
Carnegie Mellon

File System Design and Implementation

Carnegie Mellon

MBR Partition
Table Partition 1 Partition 2 Partition 3 Partition 4

Disk Organization
¢ File systems are usually created on regions of disks called

Partitions.

¢ MBR: Master Boot Record, first sector that loads the boot
loaders in partitions.

¢ Partition table: Configuration of partitions on disk. A disk can
have 1 or more partitions.

¢ Partition table marks start and end blocks of partitions,
partition type, if partition is bootable etc.

¢ Each partition may be formatted as a different file system.
¢ OS loads the partition table and interprets each partition as a

different disk device.

Carnegie Mellon

3

File System Layout

¢ A possible file system layout with a Unix partition

Carnegie Mellon

Disk Space Organization
¢ Disk can be partitioned

§ Each partition can have a different OS and/or different file system
§ One partition can be swap space for main memory

¢ First block of disk has master boot record specifying
primary partition

¢ Each partition has
§ Boot block (loads OS in kernel space)
§ Superblock (contains key info about file system which is read into

memory at boot time)
§ Free space management
§ List of I-nodes (or other data structure) giving info about all files
§ Directories and Files

4

Carnegie Mellon

Common File Systems
¢ FAT

§ by Windows and some embedded sytems
¢ UFS

§ Unix based: UFS, FFS, Ext2,3,4
¢ NTFS

§ by Windows
¢ HFS

§ Plus by Mac OS
¢ ISO9660

§ for CDROM/DVROM
¢ JFFS2

§ on Android
¢ New generation Unix: zfs, btrfs

Carnegie Mellon

File Allocation Table (FAT)

n Originally designed for floppy disks (360KB to
1.4MB)
n For MSDOS

n Uses File Allocation Table as an array of
pointers to store free block list and file linkage.

n FAT is a linked list implemented on an array.
n Index of a pointer represents the disk block number.

ith block information is stored on FATi as the next
block, either as next free block or next block in the file

n File attributes are kept in directory blocks.
n No inode block.
n Identifier of a file is the number of the first block in

FAT.

Carnegie Mellon

FAT File System Layout

n Boot Sector:
n volume name,
n #bytes/sec,
n #sectors/cluster,
n #clusters,
n #FAT copies

n FAT: array of data block Pointer
n Root directory block (FAT32 keeps

in data, keep id in Boot)

Boot Sector
Extra FS info (FAT32)+

Reserved

FAT 1

FAT 2
(optional copies of FAT)

Root Dir (FAT12 and
FAT16 only)
Data Area

Carnegie Mellon

FAT: Table entries

n FAT entries depend on FAT
implementation:
n FAT12: 12bits (3 bytes per 2 entries),
n FAT16: 16 bits,
n FAT32: 28 bits per entry.

n Initially all clusters are marked as free (0).
n First two entries reserved (FAT-ID, etc) .
n -1 (or MAX unsigned integer) used as end

of list marker.
n Allocate a cluster: linearly search for an

entry == 0.

FAT

0 R
1 R

2 0

3 0

4 0

5 0

6 0
7 0

8 0

9 0

10 0

11 0

12 0
13 0

14 0

15 0

Carnegie Mellon

FAT: Finding data blocks

¢ FAT keeps file blocks linkage. For example:
§ Free = 3,4,8, 9, 14, 15,... are free clusters
§ File A = 2 2, 7,6, 13 (-1 terminates)
§ File B = 5 5, 10, 11, 12 (-1)

¢ Find n’th block of a file

¢ Expensive when FAT is on disk!!!
¢ FAT needs to be working in main memory to be efficient.

FAT
0

1

2 7
3 0
4 0
5 10
6 13
7 6
8 0
9 0

10 11
11 12
12 -1
13 -1
14 0
15 0

getblock(f,n):
for (; n > 0 ; n--) {

if (f == -1)
return -1 ; /* error */

f = FAT[n];
}
return f;

Carnegie Mellon

FAT Directories
¢ 32-byte directory entries.
¢ Filenames are limited to 8+3 characters.. Smaller ones are left justified and

padded with space.
¢ Attributes: read-only, archive, hidden, system
¢ Time of date represented with 2 bytes: correct upto +-1 second
¢ Date: Counts in three fields: day (5 bit), month (4 bits), year (7 bits).

§ year-since-1980 hence
§ Contains: Y2108 problem!

¢ File size: 2 bytes. Puts a 4GB limit.
¢ 10 bytes reserved for future use.

Carnegie Mellon

FAT: Directory Structure

n FAT directories are stored in data blocks as an array of file
entries in the form:

n First cluster of the file = starthi << 16 & start.
n For the rest, follow FAT.

struct fat_dir_entry {
uint8 name[8] ; /* file name */
uint8 ext[3] ; /* file extension */
uint8 attr; /* attributes, RO, Hidden, System, Subdir */
uint8 lcase; /* Case for base and extension */
uint8 ctime_cs; /* Creation time, centiseconds (0-199) */
uint16 ctime; /* Creation time */
uint16 cdate; /* Creation date */
uint16 adate; /* Last access date */
uint16 starthi; /* High 16 bits of cluster in FAT32 */
uint16 time, date; /* time, date */
uint16 start; /* first cluster */
uint32 size; /* file size (in bytes) */

}

Carnegie Mellon

FAT: Directory Structure
¢ First byte of name field marks:

§ End of directory table (0x00)
§ Deleted file, entry can be reused (0xE5)

¢ Deleting a file:
§ deallocate its FAT chain, set: name[0] = 0xE5

¢ For file names longer than 8+3, VFAT adds dummy entries (1 per 13
characters) preceding original entry (LFN, Long File Name)

¢ Directory table grows like a file.
§ If all entries are deleted in a cluster, directory table may shrink as well.

¢ File lookup:
fat_directory_entry D[MAXENT];

for (all clusters “D” of directory) {
for (i = 0; i < MAXENT; i++) {

if D[i] is invalid continue;

if (D[i].name[0] == 0)
return -1 ; /* not found */

if (strcmp(filename == D[i].name))

return D[i];
} }

Carnegie Mellon

Block/Cluster Size
¢ Block size affects and is affected by:

§ Storage device native block size. (no smaller read, smaller writes
require, read, update in mem, write

§ VM page size (caching)
¢ Filesystems may choose a cluster of blocks as unit to

support larger disks and file sizes.
¢ Large cluster size → Internal fragmentation
¢ Small cluster size bad → locality.

Carnegie Mellon

FAT: Performance

¢ File random access → Linear scan of FAT
¢ Changing attributes of a file → change directory entry
¢ FAT limits disk size.

§ Solution: increase cluster size
¢ Large clusters → internal fragmentation

Small clusters → small file system, large FAT
¢ Size field in directory entry is 32 bits.

§ Largest possible file size is 4GB.
¢ FAT gets “fat” :) , even in memory, difficult to manage.

Carnegie Mellon

FAT versions

n FAT limits disk size.
n Solution: increase cluster size:
n Large clusters → internal fragmentation
n Small clusters → small file system, large FAT

n Size field in directory entry is 32 bits. Largest possible file
size is 4GB.

n FAT gets “fat” :) , even in memory, difficult to manage.

Max FAT
entries

Max FAT size
in memory

Max volume
for 512B

cluster

Max volume
for 16KB
clusters

Max volume
for 32KB
clusters

FAT12 4K 12KB 2MB 64MB 128M
FAT16 64K 128KB 64MB 2GB 4GB
FAT32 256M 1GB 512GB 16TB 32TB

Carnegie Mellon

More info about FAT
¢ https://en.wikipedia.org/wiki/File_Allocation_Table

¢ https://www.win.tue.nl/~aeb/linux/fs/fat/fat-1.html

https://www.win.tue.nl/~aeb/linux/fs/fat/fat-1.html
https://www.win.tue.nl/~aeb/linux/fs/fat/fat-1.html
Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

UFS: Organization
¢ Boot blocks: reserved for second

stage boot loaders
¢ Super Block: FS meta data,
¢ Cylinder Group Header: Cylinder

Group Description
¢ inode blocks: Blocks containing i-

nodes
¢ Data blocks: Blocks containing file and

indirect pointer data

Boot area
Super Block

Super Block Copy
Cylinder Group Header

Inode Blocks
Data Blocks

Super Block Copy
Cylinder Group Header

Inode Blocks
Data Blocks

…
Super Block Copy

Cylinder Group Header
Inode Blocks
Data Blocks

Cy
lin

de
r G

ro
up

 1
Cy

lin
de

r G
ro

up
 2

Cy
lin

de
r G

ro
up

 N

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

UFS: Organization
¢ Super Block:

§ Disk geometry.

§ number of CG’s, inode and data blocks per CG.

§ FS mount statistics and state.

§ It is replicated in each CG for recovery (in case of a bad block)

¢ Cylinder Groups (CG) :
§ Provide spatial locality for hard disks. Minimize head moves.

§ UFS tries to allocate inodes and data, directories and inodes in the
same cylinder group if possible.

§ Each CG has a bitmap for block allocation. N inodes M data blocks:
N+M/8/BLOCKSIZE blocks.

§ Bitmap blocks are followed by i-node blocks and data blocks.

§ Alert! The number of inodes and data blocks are fixed at FS
creation.

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

UFS: inode structure
¢ inode:

§ Each file has an inode block.
§ Multiple inode blocks fit in a single block (typical value: 128bytes).
§ Inode contains all file attributes and pointers to data blocks.
§ Data block pointers are kept as a tree like structure.

struct inode {
uint16 mode; /* file type and permissions */
uint16 nlinks; /* number of hard links */
uint16 uid, gid; /* owner and group ids */

uint64 size; /* total file size */
timeval atime, mtime, ctime; /* last access, modification, change timestamps */
fs32 direct[UFS_NDIRECT]; /* pointers to direct data blocks (12) */
fs32 indirect; /* pointer to indirect index data block */
fs32 double_indirect; /* pointer to double indirect index block */
fs32 triple_indirect; /* pointer to triple indirect index block */
uint32 flags; /* file flags, append only etc */
uint32 blocks; /* number of blocks used */
…

}

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

UFS: uid/gid and mode

¢ Uid/gid: who owns the file? User/group
¢ Permissions: which type of accesses granted for

different groups.
§ Traditional Unix: 12 bits: ugtrwxrwxrwx

§ a rwx for owner, same group, and other
processes

§ ACL and Windows: Each file has an Access Control
List where each user/group can be granted or
revoked access.

¢ Timestamps: Last access, modification and
attribute change times of the file

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

UFS: inode data blocks

Direct: 12 blocks
Indirect: 4K/4 = 1K blocks
Double: 1K*1K = 1M blocks
Triple: 1K*1K*1K = 1G blocks
Total: 4,402,345,721,856 bytes

¢ For small data, direct blocks are
used

¢ An indirect block contains an
array of data block pointers

¢ If file is larger, double indirect
block contains array of pointers
to indirect blocks

¢ For larger files, triple indirect
pointers contains pointers to
double indirect pointers

¢ For 4K block size, 4 byte block
pointers and 12 direct blocks.
Maximum file size is:

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

UFS: File block mapping
fs32 indblk[1024];
if N < NDIRECT then

return inode->direct[N]
N = N-NDIRECT

if N < 1K then /* It is an indirect pointer */
read inode->indirect to indblk /* read indirect block */
return indblk[N]

N = N-1024
if N < 1K*1K /* it is a double indirect pointer */

read inode->double_indirect to indblk /* read D.Ind. block */
read indblk[N/1024] to indblk /* read indirect block */
return indblk[N % 1024]

N = N – 1024*1024
read inode->triple_indirect to indblk /* read T. Ind. block */

read indblk[N/(1024*1024)] to indblk /* get D.ind. block */
read indblk[N%(1024 * 1024)/1024] to indblk /* get indirect block */
return indblk[N%(1024 * 1024) % 1024]

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

UFS
¢ A 0 value on block pointer indicates that block is not used.
¢ Indirect pointers are not allocated if they are not used.
¢ Largest possible file requires 1+ (1+1K)+(1+1K+1K*1K)

indirect blocks besides data blocks.
¢ Smallest file uses no data blocks (direct pointers are NULL)

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

UFS: Holes
¢ Supports holes in filesystem. There can be NULL data

blocks inside the file. Try:

¢ File size is 1G however only 1 data block and indirect
blocks in the path are used.

fd = open(“newfile.txt”, O_RDWR);
lseek(fd, 1024*1024*1024, SEEK_SET);
write(fd, “hello\n”, 6);

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

UFS: Directory Structure
¢ Directory is nothing but a sequence of filename+inode values. Records size

is not fixed.

144123 12 1 . 542332

12 2 . . 21401231 16 7

D e s k t o p 1231441 16 5

h w 2 . c 454342 20 17

c e n g 3 3 4 - f i l e . p p t

x 4341121 12 3 h w 2

ls –I output
. 144123
.. 542332
Desktop 2140123
Hw2.c 1231441
ceng334-file.pptx 454342
hw2 4341121

struct dirent {
uint32 d_inode;
uint16 d_reclen;
uint16 d_namelen;
char d_name[MAXLEN+1;

}; /* record size is truncated at d_reclen bytes */

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

UFS: Lookup
¢ File lookup in a directory requires sequential traversal of

full directory content.
¢ Reads/updates of a directory are mostly carried out in

cache but still expensive for directories with large number
of files.

¢ Deleting a file is similar to deleting a line from a text file.
¢ OS keeps a directory cache, mapping from vnode+filename

to new vnode to increase the performance.

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Traversing Unix Directory Structure

¢ The steps in looking up /usr/ast/mbox

Erol sahin

Carnegie Mellon

Traversing Unix Directory Structure
¢ Suppose we want to read the file /usr/ast/mbox
¢ Location of a i-node, given i-number, can be computed
¢ i-number of the root directory known, say, 2
¢ Read in the i-node 2 from the disk into memory
¢ Find out the location of the root directory file on disk, and

read the directory block in memory
l If directory spans multiple blocks, then read blocks until usr found

¢ Find out the i-number of directory usr, which is 6
¢ Read in the i-node 6 from disk
¢ Find out the location of the directory file usr on disk, and

read in the block containing this directory
¢ Find out the i-number of directory ast (26), and repeat

Carnegie Mellon

The Big picture: Accessing a File in UNIX

Erol sahin

Carnegie Mellon

CD-ROM and the ISO 9660 filesystem
¢ The CD has one single track, starts at the center of the

disk and spirals out to the circumference of the disk

¢ This track is divided into sectors of equal size

¢ The base standard defines three levels of compliance

¢ Level 1 limits file names to 8+3 format. Many special
characters (space, hyphen, equals, and plus) are
forbidden

¢ Level 2 and 3 allow longer filenames (up to 31) and
deeper directory structures (32 levels instead of 8)

¢ Level 2 and 3 are not usable on some systems, like
MS-DOS

Erol sahin

Carnegie Mellon

ISO 9660 Extensions
¢ Rock Ridge

§Extensions to ISO-9660 file system
§Favored in the Unix world
§Lifts file name restrictions, but also allows Unix-style permissions and special files to be
stored on the CD
§Machines that don't support Rock Ridge can still read the files because it's still an ISO-
9660 file system (they won't see the long forms of the names)
§UNIX systems and the Mac support Rock Ridge
§DOS and Windows currently don't support it

¢ Joliet
§Favored in the MS Windows world
§Allows Unicode characters to be used for all text fields (including file names and the
volume name)
§Disk is readable as ISO-9660, but shows the long filenames under MS Windows

¢ HFS (Hierarchical File System)
§ Used by the Macintosh in place of the ISO-9660, making the disk unusable on systems
that don't support HFS

Carnegie Mellon

NTFS

n Introduced in Windows NT and used in Windows systems as
default file system for hard disks.

n All metadata of FS is kept in Master File Table
n A B tree on disk.

n MFT stores a record per file.
n Each record is like an inode, contains file attributes and data block

positions.
n MFT records have fixed size but can grow by

extends, additional records.
n ${Mft} master file table, content of files and directories
n $(Bitmap} Allocation information of clusters
n Attributes are not fixed, new attributes can be

added.
n Allocation information is stored in MFT as a bitmap

by a Special filename $Bitmap.
n NTFS supports: hard links, sparse files, journal ($LogFile),

encryption, compression, alternate data streams.
n Maximum partition size 256TB, maximum file size 16TB.

Boot Sector

MFT

Data Area

Carnegie Mellon

Log Structured File System (LSFS)

n Hard disk:
n read/write direct access.

n DVD’s:
n read direct, write sequential,
n requires full erase in order to write again

n SSD/Flash disks:
n read direct access,
n write direct for empty blocks,
n not allowed for non-empty blocks,
n erase work in large segments.
n Segments have a limited lifetime for erase cycles.

Carnegie Mellon

Log Structured File System

n Traditional filesystems: Meta-data is updated frequently.
n Log structured file systems do not overwrite blocks but keep

a log of new versions of blocks.
n Each new write is appended at the end of the log.
n Latest written version of a block is the valid data

Carnegie Mellon

File 0
Block 0 In

od
e

0 File 0
Block 1 In

od
e

0 File 1
Block 0 In

od
e

1 File 0
Block 0 In

od
e

0

Log Structured File System

§ When new data block written, inode also changes.
§ inode is written too.

§ Data block is overwritten.
§ Writes a new version. Old block is not valid.

§ New inode version written.
§ Old is invalid. Keep up-to-date versions of inode. In memory?

§ Keep an inode map, inode num. to block mapping. Write that too.

File 0
Block 0 In

od
e

0 File 0
Block 1 In

od
e

0 File 1
Block 0 In

od
e1 File 0

Block 0 In
od

e
0

im
ap

im
ap

im
ap

im
ap

Carnegie Mellon

Log Structured File System
¢ Further enhanced by segment summaries to find inode

maps correctly.
¢ On mount:

§ Traverse all segment summaries for complete segments
§ Traverse all incomplete segments (only a few)

¢ What happens when disk is full?
§ Need to erase blocks: Completely obsoleted segments

¢ Garbage collector passes over oldest segments, copies
valid blocks to new areas and free whole segments.

¢ Some embedded systems and mobile systems working on
flash uses LSFS based file systems
§ like JFFS2, F2FS, YAFFS2 on Android.

Carnegie Mellon

Network and Distributed File Systems
¢ Transparent access to files in one or more remote hosts.
¢ Not a secondary storage data structure problem anymore.

Network protocols are involved.
¢ Server utilities works on remote hosts to serve FS requests.

Client is the OS and utilities making files available.
¢ Scenarios get complicated since network, server, and client

may fail.
¢ Commonly used ones: NFS, SMBFS, Lustre, Google File

System, AndrewFS.

Carnegie Mellon

Network File System (NFS)
¢ Popular in simple Unix/Linux configuration works in many OS.
¢ NFS works stateless.

§ Server does not keep states of clients.
§ Each client requests contains offset and size of the block to read/write.
§ Open looks up file path on remote server and gets a handle.
§ All following operations use same handle.

¢ If handle known in advance, I/O can be done without opening
the file.

¢ Stateless operation does not need crash recovery when one of
the peers reboot.

¢ Client OS, file system dependent layer plays the client role and
converts I/O requests into network requests.

Carnegie Mellon

Multi-Filesystem Support
¢ Most OS’s support multiple filesystems.
¢ Linux supports:

¢ adfs affs afs autofs4 befs bfs btrfs ceph cifs coda configfs ecryptfs
efivarfs efs exofs ext4 f2fs fat freevxfs fscache fuse gfs2 hfs isofs
jbd2 jffs2 jfs minix ncpfs nfs nilfs2 nls ntfs ocfs2 omfs overlayfs
pstore qnx6 reiserfs romfs squashfs sysv ubifs udf ufs xfs

¢ Some designed for special storage requirements,
¢ some are vendor specific, some exists for historical reasons.

¢ Systems may require multiple filesystems/partitions
active in the same system.

Carnegie Mellon

Mounting a Filesystem

¢ Files may be organized into distinct filesystems.
¢ E.g. system files vs. user files.

¢ Files on a USB flash vs files on network.

¢ Purpose: logical isolation and providing filesystem grow
(adding storage etc.)

¢ Unix/Linux support a mount operation for this isolation.

¢ Windows uses volume label, C:, D:, E:, ….
¢ Newly attached filesystem gets a new label.

Carnegie Mellon

Mount
¢ Making another filesystem available under a directory in

current file hierarchy.
¢ Existing content of directory is hidden and all accesses to

that directory follow new filesystem transparently.

Carnegie Mellon

Virtual File System (VFS)
¢ Multiple supported filesystems bring a challenge to OS.

Each file can be handled differently based on its filesystem
type.

¢ Solution is an abstraction layer. Kernel calls filesystem
independent parts, filesystems implement a uniform
interface and file operations are mapped in this interface
based on file system.

Carnegie Mellon

Virtual File System
¢ VFS translates the POSIX calls to the calls of the

filesystems under it.
¢ Filesystem independent part : for processes implementing

POSIX interface
¢ Filesystem dependent part : for concrete file systems

Carnegie Mellon

VNode
¢ In core structure for a file. System wide structure per file

kept in kernel memory.
¢ Created when a file is opened by any process for the first

time. All following open() operations by any processes use
same vnode.

¢ Typically a pointer indirection in vnode is used to access
filesystem dependent part.

PCB
File Descriptor

Table
0
1
…
n

struct file
mode
nrefs
offset
vnode

RW
1

10

vnode
VFS specific
information per
system-wide
file

Carnegie Mellon

VFS: Specific FS calls

¢ vnode points to a struct of function pointers keeping entry points of each
actual FS operation

struct
vnode

…

v_ops

...

..

…

struct
vnodeops

…

open

read

..

write

seek

… ..

Specific Filesystem Code
int fat_open(…) {

...
}
int fat_read(…) {

...
}
int fat_write(…) {

...
}
int fat_seek(…) {

...
}

Filesystem Independent call:
PCB->fdtable[1]->vnode->v_ops->read(…);

Carnegie Mellon

¢ Each filesystem supported introduces its own set of
implementations for file operations and operations
structure.

¢ When a file of this filesystem type is accessed file
operations structure is set to this structure.

Erol sahin

Carnegie Mellon

PCB

File Descriptor
Table

0
1
…
n

struct file
mode
nrefs
offset
vnode

RW
1

10

struct vnode

VFS specific
information per
system-wide
file

struct file
mode
nrefs
offset
vnode

R
2
0

v_ops

struct vnode

VFS specific
information per
system-wide
file
v_ops

struct
vnodeops

…

open

read

..

write

seek

… ..

Specific Filesystem Code
int fat_open(…) {

...
}
int fat_read(…) {

...
}
int fat_write(…) {

...
}
int fat_seek(…) {

...
}

VFS: The Big picture

PCB

File Descriptor
Table

0
1
…
n

struct file
mode
nrefs
offset
vnode

W
1

10

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

VFS- 2
¢ At boot time, the root filesystem is registered with VFS.
¢ When other filesystems are mounted, they must also register with VFS.
¢ When a filesystem registers, it provides the list of addresses of the functions

that the VFS demands, such as reading a block.
¢ After registration, when one opens a file:
¢ open(“/usr/include/unistd.h”, O_RDONLY)
¢ VFS creates a v-node and makes a call to the actual filesystem

implementation to return all the information needed.
¢ The created v-node also contains pointers to the table of functions for the

concrete filesystem that the file resides.

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Crash Recovery
¢ Performance of most File System designs rely on caching of

metadata.
§ Such as FAT/allocation bitmaps, inodes.

¢ Caching helps a lot in speed but improper shutdown
causes data kept in memory not written on disk.

¢ In addition to data, integrity of file system can be lost.
¢ Cached I/O of operations may end up in missing any subset

of the operations above on disk in time of a crash.
¢ Problems as getting a garbage on disk to a dangling

directory entry will be observed

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

UFS: Filesystem operations a closer look

¢ In the absence of crashes the order these steps taken do
not matter.

¢ In the presence of crashes, however, it does!
§ Note that due to I/O scheduling on the disk, the order of

execution varies.

¢ Creation of a file of 1 block size:
§ Mark a data block allocated in allocation table
§ Write its content
§ Allocate an inode block in allocation table
§ Write inode content
§ Update directory block to get a reference to

new inode

¢ Deletion of a file:
§ Clear data blocks to 0 (for security)
§ Mark data blocks as free on bitmap
§ Mark inode as free on bitmap
§ Delete directory entry referring the

inode

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

UFS - crash case 1

¢ The inodes and file blocks will not be accessible from any
file yet they will not be available for reassignment.

¢ Deletion of a file:
§ Clear data blocks to 0 (for security)
§ Mark data blocks as free on bitmap
§ Mark inode as free on bitmap
§ Delete directory entry referring the inodecompleted

not completed

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

UFS - crash case 2

§ The directory node will point to an invalid inode or (if the
inode is reassigned) point to a different file.

§ The blocks of the file will not be available for
reassignment.

¢ Deletion of a file:
§ Clear data blocks to 0 (for security)
§ Mark data blocks as free on bitmap
§ Mark inode as free on bitmap
§ Delete directory entry referring the inode

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

UFS - crash case 3

§ The blocks of the file will be available for reassignment.
§ The content of the file may get overwritten since its

blocks may be used as data blocks for other files.

¢ Deletion of a file:
§ Clear data blocks to 0 (for security)
§ Mark data blocks as free on bitmap
§ Mark inode as free on bitmap
§ Delete directory entry referring the inode

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

UFS - crash case 4

§ File content is lost. All zeros.

¢ Deletion of a file:
§ Clear data blocks to 0 (for security)
§ Mark data blocks as free on bitmap
§ Mark inode as free on bitmap
§ Delete directory entry referring the inode

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Erol sahin

Carnegie Mellon

Crash Recovery
¢ Data loss is usually inevitable. It is a crash after all.
¢ File system integrity is a more serious problem.
¢ OS should reboot properly.
¢ Accessing a file should not end up another crash.
¢ 3 solutions:

§ Consistency check in reboot and try to recover (fsck, repair)
§ Soft updates (order disk operations such that consistency check is

minimal and done at background)
§ Journalling (File system operations are written on a synchronous

journal, recovery is done by replaying it)

Carnegie Mellon

Consistency Check
¢ A consistency check utility like fsck is executed on boot to check

if file system is unmounted properly.
¢ Otherwise it makes a consistency check:

§ All inodes and indirect blocks refer allocated data blocks
§ All directory entries refer allocated inodes.
§ Hard link count of inodes match total number of directory entries to that

inode.

¢ fsck repairs filesystem by:
§ Mark data blocks allocated/truncated files (former may cause garbage

data)
§ If inode contains valid data mark it as allocated, otherwise delete file.
§ Update inode hard link count. If no directory refers an allocated inode

create a dummy file in /lost+found

¢ fsck is too slow. Significantly slows down reboot time.

Carnegie Mellon

Filesystem repair
¢ Two tables, each containing a counter initialized to 0

§ Blocks in use: How many times a block is present in a file
§ Read all the inodes using a raw device (not through the

filesystem calls)
§ For each block that is referenced in the inode structure,

increment the corresponding block use counter by one.
§ Free blocks:

§ Examine the free block list of free block bitmap structure
§ Each appearance of a free block increments the counter by one

Carnegie Mellon

Filesystem repair

¢ File system states. (a) Consistent. (b) Missing block. (c)
Duplicate block in free list. (d) Duplicate data block.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Carnegie Mellon

Filesystem repair : Missing block

• Harmless but wastes space
• Action: Add the missing block to the free list.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Carnegie Mellon

Filesystem repair : Duplicate block in free
list

• Can only occur in linked list representation. Bitmap
representation does not have this problem.

• Action: Rebuild the free list.
Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Carnegie Mellon

Filesystem repair : Duplicate data block

• The worst thing that can happen! A data block appears in two different files..
• Action:

• Allocate a free block
• Copy the contents into the new block.
• Change the links such that each copy appears once in each file.
• For sure, the contents of one of the files is garbled.
• The filesystem is made to be consistent.
• The user is informed.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Carnegie Mellon

Filesystem repair: Directory fix
¢ Uses a table of counters per file (rather than per block)
¢ Starts from the root and traverses the tree

§ For each inode, it increments the corresponding counter for that file
§ Remember due to hard links, a file can appear more than once

§ It then checks the link counts stored in the inodes to these values.
§ If the link count > counter

§ Even if the file is deleted by from all the directory entries, it will
continue to exist.

§ Solution: correct the link count
§ If the counter > link count

§ Although the file is linked from, say, two directories, removal from
one would cause the inode deleted leaving the other one invalid.

§ Solution: correct the link count
§ Special case: link count is 0, no directory refers it. Create a new file in a

directory (lost+found)

Carnegie Mellon

Soft Updates
¢ Also called ordered writes
¢ Device driver is forced to follow a specific write order for file

system data:
§ Never point to a structure before it has been initialized

§ e.g., an inode must be initialized before a directory entry references it.
§ Never re-use a resource before nullifying all previous pointers to it

§ e.g., an inode’s pointer to a data block must be nullified before that disk
block may be re-allocated for a new inode.

§ Never reset the old pointer to a live resource before the new pointer has
been set
§ e.g., when renaming a file, do not remove the old directory entry for an

inode until after the new directory entry has been written.
¢ Consistency problems reduce mostly to garbage. System may boot safely

when fsck works in background to collect the garbage.

Carnegie Mellon

Journalling
¢ Implemented by most of the contemporary file systems.
¢ Metadata (allocation bitmaps, inodes and directories) are

important for integrity, so their operations are written on
a special area called journal synchronously.

¢ Journal is forced in disk with some periods and cleaned up.
¢ On crash boot, journal is replayed to provide integrity.
¢ Journaling data is expensive, most file system

implementations provide only metadata journal by default
(recently written data blocks may be lost)

Carnegie Mellon

Other Features of File Systems
¢ Compression:

§ File system stores data on disk in compressed form

¢ Encryption:
§ Data blocks are encrypted for privacy of user

¢ User and Group Quotas:
§ File system tracks per user and per group usage of disk and reject exceeding the limit.

¢ Logical volume management:
§ File system can grow or shrink by adding new disk devices or removing them

¢ Snapshots:
§ Administrators can get snapshot of the file system.
§ Later that snapshot can be rolled back or mounted.

¢ Copy on Write:
§ File systems can use a base file system and only keep modified files/directories on device

transparently.

¢ Multiple streams and/or attributes:
§ File systems can keep multiple streams of a file (i.e. revisions) and/or dynamic set of attribute-

value pairs per file to keep extra information.

