
Carnegie Mellon

Memory Management and Virtual
Memory - 2

Some of the slides are adapted from Matt Welsh’s.
Some slides are from Tanenbaum, Modern Operating Systems 3 e, (c) 2008
Prentice-Hall, Inc. All rights reserved. 0-13-6006639
Some slides are from Silberschatz, and Gagne.

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Page Replacement

¢ How do we decide which pages to page-out (a.k.a kick
out) of physical memory when memory is tight?

¢ How do we decide how much memory to allocate to a
process?

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

3
2
1
0

Physical
Memory

PP
N

V PTE

Page
Table

9
8
7
6
5
4
3
2
1
0

VP
N

Disk

21

11

10

15

42

32

15

42

32

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Basic Page Replacement
¢ How do we replace pages?

§ Find the location of the desired page on disk
§ Find a free frame:

§ If there is a free frame, use it
§ If there is no free frame, use a page replacement algorithm to

select a victim frame
§ Read the desired page into the (newly) free frame. Update the

page and frame tables.
§ Restart the process

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Evicting the best page
¢ Goal of the page replacement algorithm:

§ Reduce page fault rate by selecting the best page to evict

¢ The “best” pages are those that will never be used again
§ However, it's impossible to know in general whether a page will be

touched
§ If you have information on future access patterns, it is possible to

prove that evicting those pages that will be used the furthest in the
future will minimize the page fault rate

¢ What is the best algorithm for deciding the order to evict
pages?
§ Much attention has been paid to this problem.
§ Used to be a very hot research topic.
§ These days, widely considered solved (at least, solved well enough)

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Locality
¢ Exploiting locality

§ Temporal locality: Memory accessed recently tends to be accessed
again soon

§ Spatial locality: Memory locations near recently-accessed memory
is likely to be referenced soon

¢ Locality helps to reduce the frequency of paging
§ Once something is in memory, it should be used many times

¢ This depends on many things:
§ The amount of locality and reference patterns in a program
§ The page replacement policy
§ The amount of physical memory and the application footprint

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Page Replacement Basics
¢ Most page replacement algorithms operate on some data structure

that represents physical memory:

Free list

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Page Replacement Basics
¢ Most page replacement algorithms operate on some data structure

that represents physical memory:

§ Might consist of a bitmap, one bit per physical page
§ Might be more involved, e.g., a reference count for each page (remember

Shared memory/CoW?)
§ Free list consists of pages that are unallocated

¢ Several ways of implementing this data structure
§ Scan all process PTEs that correspond to mapped pages (valid bit == 1)
§ Keep separate linked list of physical pages
§ Inverted page table: One entry per physical page, each entry points to PTE

Free list

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Inverted Page Tables
¢ Inverted Page Table is a mapping from frame to Virtual

Page.
§ Stores which process and page table refers a physical page.
§ During page replacement, replaced page should have its existing

address translation invalidated.

¢ Other uses:
§ For copy-on-write, number of references to a frame needs to be

stored.
§ Some architectures use them for address translation without HW

help.
§ A hash table for (pid, virtual page no) pair points to inverted

page table entry.
§ If IPT entry points to process address space back, it is success.
§ Otherwise hash chain is followed, if miss, page is invalid, page

fault is invoked.

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Free List
¢ Bitmap representation: n/8 bytes.

§ i.e. 4GB = 4M pages requires 512KB

§ More information per frame required if page is not free. i.e.

invalidate PTE’s of address translation tables referring an evicted

frame.

¢ Linked list of page structures:

§ Allocating a free page and inserting an evicted page is fast.

Insert/remove from the head

§ Non-free page structures keep reference count, reference to task

memory maps, file block info if loaded from a file, state and

protection.

page page page page page pagefreelist

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Algorithms: Random and FIFO
¢ Random: Throw out a random page

§ Obviously not the best scheme
§ Although very easy to implement!

¢ FIFO: Throw out pages in the order that they were allocated
§ Maintain a list of allocated pages
§ When the length of the list grows to cover all of physical memory, pop

first page off list and allocate it

¢ Why might FIFO be good?

¢ Why might FIFO not be so good?

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Algorithms: FIFO
¢ FIFO: Throw out pages in the order that they were

allocated
§ Maintain a list of allocated pages
§ When the length of the list grows to cover all of physical memory,

pop first page off list and allocate it

¢ Why might FIFO be good?
§ Maybe the page allocated very long ago isn't being used anymore

¢ Why might FIFO not be so good?
§ Doesn't consider spatial locality!
§ Suffers from Belady's Anomaly: Performance of an application

might get worse as the size of physical memory increases!!!

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Belady's Anomaly

0 1 2 3 0 1 4 0 1 2 3 4
0 0

1
0
1
2

1
2
3

2
3
0

3
0
1

0
1
4

0
1
4

0
1
4

1
4
2

4
2
3

4
2
3

Access pattern

0 1 2 3 0 1 4 0 1 2 3 4
0 0

1
0
1
2

0
1
2
3

0
1
2
3

0
1
2
3

1
2
3
4

2
3
4
0

3
4
0
1

4
0
1
2

0
1
2
3

1
2
3
4

time

Physical memory
(3 page frames)

Access pattern

Physical memory
(4 page frames)

9 page faults!

10 page faults!

time

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Algorithm: OPT (a.k.a MIN)
¢ Evict page that won't be used for the longest time in the

future
§ Of course, this requires that we can foresee the future...
§ So OPT cannot be implemented!

¢ This algorithm has the provably optimal performance
§ Hence the name “OPT”
§ Also called “MIN” (for “minimal”)

¢ OPT is useful as a “yardstick” to compare the
performance of other (implementable) algorithms against

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Algorithm: Least Recently Used (LRU)
¢ Evict the page that was used the longest time ago

§ Keep track of when pages are referenced to make a better decision
§ Use past behavior to predict future behavior

§ LRU uses past information, while MIN uses future information
§ When does LRU work well, and when does it not?

¢ Implementation
§ Every time a page is accessed, record a timestamp of the access

time
§ When choosing a page to evict, scan over all pages and throw out

page with oldest timestamp
¢ Problems with this implementation?

Carnegie Mellon

Algorithm: Least Recently Used (LRU)
¢ Evict the page that was used the longest time ago

§ Keep track of when pages are referenced to make a better decision
§ Use past behavior to predict future behavior

§ LRU uses past information, while MIN uses future information
§ When does LRU work well, and when does it not?

¢ Implementation
§ Every time a page is accessed, record a timestamp of the access

time
§ When choosing a page to evict, scan over all pages and throw out

page with oldest timestamp
¢ Problems with this implementation?

§ 32-bit timestamp for each page would double the size of every PTE
§ Scanning all of the PTEs for the lowest timestamp would be slow

Carnegie Mellon

Approximating LRU: Additional-
Reference-Bits
¢ Use the PTE reference bit and a small counter per page

§ (Use a counter of, say, 2 or 3 bits in size, and store it in the PTE)
§ Or store in kernel memory with larger number of bits per physical page.

¢ Periodically (say every 100 msec), scan all physical pages

§ The k bit counter is shifted right.
§ Most significant bit is set to the reference bit.
§ The PTE reference bit cleared.

¢ Counter will contain the history of references during last k
scans (left to right).

§ i.e.: 0011 means it was accessed 3 and 4 periods ago.
§ PTE that contains the highest counter value is the most recently used
§ So, evict the page with the lowest counter

Carnegie MellonLRU approximation example (3 bits)

4 0 0 0 4 4 0 0 4 0 4 0 0 4 4
Shift and set m.s. bit
to refernce bit

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 4 4 0 0 4 0 4 0 0 4 4

tim
e Accessed pages

in blue

6 0 4 4 6 2 0 0 6 4 2 4 0 2 6
These pages have
the lowest counter
value and can be
evicted.

Carnegie Mellon

Algorithm: LRU Second-chance (Clock)
¢ LRU requires searching for the page with the highest last-ref count

§ Can do this with a sorted list or a second pass to look for the highest value

¢ Simpler technique: Second-chance algorithm
§ “Clock hand” scans over all physical pages in the system

§ Clock hand loops around to beginning of memory when it gets to end
§ If PTE reference bit == 1, clear bit and advance hand to give it a second-chance
§ If PTE reference bit == 0, evict this page

§ No need for a counter in the PTE!

Clock hand

Accessed pages
in blue

Evict!

Carnegie Mellon

Algorithm: LRU Second-chance (Clock)
¢ LRU requires searching for the page with the highest last-ref count

§ Can do this with a sorted list or a second pass to look for the highest value

¢ Simpler technique: Second-chance algorithm
§ “Clock hand” scans over all physical pages in the system

§ Clock hand loops around to beginning of memory when it gets to end
§ If PTE reference bit == 1, clear bit and advance hand to give it a second-chance
§ If PTE reference bit == 0, evict this page

§ No need for a counter in the PTE!

Clock hand

Accessed pages
in blue

Evict!

Carnegie Mellon

Algorithm: LRU Second-chance (Clock)
¢ This is a lot like LRU, but operates in an iterative fashion

§ To find a page to evict, just start scanning from current clock hand
position

§ What happens if all pages have ref bits set to 1?
§ What is the minimum “age” of a page that has the ref bit set to 0?

¢ Slight variant -- “nth chance clock”
§ Only evict page if hand has swept by N times
§ Increment per-page counter each time hand passes and ref bit is 0
§ Evict a page if counter >= N
§ Counter cleared to 0 each time page is used

Carnegie Mellon

Algorithm: LRU Enhanced Second-
chance (Clock)
¢ Be even smarter: Consider the R(eference) bit and the

M(odified) bit as an ordered pair to classify pages into
four classes
§ (0,0) : Neither recently used not modified – best page to replace
§ (0,1) : Not recently used but modified – not quite as good, since

the page has to be written out before replacement
§ (1,0) : recently used but clean – probably will be used again
§ (1,1) :recently used and modified – probably will be used again and

the page will be need to be written out before it can be replaced

¢ We may need to scan the circular queue several times.
¢ The number of required I/O's reduced. to 0?

Carnegie Mellon

Swap Files
¢ What happens to the page that we choose to evict?

§ Depends on what kind of page it is and what state it's in!
¢ OS maintains one or more swap files or partitions on disk

§ Special data format for storing pages that have been swapped out

(Reserved for OS)

Virtual address space Physical Memory
Swap files on disk

“Zero page”

Program
executable

Carnegie Mellon

Swap Files
¢ How do we keep track of where things are on disk?

§ Recall PTE format
§ When V bit is 0, can recycle the PFN field to remember something about the

page.

¢ But ... not all pages are swapped in from swap files!
§ What about executables?
§ Or “zero pages”?
§ How do we deal with these file types?

Swap file offsetSwap file index0

5 bits 24 bits

Swap file table
(max 32 entries)

Swap file (max 2^24 pages = 64 GB)

V bit

Carnegie Mellon

VM map structure
¢ OS keeps a “map” of the layout of the process address space.

§ This is separate from the page tables.
§ In fact, the VM map is used by the OS to lay out the page tables.

¢ This map can indicate where to find pages that are not in memory
§ e.g., the disk file ID and the offset into the file.

Stack

Heap

Initialized vars
(data segment)

Code
(text segment)

Uninitialized vars
(BSS segment)

(Reserved for OS)

Carnegie Mellon

Page Eviction
¢ How we evict a page depends on its type.
¢ Code page:

§ Just remove it from memory – can recover it from the executable file on disk!
¢ Unmodified (clean) data page:

§ If the page has previously been swapped to disk, just remove it from memory
§ Assuming that page's backing store on disk has not been overwritten

§ If the page has never been swapped to disk, allocate new swap space and write
the page to it

§ Exception: unmodified zero page – no need to write out to swap at all!
¢ Modified (dirty) data page:

§ If the page has previously been swapped to disk, write page out to the swap
space

§ If the page has never been swapped to disk, allocate new swap space and write
the page to it

Carnegie Mellon

Physical Frame Allocation
¢ How do we allocate physical memory across multiple

processes?
§ What if Process A needs to evict a page from Process B?
§ How do we ensure fairness?
§ How do we avoid having one process hogging the entire memory of

the system?
¢ Local replacement algorithms

§ Per-process limit on the physical memory usage of each process
§ When a process reaches its limit, it evicts pages from itself

¢ Global-replacement algorithms
§ Physical size of processes can grow and shrink over time
§ Allow processes to evict pages from other processes

¢ Note that one process' paging can impact performance of
entire system!
§ One process that does a lot of paging will induce more disk I/O

Carnegie Mellon

Working Set
¢ A process's working set is the set of pages that it currently “needs”
¢ Definition:

§ WS(P, t, w) = the set of pages that process P accessed in the time interval [t-w, t]
§ “w” is usually counted in terms of number of page references

§ A page is in WS if it was referenced in the last w page references

¢ Working set changes over the lifetime of the process
§ Periods of high locality exhibit smaller working set
§ Periods of low locality exhibit larger working set

¢ Basic idea: Give process enough memory for its working set
§ If WS is larger than physical memory allocated to process, it will tend to

swap
§ If WS is smaller than memory allocated to process, it's wasteful
§ This amount of memory grows and shrinks over time

Carnegie Mellon

Estimating the working set
¢ How do we determine the working set?
¢ Simple approach: modified clock algorithm

§ Sweep the clock hand at fixed time intervals
§ Record how many seconds since last page reference
§ All pages referenced in last T seconds are in the working set

¢ Now that we know the working set, how do we allocate memory?
§ If working sets for all processes fit in physical memory, done!
§ Otherwise, reduce memory allocation of larger processes

§ Idea: Big processes will swap anyway, so let the small jobs run
unencumbered

§ Very similar to shortest-job-first scheduling: give smaller processes better
chance of fitting in memory

¢ How do we decide the working set time limit T?
§ If T is too large, very few processes will fit in memory
§ If T is too small, system will spend more time swapping

§ Which is better?

Carnegie Mellon

Page Fault Frequency
¢ Dynamically tune memory size of process based on # page

faults
¢ Monitor page fault rate for each process (faults per sec)
¢ If page fault rate above threshold, give process more

memory
§ Should cause process to fault less
§ Doesn't always work!

§ Recall Belady's Anomaly
¢ If page fault rate below threshold, reduce memory

allocation

Carnegie Mellon

When to Evict/Page-Out Pages
¢ On page fault, when a free page is required

§ In a loaded system most requests need replacement algorithm to
work.

§ When replacement requires I/O, task needs to sleep.
§ Performance of tasks reduces, replacement time is added.

¢ Solution: Page Daemon (or swap daemon)
§ Watches system free memory. Start replacing pages as free

memory drops below a threshold.
§ Maintains a pool of free memory all the time so tasks requiring a

new page can find a new page instantly.
§ It sleeps when there is plenty of memory. Adaptively wake ups

more often and replaces more pages as system is low on memory.
§ In extreme cases, it starts replacing whole memory of tasks

(trashing)

Carnegie Mellon

Paging and swapping
¢ However, on heavily-loaded systems, memory can fill up
¢ To achieve good system performance, must move “inactive”

pages out to disk
§ If we didn't do this, what options would the system have if

memory is full???
§ What constitutes an “inactive” page?
§ How do we choose the right set of pages to copy out to disk?
§ How do we decide when to move a page back into memory?

¢ Swapping
§ Usually refers to moving the memory for an entire process out to disk
§ This effectively puts the process to sleep until OS decides to swap it

back in
¢ Paging out/in

§ Refers to moving individual pages out to disk (and back)
§ We often use the terms “paging out” and “swapping” interchangeably

Carnegie Mellon

Trashing
¢ As system becomes more loaded, spends more of its time paging

§ Eventually, no useful work gets done!

¢ System is overcommitted!
§ If the system has too little memory, the page replacement algorithm doesn't

matter
¢ Solutions?

§ Change scheduling priorities to “slow down” processes that are thrashing
§ Identify process that are hogging the system and kill them?

§ Is thrashing a problem on systems with only one user?

Number of processes

CP
U

ut
ili

za
tio

n

Trashing

