Synchronization
Deadlocks and prevention

Some of the slides are adapted from from Operating System Concepts (Silberschatz, Galvin, Gagne).

Preemption - recall

m Preemption is to forcefully take a resource from a thread/process
" Resources can be CPU/lock/disk/network etc.
= Resources can be
= Preemptible (e.g. CPU)
= Non-preemptible (e.g. mutex, lock, virtual memory region)

m e.g. CPUis a preemptible resource
= A preemptive OS can stop a thread/process at any time

= j.e. forcefully take the CPU from the current thread/process and give it to
another.

= A non-preemptive OS can’t stop a thread/process at any time
= The OS has to wait for the current thread/process to yield (give away the CPU)
voluntarily.
m e.g.alockis not a preemptible resource. The OS;
= cannot forcefully take away the lock and give it to another,
= has to wait for the current thread/process to voluntarily release it.
= Why isn't it safe to forcibly take a lock away from a thread?

What’s a deadlock?

Deadlock

m A set of blocked threads/processes each holding a resource and
waiting to acquire a resource held by another process in the set.

m A deadlock happens when
= Two (or more) threads waiting for each other
= None of the deadlocked threads ever make progress

é h°

Thread 1

waits for

waits for

EEEEEEEER
l.......'
WM EEEEEEEEEEEEEEEEEER

a2 A

Thread 2

9'

holds

Starvation

m A thread/process not making any progress since other
threads/processes are using the resources that it needs.

= CPU as a resource: A thread/process not getting the CPU, since
other the scheduler is giving the CPU to other “higher priority”
thread/processes.

= More on this in the upcoming lecture on scheduling.

" |ock as aresource: : A thread/process not getting a lock that it has
requested, since others have it.

m Starvation # Deadlock
" Deadlock => Starvation
® Starvation #> Deadlock

Pedestrians who wants to cross Eskisehir Yolu
are likely to “starve” due to traffic!

Methods for Handling Deadlocks

m Ensure that the system will never
enter a deadlock state.

m Allow the system to enter a deadlock
state and then recover.

m Ignore the problem and pretend that
deadlocks never occur in the system;
used by most operating systems,
including UNIX.

Dining Philosophers

m Classic deadlock problem
= Multiple philosophers trying to lunch

" One chopstick to left and right of each
philosopher

= Each one needs two chopsticks to eat

Dining Philosophers

m What happens if everyone grabs the
chopstick to their right?

= Everyone gets one chopstick and waits
forever for the one on the left

= All of the philosophers starve!!!

Deadlock Characterization

m Mutual exclusion: only one process at a time can use a resource.

m Hold and wait: a process holding at least one resource is waiting to
acquire additional resources held by other processes.

m No preemption: aresource can be released only voluntarily by the
process holding it, after that process has completed its task.

m Circular wait: there exists a set {P,, P;, ..., Py} of waiting processes
such that

* P,is waiting for a resource that is held by P,

* P, is waiting for a resource that is held by P,, ...,

* P, is waiting for a resource that is held by P,, and
* P, is waiting for a resource that is held by P,,.

Deadlock can arise if all four conditions hold simultaneously!

Deadlock Prevention

m Ensure that at least one of the four conditions do not hold!

m Mutual Exclusion

not required for sharable resources;

must hold for non-sharable resources (e.g. a printer).

m Hold and Wait

must guarantee that whenever a process requests a resource, it
does not hold any other resources.

Require process to request and be allocated all its resources
before it begins execution,

Allow process to request resources only when the process has
none.

— low resource utilization;

— starvation possible.

Deadlock Prevention (Cont.)

m No Preemption

= |f a process that is holding some resources requests another
resource that cannot be immediately allocated to it, then all
resources currently being held are released.

= Preempted resources are added to the list of resources for which the
process is waiting.

" Process will be restarted only when it can regain its old resources, as
well as the new ones that it is requesting.

= Can be applied to resources whose state can be saved such as CPU,
and memory. Not applicable to resources such as printer and tape
drives.

m Circular Wait
" impose a total ordering of all resource types, and

= require that each process requests resources in an increasing order
of enumeration.

Circular Wait - 1

m Each resource is given an ordering:
" F(tape drive)=1
= F(disk drive) =2
= F(printer) =3
" F(mutexl)=4
" F(mutex2)=5

m Each process can request resources only in increasing order
of enumeration.

m A process which decides to request an instance of Rj should
first release all of its resources that are F(Ri) >= F(Rj).

Circular Wait - 2

m Forinstance an application program may use ordering among all of its
synchronization primitives:
" F(semaphorel) =1
" F(semaphore2) =2
" F(semaphore3) =3
m After this, all requests to synchronization primitives should be made
only in the increasing order:
" Correct use:
= down(semaphorel);
= down(semaphore?2);
" |ncorrect use:
= down(semaphore3);
= down(semaphore?2);

m Keep in mind that it’s the application programmer’s responsibility to
obey this order.

Dining Philosophers

m How do we solve this problem??
= (Apart from letting them eat with forks.)

How to solve this problem?

m Solution 1: Don't wait for chopsticks
® Grab the chopstick on your right
® Try to grab chopstick on your left
= |f you can't grab it, put the other one back down
= Breaks “no preemption” condition — no waiting!
m Solution 2: Grab both chopsticks at once
= Requires some kind of extra synchronization to make it atomic
= Breaks “multiple independent requests” condition!
m Solution 3: Grab chopsticks in a globally defined order
®" Number chopsticks 0, 1, 2, 3, 4
® Grab lower-numbered chopstick first
= Means one person grabs left hand rather than right hand first!
= Breaks “circular dependency” condition

m Solution 4: Detect the deadlock condition and break out of it
= Scan the waiting graph and look for cycles
= Shoot one of the threads to break the cycle

Deadlock Avoidance

m Requires that the system has some additional a priori

information available.

Simplest and most useful model requires that each process
declare the maximum number of resources of each type that it
may need.

= |s this possible at all?

The deadlock-avoidance algorithm dynamically examines the
resource-allocation state to ensure that there can never be a
circular-wait condition.

= When should the algorithm be called?

Resource-allocation state is defined by the number of available
and allocated resources, and the maximum demands of the
processes.

System Model

m Resource typesR,, R,, ..., R,
= CPU,
" memory,
= |/O devices
= disk
= network
m Each resource type R, has W, instances.

" For instance a quad-core processor has
= 4 CPUs

m Each process utilizes a resource as follows:
" request
" use

" release

Resource-Allocation Graph

R, R,
m A set of vertices V and a set of . .
\ \

edges E.

m Vis partitioned into two types:

" P={Py, P, ..., P,}, the set consisting of all the e e @

processes in the system.

/
= R={Ry R, ..., R}, the set consisting of all \'
resource types in the system. y :
m request edge — directed edge P, —> R; R -
m assighment edge — directed edge R; <— P, Ry

Resource Allocation Graph With A Deadlock

R Ay

m If there is a deadlock . .
= =>thereis acycle in the graph. \

m However the reverse is not true! 0 @ @

m If thereis a cycle in the graph
= =/>thereis a deadlock

Resource Allocation Graph With A Cycle But No

Deadlock

m However the existence of a
cycle in the graph does not
necessarily imply a deadlock.

Overall message:

m If graph contains no cycles =>
= no deadlock.

m If graph contains a cycle =>

= if only one instance per resource type,
then deadlock.

= jf several instances per resource type,
possibility of deadlock.

Safe, unsafe and deadlock states

M If a system is in safe state => no
deadlocks. deadlock

- safe
M If a system is in unsafe state => /

possibility of deadlock.

unsafe

B Avoidance: ensure that a system will
never enter an unsafe state.

Safe State

= When a process requests an available resource, system must
decide if immediate allocation leaves the system in a safe
state.

= System is in safe state if there exists a safe sequence of all
processes.

= Sequence <Py, P,, ..., P> is safe if for each P;, the resources that
P. can still request can be satisfied by currently available
resources + resources held by all the P;, with j <.

= |f P,resource needs are not immediately available, then P; can wait
until all P; have finished.

= When P;is finished, P, can obtain needed resources, execute, return
allocated resources, and terminate.

= When P, terminates, P,,; can obtain its needed resources, and so on.

Resource Allocation Graph: Dining
Philosopher’s example - 1

m Initial configuration:
= 4 philosophers
= 4 sticks.

Resource Allocation Graph: Dining
Philosopher’s example - 2

m P, getsright stick

Resource Allocation Graph: Dining
Philosopher’s example - 3

m P, gets right stick
S

%
&

Resource Allocation Graph: Dining
Philosopher’s example - 4

m P;gets right stick
S

~a
o . &

Resource Allocation Graph: Dining
Philosopher’s example -5
m P, requests right stick.
= Cycle!!
" Rejected.

Monitors: Finite resource problem

Process code

m 5 instances of a Allocate MA; //resource allocation monitor.
resource MA.acquire () ;
// use the resource
m N processes. MA.release () ;
m Only 5 processescan |
use the resources Monitor code
simultaneously, Monitor Allocate

{

int count=5;
condition c;

void acquire () {
if (count == 0)
c.wait();
count--;
}
void release() {
count++;
c.signal(); //i.e. notify()

Monitors: Dining Philosophers

#define LEFT (i+4)%5
#define RIGHT (i+1)%5

Monitor DiningPhilosophers

{
enum{ THINKING,

HUNGRY,

EATING
}state[5];
condition cond[5];

void pickup(int i) {

state[i] = HUNGRY;
test (i) ;
if (state[i] !'= EATING)

cond[i] .wait () ;

}

void putdown (int i) {
state[1]=THINKING;

// test left and right neighbor

test (LEFT) ;
test (RIGHT) ;

void test(int i) {

if((state[LEFT] '= EATING) &&

(state[RIGHT] !'= EATING) &&
(state[i1] == HUNGRY))
{
state[i] = EATING;
cond[i] .signal() ;

}

void initialize () {
for (int i=01 i<5; i++)
state[i1] = THINKING;

}

} // end Monitor

DiningPhilosopher DP;

while (1) {
// THINK. .
DP.pickup (i) ;
// EAT (use resources)
DP.putdown (i) ;
// THINK. .

Monitors: Dining Philosophers

m What are the ID’s to access neighbor philosophers?

#define LEFT ?2°2°
#define RIGHT 2?2727

state[LEFT]

Process
2?7

?

state[1i]

state=

THINKING?
HUNGRY?
EATING?

?

state[RIGHT]

Process
2?7

?

Monitors: Dining Philosophers

m What are the ID’s to access neighbor philosophers?

#define LEFT (i+4)%5 state=
#define RIGHT (i+l)%5 THINKING?
HUNGRY?
EATING?
state[LEFT] = ? state[1] = ? state[RIGHT] = ?

Process Process

(i+4) % 5 (i+1) % 5

test ((1i+4)%5) test (1) test ((1i+1)%5)

Banker’s Algorithm

= Suppose “worst case/maximum” resource needs of each

process is known in advance
= E.g. limit on your credit card

= Observation: If we give a process the maximum of its

resources

= Then it will execute to complete
= After that it will give back all the resources

= When a process request a new resource during its execution
= The OS decides whether to give it the resource at that time or not

= Arequestis delayed if there does not exist a sequence of
processes that would ensure the successful completion of all
the processes, even if they need the “maximum” of their
resources.

Why Banker’s Algorithm? While giving credits, a banker should ensure that it never allocates all of
its cash in such a way that none of its creditors can finish their work and pay back the loan.

Banker’s algorithm - example -1

m System:
" 5 processes P1-P5
= 3 resource types: A (10), B (5), C(7)

Maximum

A B C
P1 7 5 3
P2 3 2 2
P3 9 0 2
P4 2 2 2
PS5 4 3 3

Banker’s algorithm - example - 2

m System:
" 5 processes P1-P5
= 3 resource types: A (10), B (5), C(7)

m System state at t0

Allocated Max Needs Available

A B C|A B C|A B C A B C

PLO 1 O |7 5 3 |7 4 3 3 3 2
P2 2 0 O |3 2 2 (1 2 2
P3 3 0 2 (9 0 2 |6 0 O
P4 2 1 1|2 2 2 |0 1 1
P 5 0 0 2 (4 3 3 |4 3 1

The system is in a safe state since the sequence <P2,P4,P5,P3,P1> would guarantee
the completion of all processes.

Banker’s algorithm - example -3

P2 request (1,0,2)
Check that request <= Available

(1,0,2) <= (3,3,2)
Look for a safe sequence:
<P2,P4,P5,P1,P3> is possible!

P1
P2
P3
P4
P5

Allocated
A B C
0O 1 O
3 0 2
3 0 2
2 1 1
0O 0 2

Max
A B C
7 5 3
3 2 2
9 0 2
2 2 2
4 3 3

Needs
A B C
/7 4 3
1 2 2
6 0 O
0O 1 1
4 3 1

A
2

Available
B C
3 0

Banker’s algorithm - example - 4

P5 requests (3,3,0)
Check that request <= Available

Look for a safe sequence:

?77?

277

P1
P2
P3
P4
P5

Allocated
A B C
0O 1 O
3 0 2
3 0 2
2 1 1
0O 0 2

Max

A N © W N >
W N O N O

W DD DD DD LN

Needs
A B C
/7 4 3
1 2 2
6 0 O
0O 1 1
4 3 1

A
2

Available
B C
3 0

Banker’s algorithm - example -5

P1 requests (0,2,0)
Check that request <= Available

Look for a safe sequence:

?77?

277

P1
P2
P3
P4
P5

Allocated
A B C
0O 1 O
3 0 2
3 0 2
2 1 1
0O 0 2

Max

A N © W N >
W N O N O

W DD DD DD LN

Needs
A B C
/7 4 3
1 2 2
6 0 O
0O 1 1
4 3 1

A
2

Available
B C
3 0

Banker’s Algorithm — Dining Philosophers - 1

m System resources:
= 1 chopsticks in 5 positions
= Total resources: (1,1,1,1, 1)

m 5 “philosopher” processes
m Maximum resources table is:

Maximum
Ct C2 C3 C4 OG5
P1 1 1 0 0 0
P2 0 1 1 0 0
P3 O 0 1 1 0
P4 0 0 0 1 1
PS5 1 0 0 0 1

Banker’s Algorithm — Dining Philosophers - 2

m Safe state:

P1
P2
P3
P4
P5

o O o O -

Allocated
C2 C3

o O o ~» O
o O »~ O O
o »r O O O

o O O O O

Needs
Cl C2 C3
O 1 O
0O 0 1
O 0 O
O 0 O
1 0 O

o O »~ O O

R = O O O

Available

C1 C2 C3 C4 G5

0

0

0O O

1

m <P4,P3, P2, P1, P5> is feasible.

Banker’s Algorithm — Dining Philosophers - 3

m P5is given the C5

P1
P2
P3
P4
P5

o O O O Bk

Allocated
C2 C3

o O o +» O
o O » O O
o »r O O O

kR O O O O

r O O O O

o O O O Bk

o O »~ O O

o »r O O O

Available

C1 C2 C3 C4 G5

0

0

0O O

0

m None of the processes get their need.
m Unsafe. Rejected.

