
Carnegie Mellon

Synchronization
Deadlocks and prevention

Some of the slides are adapted from from Operating System Concepts (Silberschatz, Galvin, Gagne).

Carnegie Mellon

Preemption - recall
¢ Preemption is to forcefully take a resource from a thread/process

§ Resources can be CPU/lock/disk/network etc.
§ Resources can be

§ Preemptible (e.g. CPU)
§ Non-preemptible (e.g. mutex, lock, virtual memory region)

¢ e.g. CPU is a preemptible resource
§ A preemptive OS can stop a thread/process at any time

§ i.e. forcefully take the CPU from the current thread/process and give it to
another.

§ A non-preemptive OS can’t stop a thread/process at any time
§ The OS has to wait for the current thread/process to yield (give away the CPU)

voluntarily.
¢ e.g. a lock is not a preemptible resource. The OS;

§ cannot forcefully take away the lock and give it to another,
§ has to wait for the current thread/process to voluntarily release it.

§ Why isn't it safe to forcibly take a lock away from a thread?

Carnegie Mellon

What’s a deadlock?

Carnegie Mellon

Deadlock
¢ A set of blocked threads/processes each holding a resource and

waiting to acquire a resource held by another process in the set.
¢ A deadlock happens when

§ Two (or more) threads waiting for each other
§ None of the deadlocked threads ever make progress

Mutex 1

Thread 1

Thread 2Mutex 2

holds

holds

waits for
waits for

Carnegie Mellon

Starvation
¢ A thread/process not making any progress since other

threads/processes are using the resources that it needs.
§ CPU as a resource: A thread/process not getting the CPU, since

other the scheduler is giving the CPU to other “higher priority”
thread/processes.
§ More on this in the upcoming lecture on scheduling.

§ Lock as a resource: : A thread/process not getting a lock that it has
requested, since others have it.

¢ Starvation ≠ Deadlock
§ Deadlock => Starvation
§ Starvation ≠> Deadlock

Pedestrians who wants to cross Eskişehir Yolu
are likely to “starve” due to traffic!

Carnegie Mellon

Methods for Handling Deadlocks

¢ Ensure that the system will never
enter a deadlock state.

¢ Allow the system to enter a deadlock
state and then recover.

¢ Ignore the problem and pretend that
deadlocks never occur in the system;
used by most operating systems,
including UNIX.

Carnegie Mellon

Dining Philosophers
¢ Classic deadlock problem

§ Multiple philosophers trying to lunch
§ One chopstick to left and right of each

philosopher
§ Each one needs two chopsticks to eat

Carnegie Mellon

Dining Philosophers
¢ What happens if everyone grabs the

chopstick to their right?
§ Everyone gets one chopstick and waits

forever for the one on the left
§ All of the philosophers starve!!!

Carnegie Mellon

Deadlock Characterization
¢ Mutual exclusion: only one process at a time can use a resource.
¢ Hold and wait: a process holding at least one resource is waiting to

acquire additional resources held by other processes.
¢ No preemption: a resource can be released only voluntarily by the

process holding it, after that process has completed its task.
¢ Circular wait: there exists a set {P0, P1, …, P0} of waiting processes

such that
• P0 is waiting for a resource that is held by P1,
• P1 is waiting for a resource that is held by P2, …,
• Pn–1 is waiting for a resource that is held by Pn, and
• Pn is waiting for a resource that is held by P0.

Deadlock can arise if all four conditions hold simultaneously!

Carnegie Mellon

Deadlock Prevention
¢ Ensure that at least one of the four conditions do not hold!
¢ Mutual Exclusion

§ not required for sharable resources;
§ must hold for non-sharable resources (e.g. a printer).

¢ Hold and Wait
§ must guarantee that whenever a process requests a resource, it

does not hold any other resources.
§ Require process to request and be allocated all its resources

before it begins execution,
§ Allow process to request resources only when the process has

none.
– low resource utilization;
– starvation possible.

Carnegie Mellon

Deadlock Prevention (Cont.)
¢ No Preemption

§ If a process that is holding some resources requests another
resource that cannot be immediately allocated to it, then all
resources currently being held are released.

§ Preempted resources are added to the list of resources for which the
process is waiting.

§ Process will be restarted only when it can regain its old resources, as
well as the new ones that it is requesting.

§ Can be applied to resources whose state can be saved such as CPU,
and memory. Not applicable to resources such as printer and tape
drives.

¢ Circular Wait
§ impose a total ordering of all resource types, and
§ require that each process requests resources in an increasing order

of enumeration.

Carnegie Mellon

Circular Wait - 1
¢ Each resource is given an ordering:

§ F(tape drive) = 1
§ F(disk drive) = 2
§ F(printer) = 3
§ F(mutex1) = 4
§ F(mutex2) = 5
§ …….

¢ Each process can request resources only in increasing order
of enumeration.

¢ A process which decides to request an instance of Rj should
first release all of its resources that are F(Ri) >= F(Rj).

Carnegie Mellon

Circular Wait - 2
¢ For instance an application program may use ordering among all of its

synchronization primitives:
§ F(semaphore1) = 1
§ F(semaphore2) = 2
§ F(semaphore3) = 3
§ …….

¢ After this, all requests to synchronization primitives should be made
only in the increasing order:
§ Correct use:

§ down(semaphore1);
§ down(semaphore2);

§ Incorrect use:
§ down(semaphore3);
§ down(semaphore2);

¢ Keep in mind that it’s the application programmer’s responsibility to
obey this order.

Carnegie Mellon

Dining Philosophers
¢ How do we solve this problem??

§ (Apart from letting them eat with forks.)

Carnegie Mellon

How to solve this problem?
¢Solution 1: Don't wait for chopsticks

§ Grab the chopstick on your right
§ Try to grab chopstick on your left
§ If you can't grab it, put the other one back down
§ Breaks �no preemption� condition – no waiting!

¢Solution 2: Grab both chopsticks at once
§ Requires some kind of extra synchronization to make it atomic
§ Breaks �multiple independent requests� condition!

¢Solution 3: Grab chopsticks in a globally defined order
§ Number chopsticks 0, 1, 2, 3, 4
§ Grab lower-numbered chopstick first

§ Means one person grabs left hand rather than right hand first!
§ Breaks �circular dependency� condition

¢Solution 4: Detect the deadlock condition and break out of it
§ Scan the waiting graph and look for cycles
§ Shoot one of the threads to break the cycle

Carnegie Mellon

Deadlock Avoidance
¢ Requires that the system has some additional a priori

information available.
§ Simplest and most useful model requires that each process

declare the maximum number of resources of each type that it
may need.
§ Is this possible at all?

§ The deadlock-avoidance algorithm dynamically examines the
resource-allocation state to ensure that there can never be a
circular-wait condition.
§ When should the algorithm be called?

§ Resource-allocation state is defined by the number of available
and allocated resources, and the maximum demands of the
processes.

Carnegie Mellon

System Model

¢ Resource types R1, R2, . . ., Rm
§ CPU,
§ memory,
§ I/O devices

§ disk
§ network

¢ Each resource type Ri has Wi instances.
§ For instance a quad-core processor has

§ 4 CPUs
¢ Each process utilizes a resource as follows:

§ request
§ use
§ release

Carnegie Mellon

Resource-Allocation Graph

¢ A set of vertices V and a set of
edges E.

¢ V is partitioned into two types:
§ P = {P1, P2, …, Pn}, the set consisting of all the

processes in the system.

§ R = {R1, R2, …, Rm}, the set consisting of all
resource types in the system.

¢ request edge – directed edge P1 -> Rj

¢ assignment edge – directed edge Rj <- Pi

Carnegie Mellon

Resource Allocation Graph With A Deadlock

¢ If there is a deadlock
§ => there is a cycle in the graph.

¢ However the reverse is not true!
¢ If there is a cycle in the graph

§ =/> there is a deadlock

Carnegie Mellon

Resource Allocation Graph With A Cycle But No
Deadlock

¢ However the existence of a
cycle in the graph does not
necessarily imply a deadlock.

Overall message:
¢ If graph contains no cycles =>

§ no deadlock.

¢ If graph contains a cycle =>
§ if only one instance per resource type,

then deadlock.
§ if several instances per resource type,

possibility of deadlock.

Carnegie Mellon

Safe, unsafe and deadlock states

¢ If a system is in safe state => no
deadlocks.

¢ If a system is in unsafe state =>
possibility of deadlock.

¢Avoidance: ensure that a system will
never enter an unsafe state.

Carnegie Mellon

Safe State
§ When a process requests an available resource, system must

decide if immediate allocation leaves the system in a safe
state.

§ System is in safe state if there exists a safe sequence of all
processes.

§ Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources that
Pi can still request can be satisfied by currently available
resources + resources held by all the Pj, with j < i.
§ If Pi resource needs are not immediately available, then Pi can wait

until all Pj have finished.
§ When Pj is finished, Pi can obtain needed resources, execute, return

allocated resources, and terminate.
§ When Pi terminates, Pi+1 can obtain its needed resources, and so on.

Carnegie Mellon

Resource Allocation Graph: Dining
Philosopher’s example - 1
¢ Initial configuration:

§ 4 philosophers
§ 4 sticks.

R

R

R

R

P1

P2P3

P4

Carnegie Mellon

Resource Allocation Graph: Dining
Philosopher’s example - 2
¢ P1 gets right stick

R

R

R

R

P1

P2P3

P4

Carnegie Mellon

Resource Allocation Graph: Dining
Philosopher’s example - 3
¢ P2 gets right stick

R

R

R

R

P1

P2P3

P4

Carnegie Mellon

Resource Allocation Graph: Dining
Philosopher’s example - 4
¢ P3 gets right stick

R

R

R

R

P1

P2P3

P4

Carnegie Mellon

Resource Allocation Graph: Dining
Philosopher’s example – 5
¢ P4 requests right stick.

§ Cycle!!
§ Rejected.

R

R

R

R

P1

P2P3

P4

X

Carnegie Mellon

Monitors: Finite resource problem
¢ 5 instances of a

resource
¢ N processes.
¢ Only 5 processes can

use the resources
simultaneously.

Allocate MA; //resource allocation monitor.
….
MA.acquire();
// use the resource
MA.release();
....

Process code

Monitor Allocate
{

int count=5;
condition c;

void acquire(){
if (count == 0)

c.wait();
count--;

}
void release(){

count++;
c.signal(); //i.e. notify()

}
}

Monitor code

Carnegie Mellon

Monitors: Dining Philosophers
Monitor DiningPhilosophers
{

enum{THINKING,
HUNGRY,
EATING

}state[5];
condition cond[5];

void pickup(int i){
state[i] = HUNGRY;
test(i);
if (state[i] != EATING)

cond[i].wait();
}

void putdown(int i){
state[i]=THINKING;
// test left and right neighbors
test(LEFT);
test(RIGHT);

}

void test(int i){
if((state[LEFT] != EATING) &&
(state[RIGHT] != EATING) &&
(state[i] == HUNGRY))
{

state[i] = EATING;
cond[i].signal();

}
}

void initialize(){
for (int i=0l i<5; i++)

state[i] = THINKING;
}

} // end Monitor

DiningPhilosopher DP;
…
while(1){

// THINK..
DP.pickup(i);
// EAT (use resources)
DP.putdown(i);
// THINK..

}

#define LEFT (i+4)%5
#define RIGHT (i+1)%5

Carnegie Mellon

Monitors: Dining Philosophers
¢ What are the ID’s to access neighbor philosophers?

#define LEFT ???
#define RIGHT ???

Process
i

Process
???

Process
???… …

state[LEFT] = ? state[RIGHT] = ?state[i] = ?

state=
THINKING?
HUNGRY?
EATING?

Carnegie Mellon

Monitors: Dining Philosophers
¢ What are the ID’s to access neighbor philosophers?

#define LEFT (i+4)%5
#define RIGHT (i+1)%5

Process
i

Process
(i+1) % 5

Process
(i+4) % 5

test(i)

… …

test((i+1)%5)test((i+4)%5)

state[LEFT] = ? state[RIGHT] = ?state[i] = ?

state=
THINKING?
HUNGRY?
EATING?

Carnegie Mellon

Banker’s Algorithm

§ Suppose “worst case/maximum” resource needs of each
process is known in advance
§ E.g. limit on your credit card

§ Observation: If we give a process the maximum of its
resources
§ Then it will execute to complete
§ After that it will give back all the resources

§ When a process request a new resource during its execution
§ The OS decides whether to give it the resource at that time or not

§ A request is delayed if there does not exist a sequence of
processes that would ensure the successful completion of all
the processes, even if they need the “maximum” of their
resources.

Why Banker’s Algorithm? While giving credits, a banker should ensure that it never allocates all of
its cash in such a way that none of its creditors can finish their work and pay back the loan.

Carnegie Mellon

Banker’s algorithm - example – 1
¢ System:

§ 5 processes P1-P5
§ 3 resource types: A (10), B (5), C(7)

Maximum
A B C

P1 7 5 3
P2 3 2 2
P3 9 0 2
P4 2 2 2
P5 4 3 3

Carnegie Mellon

Banker’s algorithm - example - 2
¢ System:

§ 5 processes P1-P5
§ 3 resource types: A (10), B (5), C(7)

¢ System state at t0

Allocated Max Needs
A B C A B C A B C

P1 0 1 0 7 5 3 7 4 3
P2 2 0 0 3 2 2 1 2 2
P3 3 0 2 9 0 2 6 0 0
P4 2 1 1 2 2 2 0 1 1
P5 0 0 2 4 3 3 4 3 1

Available
A B C
3 3 2

The system is in a safe state since the sequence <P2,P4,P5,P3,P1> would guarantee
the completion of all processes.

Carnegie Mellon

Banker’s algorithm - example - 3
¢ P2 request (1,0,2)
¢ Check that request <= Available

§ (1,0,2) <= (3,3,2)
¢ Look for a safe sequence:

§ <P2,P4,P5,P1,P3> is possible!

Allocated Max Needs
A B C A B C A B C

P1 0 1 0 7 5 3 7 4 3
P2 3 0 2 3 2 2 1 2 2
P3 3 0 2 9 0 2 6 0 0
P4 2 1 1 2 2 2 0 1 1
P5 0 0 2 4 3 3 4 3 1

Available
A B C
2 3 0

Carnegie Mellon

Banker’s algorithm - example - 4
¢ P5 requests (3,3,0)
¢ Check that request <= Available

§ ???

¢ Look for a safe sequence:
§ ???

Allocated Max Needs
A B C A B C A B C

P1 0 1 0 7 5 3 7 4 3
P2 3 0 2 3 2 2 1 2 2
P3 3 0 2 9 0 2 6 0 0
P4 2 1 1 2 2 2 0 1 1
P5 0 0 2 4 3 3 4 3 1

Available
A B C
2 3 0

Carnegie Mellon

Banker’s algorithm - example - 5
¢ P1 requests (0,2,0)
¢ Check that request <= Available

§ ???

¢ Look for a safe sequence:
§ ???

Allocated Max Needs
A B C A B C A B C

P1 0 1 0 7 5 3 7 4 3
P2 3 0 2 3 2 2 1 2 2
P3 3 0 2 9 0 2 6 0 0
P4 2 1 1 2 2 2 0 1 1
P5 0 0 2 4 3 3 4 3 1

Available
A B C
2 3 0

Carnegie Mellon

Banker’s Algorithm – Dining Philosophers - 1
¢ System resources:

§ 1 chopsticks in 5 positions
§ Total resources: (1, 1, 1, 1, 1)

¢ 5 “philosopher” processes
¢ Maximum resources table is:

Maximum
C1 C2 C3 C4 C5

P1 1 1 0 0 0
P2 0 1 1 0 0
P3 0 0 1 1 0
P4 0 0 0 1 1
P5 1 0 0 0 1

Carnegie Mellon

Banker’s Algorithm – Dining Philosophers - 2

¢ Safe state:

¢ <P4, P3, P2, P1, P5> is feasible.

Allocated Needs

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

P1 1 0 0 0 0 0 1 0 0 0
P2 0 1 0 0 0 0 0 1 0 0
P3 0 0 1 0 0 0 0 0 1 0
P4 0 0 0 1 0 0 0 0 0 1
P5 0 0 0 0 0 1 0 0 0 1

Available

C1 C2 C3 C4 C5

0 0 0 0 1

Carnegie Mellon

Banker’s Algorithm – Dining Philosophers - 3

¢ P5 is given the C5

¢ None of the processes get their need.
¢ Unsafe. Rejected.

Allocated Needs
C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

P1 1 0 0 0 0 0 1 0 0 0
P2 0 1 0 0 0 0 0 1 0 0
P3 0 0 1 0 0 0 0 0 1 0
P4 0 0 0 1 0 0 0 0 0 1
P5 0 0 0 0 1 1 0 0 0 0

Available
C1 C2 C3 C4 C5
0 0 0 0 0

