢ Block device operations are tightly coupled with virtual memory 

and paging.
¢ Some of the frames are used as page cache and keeps data of 

block devices in systems.
¢ I/O in a block device:

§ Search if block is already in page cache (in physical memory):
§ if found read/write buffer from/to existing frame
§ Else allocate a frame,

read device block into frame,
mark frame as caching device-block pair
read/write bufffer from/to this frame.

¢ Dirty pages are written on block device periodically.
¢ Accelerates I/O operations significantly, especially file system 

meta data operations.
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File Cache
¢ Page cache idea also couples with memory mapped I/O. 
mmap()’ed files work in a similar mechanism.

¢ Virtual memory of a process map a page backed as a file 
(instead of a block device). Changes are updated on 
memory, cached frames are forced on disk periodically.

¢ VM system keeps track of frames of page and file caches 
together with other (resident and free) pages.

¢ VM system adapts sizes of file and device cache based on 
memory state of the system.
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Buffering
¢ A buffer is a memory area that stores data while they are transferred 

between two devices or between a device and an application. 
¢ Buffering is done for three reasons. 

§ to cope with a speed mismatch between the producer and consumer of a data stream. 
§ a file is being received via modem for storage on the hard disk

§ to adapt between devices that have different data-transfer sizes.
§ networking: messages are typically fragmented during sending and receiving

§ to support copy semantics for application I/O. 
§ application calls the write()system call, providing a pointer to the buffer and 

an integer specifying the number of bytes to write. 
§ After the system call returns, what happens if the application changes the 

contents of the buffer? 
§ When processing write() system call, OS copy the application data into a 

kernel buffer before returning control to the application. 
§ The disk write is performed from the kernel buffer, so that subsequent changes to 

the application buffer have no effect.
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Buffering 

a) Unbuffered input: 
b) Buffering in user space. 
c) Buffering in the kernel followed by copying to user space.
d) Double buffering in the kernel.
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Buffering: Unbuffered input

¢ I/O device writes directly into the user’s address space. 
¢ If the page frame that the I/O device need to write is not in the memory, 

then a page fault is generated. 
¢ The I/O device may fail to write the incoming data, if new data arrives and

overwrites the unwritten data in the memory/registers of the device. 
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Buffering: Buffering in user space

¢ I/O device writes directly into the user’s address space. The
page frame that the I/O device need to write is «pinned» into
the memory, i.e. The page frame is never evicted.

¢ If all such page frames (of all the processes) are «pinned», then
the physical memory will become tight!  
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Buffering: Buffering in kernel space

¢ I/O device writes directly into the kernel’s address space. 
¢ The kernel page frame that the I/O device need to write is «pinned» into the memory, i.e. 

The page frame is never evicted.
¢ Note that the kernel can combine many such buffers into a single kernel page frame, 

minimizing the number of «pinned» kernel page frames in the physical memory!
¢ When the kernel buffer becomes full, it is copied to the user’s address space, and emptied.
¢ What if, during copying, new data arrives? 

§ It may be lost!
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Buffering: Double buffering in kernel space

¢ I/O device writes directly into the kernel’s address space. 
¢ The kernel page frame that the I/O device need to write is «pinned» into the

memory, i.e. The page frame is never evicted.
¢ When the kernel buffer becomes full, it is copied to the user’s address space, 

and emptied.
¢ During copying, the I/O device is directed to write into a second buffer!
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Caching vs. Buffering
¢The difference between a buffer and a cache is that 

§ a buffer may hold the only existing copy of a data item, 
§ whereas a cache, by definition, just holds a copy on faster storage of 
an item that resides elsewhere.

¢Caching and buffering are distinct functions, but sometimes 
a region of memory can be used for both purposes. 

§For instance, to preserve copy semantics and to enable efficient 
scheduling of disk I/O, the operating system uses buffers in main 
memory to hold disk data.
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I/O call semantic
¢ I/O calls can be categorized into two based on their 

semantics
§ Blocking
§ Non-blocking

¢ For most I/O calls, both types of semantics are available
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Blocking I/O semantic
¢ When an application issues a blocking system call, the 

execution of the application is suspended.
§ The application is moved from the operating system's ready 

queue to a wait queue. 
§ After the system call completes, the application is moved back 

to the ready queue.
§ Easy to understand
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Nonblocking I/O semantic
¢ A nonblocking call does not halt the execution of the application for an 

extended time. 

¢ The call returns immediately
§ Either the call returns the available data (may be none) along with  a return value 

indicated how many bytes were transferred. 
§ E.g. user interface that receives keyboard and mouse input while processing and 

displaying data on the screen.
§ The completion of the I/O at some future time is communicated to the application, 

§ either through the setting of some variable in the address space of the 
application, 

§ or through the triggering of a signal or software interrupt 
§ or a call-back routine that is executed outside the linear control flow of the 

application. 

¢ In either case, after the return from the call, the application continues to 
execute its code.
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Spooling
¢ A spool is a buffer that holds output for a device, such 

as a printer, that cannot accept interleaved data 
streams. 
§ Although a printer can serve only one job at a time, several 

applications may wish to print their output concurrently, 
without having their output mixed together.

§ The operating system solves this problem by intercepting 
all output to the printer. 

§ Each application's output is spooled to a separate disk file. 
§ When an application finishes printing, the spooling system 

queues the corresponding spool file for output to the 
printer. 

§ The spooling system copies the queued spool files to the 
printer one at a time.

§ In some operating systems, spooling is managed by a 
system daemon process.
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Error handling
¢ An operating system that uses protected memory can 

guard against many kinds of hardware and application 
errors, so that a complete system failure is not the usual 
result of each minor mechanical glitch.
§ Devices and I/O transfers can fail in many ways, either for transient 

reasons, such as a network becoming overloaded, or for 
“permanent” reasons, such as a disk controller becoming defective. 

§ Operating systems can often compensate effectively for transient 
failures. 
§ For instance, a disk read()  failure results in a read()  retry, and a 

network send()  error results in a resend() , if the protocol so 
specifies. 

§ Unfortunately, if an important component experiences a 
permanent failure, the operating system is unlikely to recover.
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I/O system in OS:  Summary
¢ How to access I/O devices in HW

§ Device controllers and device drivers
¢ How to interact with I/O devices?

§ Poll based vs. Interrupt based I/O
§ CPU checks if I/O is complete
§ An interrupt is generated when I/O is complete

§ Programmed vs. DMA based I/O
§ Data is transferred to/from CPU
§ DMA controller transfers data from device buffer to main memory without CPU 

intervention

¢ How are I/O devices categorized?
§ Character vs. Block

§ Streams of chars (e.g. printer, modem)
§ Units of blocks (e.g. disks)

¢ Caching and Buffering
¢ Blocking and non-blocking semantics
¢ Other issues

§ Error handling,
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