
Carnegie Mellon

Synchronization
Deadlocks and prevention

Some of the slides are adapted from from Operating System Concepts (Silberschatz, Galvin, Gagne).

Carnegie Mellon

Preemption - recall
 Preemption is to forcefully take a resource from a thread/process

 Resources can be CPU/lock/disk/network etc.
 Resources can be

 Preemptible (e.g. CPU)
 Non-preemptible (e.g. mutex, lock, virtual memory region)

 e.g. CPU is a preemptible resource
 A preemptive OS can stop a thread/process at any time

 i.e. forcefully take the CPU from the current thread/process and give it to
another.

 A non-preemptive OS can’t stop a thread/process at any time
 The OS has to wait for the current thread/process to yield (give away the CPU)

voluntarily.

 e.g. a lock is not a preemptible resource. The OS;
 cannot forcefully take away the lock and give it to another,
 has to wait for the current thread/process to voluntarily release it.

 Why isn't it safe to forcibly take a lock away from a thread?

Carnegie Mellon

What’s a deadlock?

Carnegie Mellon

Deadlock

 A set of blocked threads/processes each holding a resource and
waiting to acquire a resource held by another process in the set.

 A deadlock happens when
 Two (or more) threads waiting for each other
 None of the deadlocked threads ever make progress

Mutex 1

Thread 1

Thread 2Mutex 2

holds

holds

waits for

waits for

Carnegie Mellon

Starvation

 A thread/process not making any progress since other
threads/processes are using the resources that it needs.
 CPU as a resource: A thread/process not getting the CPU, since

other the scheduler is giving the CPU to other “higher priority”
thread/processes.
 More on this in the upcoming lecture on scheduling.

 Lock as a resource: : A thread/process not getting a lock that it has
requested, since others have it.

 Starvation ≠ Deadlock
 Deadlock => Starvation
 Starvation ≠> Deadlock

Pedestrians who wants to cross Eskişehir Yolu
are likely to “starve” due to traffic!

Carnegie Mellon

Methods for Handling Deadlocks

 Ensure that the system will never
enter a deadlock state.

 Allow the system to enter a deadlock
state and then recover.

 Ignore the problem and pretend that
deadlocks never occur in the system;
used by most operating systems,
including UNIX.

Carnegie Mellon

Dining Philosophers

 Classic deadlock problem
 Multiple philosophers trying to lunch
 One chopstick to left and right of each

philosopher
 Each one needs two chopsticks to eat

Carnegie Mellon

Dining Philosophers

 What happens if everyone grabs the
chopstick to their right?
 Everyone gets one chopstick and waits

forever for the one on the left
 All of the philosophers starve!!!

Carnegie Mellon

Deadlock Characterization

 Mutual exclusion: only one process at a time can use a resource.
 Hold and wait: a process holding at least one resource is waiting to

acquire additional resources held by other processes.
 No preemption: a resource can be released only voluntarily by the

process holding it, after that process has completed its task.
 Circular wait: there exists a set {P0, P1, …, P0} of waiting processes

such that
• P0 is waiting for a resource that is held by P1,
• P1 is waiting for a resource that is held by P2, …,
• Pn–1 is waiting for a resource that is held by Pn, and
• Pn is waiting for a resource that is held by P0.

Deadlock can arise if all four conditions hold simultaneously!

Carnegie Mellon

Deadlock Prevention

 Ensure that at least one of the four conditions do not hold!

 Mutual Exclusion
 not required for sharable resources;

 must hold for non-sharable resources (e.g. a printer).

 Hold and Wait
 must guarantee that whenever a process requests a resource, it

does not hold any other resources.

 Require process to request and be allocated all its resources
before it begins execution,

 Allow process to request resources only when the process has
none.

– low resource utilization;

– starvation possible.

Carnegie Mellon

Deadlock Prevention (Cont.)

 No Preemption
 If a process that is holding some resources requests another

resource that cannot be immediately allocated to it, then all
resources currently being held are released.

 Preempted resources are added to the list of resources for which the
process is waiting.

 Process will be restarted only when it can regain its old resources, as
well as the new ones that it is requesting.

 Can be applied to resources whose state can be saved such as CPU,
and memory. Not applicable to resources such as printer and tape
drives.

 Circular Wait
 impose a total ordering of all resource types, and
 require that each process requests resources in an increasing order

of enumeration.

Carnegie Mellon

Circular Wait - 1

 Each resource is given an ordering:
 F(tape drive) = 1
 F(disk drive) = 2
 F(printer) = 3
 F(mutex1) = 4
 F(mutex2) = 5
 …….

 Each process can request resources only in increasing order
of enumeration.

 A process which decides to request an instance of Rj should
first release all of its resources that are F(Ri) >= F(Rj).

Carnegie Mellon

Circular Wait - 2
 For instance an application program may use ordering among all of its

synchronization primitives:
 F(semaphore1) = 1
 F(semaphore2) = 2
 F(semaphore3) = 3
 …….

 After this, all requests to synchronization primitives should be made
only in the increasing order:
 Correct use:

 down(semaphore1);
 down(semaphore2);

 Incorrect use:
 down(semaphore3);
 down(semaphore2);

 Keep in mind that it’s the application programmer’s responsibility to
obey this order.

Carnegie Mellon

Dining Philosophers

 How do we solve this problem??
 (Apart from letting them eat with forks.)

Carnegie Mellon

How to solve this problem?

Solution 1: Don't wait for chopsticks
 Grab the chopstick on your right
 Try to grab chopstick on your left
 If you can't grab it, put the other one back down
 Breaks “no preemption” condition – no waiting!

Solution 2: Grab both chopsticks at once
 Requires some kind of extra synchronization to make it atomic
 Breaks “multiple independent requests” condition!

Solution 3: Grab chopsticks in a globally defined order
 Number chopsticks 0, 1, 2, 3, 4
 Grab lower-numbered chopstick first

 Means one person grabs left hand rather than right hand first!
 Breaks “circular dependency” condition

Solution 4: Detect the deadlock condition and break out of it
 Scan the waiting graph and look for cycles
 Shoot one of the threads to break the cycle

Carnegie Mellon

Deadlock Avoidance

 Requires that the system has some additional a priori
information available.
 Simplest and most useful model requires that each process

declare the maximum number of resources of each type that it
may need.

 Is this possible at all?

 The deadlock-avoidance algorithm dynamically examines the
resource-allocation state to ensure that there can never be a
circular-wait condition.

 When should the algorithm be called?

 Resource-allocation state is defined by the number of available
and allocated resources, and the maximum demands of the
processes.

Carnegie Mellon

System Model

 Resource types R1, R2, . . ., Rm
 CPU,
 memory,
 I/O devices

 disk
 network

 Each resource type Ri has Wi instances.
 For instance a quad-core processor has

 4 CPUs

 Each process utilizes a resource as follows:
 request
 use
 release

Carnegie Mellon

Resource-Allocation Graph

 A set of vertices V and a set of

edges E.

 V is partitioned into two types:
 P = {P1, P2, …, Pn}, the set consisting of all the

processes in the system.

 R = {R1, R2, …, Rm}, the set consisting of all
resource types in the system.

 request edge – directed edge P1 -> Rj

 assignment edge – directed edge Rj <- Pi

Carnegie Mellon

Resource Allocation Graph With A Deadlock

 If there is a deadlock
 => there is a cycle in the graph.

 However the reverse is not true!
 If there is a cycle in the graph

 =/> there is a deadlock

Carnegie Mellon

Resource Allocation Graph With A Cycle But No
Deadlock

 However the existence of a
cycle in the graph does not
necessarily imply a deadlock.

Overall message:
 If graph contains no cycles =>

 no deadlock.

 If graph contains a cycle =>
 if only one instance per resource type,

then deadlock.
 if several instances per resource type,

possibility of deadlock.

Carnegie Mellon

Resource-Allocation Graph Algorithm

 Claim edge Pi -> Rj indicated that
process Pj may request resource Rj;
represented by a dashed line.

 Claim edge converts to request edge
when a process requests a resource.

 When a resource is released by a
process, assignment edge reconverts to
a claim edge.

Carnegie Mellon

Resource-Allocation Graph Algorithm

 Claim edge Pi -> Rj indicated that process Pj
may request resource Rj; represented by a
dashed line.

 Claim edge converts to request edge when a
process requests a resource.

 When a resource is released by a process,
assignment edge reconverts to a claim edge.

 Resources must be claimed a priori in the
system.

 Note that the cycle detection algorithm does
not work with resources that have multiple
instances.

Cycle => Unsafe

Carnegie Mellon

Safe, unsafe and deadlock states

 If a system is in safe state => no
deadlocks.

 If a system is in unsafe state =>
possibility of deadlock.

Avoidance: ensure that a system will
never enter an unsafe state.

Carnegie Mellon

Safe State

 When a process requests an available resource, system must
decide if immediate allocation leaves the system in a safe
state.

 System is in safe state if there exists a safe sequence of all
processes.

 Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources that
Pi can still request can be satisfied by currently available
resources + resources held by all the Pj, with j < i.
 If Pi resource needs are not immediately available, then Pi can wait

until all Pj have finished.
 When Pj is finished, Pi can obtain needed resources, execute, return

allocated resources, and terminate.
 When Pi terminates, Pi+1 can obtain its needed resources, and so on.

Carnegie Mellon

Resource Allocation Graph: Dining
Philosopher’s example - 1
 Initial configuration:

 4 philosophers
 4 sticks.

R

R

R

R

P1

P2P3

P4

Carnegie Mellon

Resource Allocation Graph: Dining
Philosopher’s example - 2
 P1 gets right stick

R

R

R

R

P1

P2P3

P4

Carnegie Mellon

Resource Allocation Graph: Dining
Philosopher’s example - 3
 P2 gets right stick

R

R

R

R

P1

P2P3

P4

Carnegie Mellon

Resource Allocation Graph: Dining
Philosopher’s example - 4
 P3 gets right stick

R

R

R

R

P1

P2P3

P4

Carnegie Mellon

Resource Allocation Graph: Dining
Philosopher’s example – 5
 P4 requests right stick.

 Cycle!!
 Rejected.

R

R

R

R

P1

P2P3

P4

Carnegie Mellon

Monitors: Finite resource problem

 5 instances of a
resource

 N processes.
 Only 5 processes can

use the resources
simultaneously.

Allocate MA; //resource allocation monitor.
….
MA.acquire();
// use the resource
MA.release();
....

Process code

Monitor Allocate
{

int count=5;
condition c;

void acquire(){
if (count == 0)

c.wait();
count--;

}
void release(){

count++;
c.signal(); //i.e. notify()

}
}

Monitor code

Carnegie Mellon

Monitors: Dining Philosophers
Monitor DiningPhilosophers
{

enum{THINKING,
HUNGRY,
EATING

}state[5];
condition cond[5];

void pickup(int i){
state[i] = HUNGRY;
test(i);
if (state[i] != EATING)

cond[i].wait();
}

void putdown(int i){
state[i]=THINKING;
// test left and right neighbors
test(LEFT);
test(RIGHT);

}

void test(int i){
if((state[LEFT] != EATING) &&
(state[RIGHT] != EATING) &&
(state[i] == HUNGRY))
{

state[i] = EATING;
cond[i].signal();

}
}

void initialize(){
for (int i=0l i<5; i++)

state[i] = THINKING;
}

} // end Monitor

DiningPhilosopher DP;
…
while(1){

// THINK..
DP.pickup(i);
// EAT (use resources)
DP.putdown(i);
// THINK..

}

#define LEFT (i+4)%5
#define RIGHT (i+1)%5

Carnegie Mellon

Monitors: Dining Philosophers

 What are the ID’s to access neighbor philosophers?

#define LEFT ???
#define RIGHT ???

Process
i

Process
???

Process
???… …

state[LEFT] = ? state[RIGHT] = ?state[i] = ?

state=
THINKING?
HUNGRY?
EATING?

Carnegie Mellon

Monitors: Dining Philosophers

 What are the ID’s to access neighbor philosophers?

#define LEFT (i+4)%5
#define RIGHT (i+1)%5

Process
i

Process
(i+1) % 5

Process
(i+4) % 5

test(i)

… …

test((i+1)%5)test((i+4)%5)

state[LEFT] = ? state[RIGHT] = ?state[i] = ?

state=
THINKING?
HUNGRY?
EATING?

Carnegie Mellon

Banker’s Algorithm

 Suppose “worst case/maximum” resource needs of each
process is known in advance
 E.g. limit on your credit card

 Observation: If we give a process the maximum of its
resources
 Then it will execute to complete
 After that it will give back all the resources

 When a process request a new resource during its execution
 The OS decides whether to give it the resource at that time or not

 A request is delayed if there does not exist a sequence of
processes that would ensure the successful completion of all
the processes, even if they need the “maximum” of their
resources.

Why Banker’s Algorithm? While giving credits, a banker should ensure that it never allocates all of
its cash in such a way that none of its creditors can finish their work and pay back the loan.

Carnegie Mellon

Banker’s algorithm - example – 1

 System:
 5 processes P1-P5
 3 resource types: A (10), B (5), C(7)

Maximum

A B C

P1 7 5 3

P2 3 2 2

P3 9 0 2

P4 2 2 2

P5 4 3 3

Carnegie Mellon

Banker’s algorithm - example - 2

 System:
 5 processes P1-P5
 3 resource types: A (10), B (5), C(7)

 System state at t0

Allocated Max Needs

A B C A B C A B C

P1 0 1 0 7 5 3 7 4 3

P2 2 0 0 3 2 2 1 2 2

P3 3 0 2 9 0 2 6 0 0

P4 2 1 1 2 2 2 0 1 1

P5 0 0 2 4 3 3 4 3 1

Available

A B C

3 3 2

The system is in a safe state since the sequence <P2,P4,P5,P3,P1> would guarantee
the completion of all processes.

Carnegie Mellon

Banker’s algorithm - example - 3
 P2 request (1,0,2)
 Check that request <= Available

 (1,0,2) <= (3,3,2)

 Look for a safe sequence:
 <P2,P4,P5,P1,P3> is possible!

Allocated Max Needs

A B C A B C A B C

P1 0 1 0 7 5 3 7 4 3

P2 3 0 2 3 2 2 1 2 2

P3 3 0 2 9 0 2 6 0 0

P4 2 1 1 2 2 2 0 1 1

P5 0 0 2 4 3 3 4 3 1

Available

A B C

2 3 0

Carnegie Mellon

Banker’s algorithm - example - 4
 P5 requests (3,3,0)
 Check that request <= Available

 ???

 Look for a safe sequence:
 ???

Allocated Max Needs

A B C A B C A B C

P1 0 1 0 7 5 3 7 4 3

P2 3 0 2 3 2 2 1 2 2

P3 3 0 2 9 0 2 6 0 0

P4 2 1 1 2 2 2 0 1 1

P5 0 0 2 4 3 3 4 3 1

Available

A B C

2 3 0

Carnegie Mellon

Banker’s algorithm - example - 5
 P1 requests (0,2,0)
 Check that request <= Available

 ???

 Look for a safe sequence:
 ???

Allocated Max Needs

A B C A B C A B C

P1 0 1 0 7 5 3 7 4 3

P2 3 0 2 3 2 2 1 2 2

P3 3 0 2 9 0 2 6 0 0

P4 2 1 1 2 2 2 0 1 1

P5 0 0 2 4 3 3 4 3 1

Available

A B C

2 3 0

Carnegie Mellon

Banker’s Algorithm – Dining Philosophers - 1

 System resources:
 1 chopsticks in 5 positions
 Total resources: (1, 1, 1, 1, 1)

 5 “philosopher” processes
 Maximum resources table is:

Maximum

C1 C2 C3 C4 C5

P1 1 1 0 0 0

P2 0 1 1 0 0

P3 0 0 1 1 0

P4 0 0 0 1 1

P5 1 0 0 0 1

Carnegie Mellon

Banker’s Algorithm – Dining Philosophers - 2

 Safe state:

 <P4, P3, P2, P1, P5> is feasible.

Allocated Needs

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

P1 1 0 0 0 0 0 1 0 0 0

P2 0 1 0 0 0 0 0 1 0 0

P3 0 0 1 0 0 0 0 0 1 0

P4 0 0 0 1 0 0 0 0 0 1

P5 0 0 0 0 0 1 0 0 0 1

Available

C1 C2 C3 C4 C5

0 0 0 0 1

Carnegie Mellon

Banker’s Algorithm – Dining Philosophers - 3

 P5 is given the C5

 None of the processes get their need.
 Unsafe. Rejected.

Allocated Needs

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

P1 1 0 0 0 0 0 1 0 0 0

P2 0 1 0 0 0 0 0 1 0 0

P3 0 0 1 0 0 0 0 0 1 0

P4 0 0 0 1 0 0 0 0 0 1

P5 0 0 0 0 1 1 0 0 0 0

Available

C1 C2 C3 C4 C5

0 0 0 0 0

