
Carnegie Mellon

Synchronization
Deadlocks and prevention

Some of the slides are adapted from from Operating System Concepts (Silberschatz, Galvin, Gagne).

Carnegie Mellon

Preemption - recall
 Preemption is to forcefully take a resource from a thread/process

 Resources can be CPU/lock/disk/network etc.
 Resources can be

 Preemptible (e.g. CPU)
 Non-preemptible (e.g. mutex, lock, virtual memory region)

 e.g. CPU is a preemptible resource
 A preemptive OS can stop a thread/process at any time

 i.e. forcefully take the CPU from the current thread/process and give it to
another.

 A non-preemptive OS can’t stop a thread/process at any time
 The OS has to wait for the current thread/process to yield (give away the CPU)

voluntarily.

 e.g. a lock is not a preemptible resource. The OS;
 cannot forcefully take away the lock and give it to another,
 has to wait for the current thread/process to voluntarily release it.

 Why isn't it safe to forcibly take a lock away from a thread?

Carnegie Mellon

What’s a deadlock?

Carnegie Mellon

Deadlock

 A set of blocked threads/processes each holding a resource and
waiting to acquire a resource held by another process in the set.

 A deadlock happens when
 Two (or more) threads waiting for each other
 None of the deadlocked threads ever make progress

Mutex 1

Thread 1

Thread 2Mutex 2

holds

holds

waits for

waits for

Carnegie Mellon

Starvation

 A thread/process not making any progress since other
threads/processes are using the resources that it needs.
 CPU as a resource: A thread/process not getting the CPU, since

other the scheduler is giving the CPU to other “higher priority”
thread/processes.
 More on this in the upcoming lecture on scheduling.

 Lock as a resource: : A thread/process not getting a lock that it has
requested, since others have it.

 Starvation ≠ Deadlock
 Deadlock => Starvation
 Starvation ≠> Deadlock

Pedestrians who wants to cross Eskişehir Yolu
are likely to “starve” due to traffic!

Carnegie Mellon

Methods for Handling Deadlocks

 Ensure that the system will never
enter a deadlock state.

 Allow the system to enter a deadlock
state and then recover.

 Ignore the problem and pretend that
deadlocks never occur in the system;
used by most operating systems,
including UNIX.

Carnegie Mellon

Dining Philosophers

 Classic deadlock problem
 Multiple philosophers trying to lunch
 One chopstick to left and right of each

philosopher
 Each one needs two chopsticks to eat

Carnegie Mellon

Dining Philosophers

 What happens if everyone grabs the
chopstick to their right?
 Everyone gets one chopstick and waits

forever for the one on the left
 All of the philosophers starve!!!

Carnegie Mellon

Deadlock Characterization

 Mutual exclusion: only one process at a time can use a resource.
 Hold and wait: a process holding at least one resource is waiting to

acquire additional resources held by other processes.
 No preemption: a resource can be released only voluntarily by the

process holding it, after that process has completed its task.
 Circular wait: there exists a set {P0, P1, …, P0} of waiting processes

such that
• P0 is waiting for a resource that is held by P1,
• P1 is waiting for a resource that is held by P2, …,
• Pn–1 is waiting for a resource that is held by Pn, and
• Pn is waiting for a resource that is held by P0.

Deadlock can arise if all four conditions hold simultaneously!

Carnegie Mellon

Deadlock Prevention

 Ensure that at least one of the four conditions do not hold!

 Mutual Exclusion
 not required for sharable resources;

 must hold for non-sharable resources (e.g. a printer).

 Hold and Wait
 must guarantee that whenever a process requests a resource, it

does not hold any other resources.

 Require process to request and be allocated all its resources
before it begins execution,

 Allow process to request resources only when the process has
none.

– low resource utilization;

– starvation possible.

Carnegie Mellon

Deadlock Prevention (Cont.)

 No Preemption
 If a process that is holding some resources requests another

resource that cannot be immediately allocated to it, then all
resources currently being held are released.

 Preempted resources are added to the list of resources for which the
process is waiting.

 Process will be restarted only when it can regain its old resources, as
well as the new ones that it is requesting.

 Can be applied to resources whose state can be saved such as CPU,
and memory. Not applicable to resources such as printer and tape
drives.

 Circular Wait
 impose a total ordering of all resource types, and
 require that each process requests resources in an increasing order

of enumeration.

Carnegie Mellon

Circular Wait - 1

 Each resource is given an ordering:
 F(tape drive) = 1
 F(disk drive) = 2
 F(printer) = 3
 F(mutex1) = 4
 F(mutex2) = 5
 …….

 Each process can request resources only in increasing order
of enumeration.

 A process which decides to request an instance of Rj should
first release all of its resources that are F(Ri) >= F(Rj).

Carnegie Mellon

Circular Wait - 2
 For instance an application program may use ordering among all of its

synchronization primitives:
 F(semaphore1) = 1
 F(semaphore2) = 2
 F(semaphore3) = 3
 …….

 After this, all requests to synchronization primitives should be made
only in the increasing order:
 Correct use:

 down(semaphore1);
 down(semaphore2);

 Incorrect use:
 down(semaphore3);
 down(semaphore2);

 Keep in mind that it’s the application programmer’s responsibility to
obey this order.

Carnegie Mellon

Dining Philosophers

 How do we solve this problem??
 (Apart from letting them eat with forks.)

Carnegie Mellon

How to solve this problem?

Solution 1: Don't wait for chopsticks
 Grab the chopstick on your right
 Try to grab chopstick on your left
 If you can't grab it, put the other one back down
 Breaks “no preemption” condition – no waiting!

Solution 2: Grab both chopsticks at once
 Requires some kind of extra synchronization to make it atomic
 Breaks “multiple independent requests” condition!

Solution 3: Grab chopsticks in a globally defined order
 Number chopsticks 0, 1, 2, 3, 4
 Grab lower-numbered chopstick first

 Means one person grabs left hand rather than right hand first!
 Breaks “circular dependency” condition

Solution 4: Detect the deadlock condition and break out of it
 Scan the waiting graph and look for cycles
 Shoot one of the threads to break the cycle

Carnegie Mellon

Deadlock Avoidance

 Requires that the system has some additional a priori
information available.
 Simplest and most useful model requires that each process

declare the maximum number of resources of each type that it
may need.

 Is this possible at all?

 The deadlock-avoidance algorithm dynamically examines the
resource-allocation state to ensure that there can never be a
circular-wait condition.

 When should the algorithm be called?

 Resource-allocation state is defined by the number of available
and allocated resources, and the maximum demands of the
processes.

Carnegie Mellon

System Model

 Resource types R1, R2, . . ., Rm
 CPU,
 memory,
 I/O devices

 disk
 network

 Each resource type Ri has Wi instances.
 For instance a quad-core processor has

 4 CPUs

 Each process utilizes a resource as follows:
 request
 use
 release

Carnegie Mellon

Resource-Allocation Graph

 A set of vertices V and a set of

edges E.

 V is partitioned into two types:
 P = {P1, P2, …, Pn}, the set consisting of all the

processes in the system.

 R = {R1, R2, …, Rm}, the set consisting of all
resource types in the system.

 request edge – directed edge P1 -> Rj

 assignment edge – directed edge Rj <- Pi

Carnegie Mellon

Resource Allocation Graph With A Deadlock

 If there is a deadlock
 => there is a cycle in the graph.

 However the reverse is not true!
 If there is a cycle in the graph

 =/> there is a deadlock

Carnegie Mellon

Resource Allocation Graph With A Cycle But No
Deadlock

 However the existence of a
cycle in the graph does not
necessarily imply a deadlock.

Overall message:
 If graph contains no cycles =>

 no deadlock.

 If graph contains a cycle =>
 if only one instance per resource type,

then deadlock.
 if several instances per resource type,

possibility of deadlock.

Carnegie Mellon

Resource-Allocation Graph Algorithm

 Claim edge Pi -> Rj indicated that
process Pj may request resource Rj;
represented by a dashed line.

 Claim edge converts to request edge
when a process requests a resource.

 When a resource is released by a
process, assignment edge reconverts to
a claim edge.

Carnegie Mellon

Resource-Allocation Graph Algorithm

 Claim edge Pi -> Rj indicated that process Pj
may request resource Rj; represented by a
dashed line.

 Claim edge converts to request edge when a
process requests a resource.

 When a resource is released by a process,
assignment edge reconverts to a claim edge.

 Resources must be claimed a priori in the
system.

 Note that the cycle detection algorithm does
not work with resources that have multiple
instances.

Cycle => Unsafe

Carnegie Mellon

Safe, unsafe and deadlock states

 If a system is in safe state => no
deadlocks.

 If a system is in unsafe state =>
possibility of deadlock.

Avoidance: ensure that a system will
never enter an unsafe state.

Carnegie Mellon

Safe State

 When a process requests an available resource, system must
decide if immediate allocation leaves the system in a safe
state.

 System is in safe state if there exists a safe sequence of all
processes.

 Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources that
Pi can still request can be satisfied by currently available
resources + resources held by all the Pj, with j < i.
 If Pi resource needs are not immediately available, then Pi can wait

until all Pj have finished.
 When Pj is finished, Pi can obtain needed resources, execute, return

allocated resources, and terminate.
 When Pi terminates, Pi+1 can obtain its needed resources, and so on.

Carnegie Mellon

Resource Allocation Graph: Dining
Philosopher’s example - 1
 Initial configuration:

 4 philosophers
 4 sticks.

R

R

R

R

P1

P2P3

P4

Carnegie Mellon

Resource Allocation Graph: Dining
Philosopher’s example - 2
 P1 gets right stick

R

R

R

R

P1

P2P3

P4

Carnegie Mellon

Resource Allocation Graph: Dining
Philosopher’s example - 3
 P2 gets right stick

R

R

R

R

P1

P2P3

P4

Carnegie Mellon

Resource Allocation Graph: Dining
Philosopher’s example - 4
 P3 gets right stick

R

R

R

R

P1

P2P3

P4

Carnegie Mellon

Resource Allocation Graph: Dining
Philosopher’s example – 5
 P4 requests right stick.

 Cycle!!
 Rejected.

R

R

R

R

P1

P2P3

P4

Carnegie Mellon

Monitors: Finite resource problem

 5 instances of a
resource

 N processes.
 Only 5 processes can

use the resources
simultaneously.

Allocate MA; //resource allocation monitor.
….
MA.acquire();
// use the resource
MA.release();
....

Process code

Monitor Allocate
{

int count=5;
condition c;

void acquire(){
if (count == 0)

c.wait();
count--;

}
void release(){

count++;
c.signal(); //i.e. notify()

}
}

Monitor code

Carnegie Mellon

Monitors: Dining Philosophers
Monitor DiningPhilosophers
{

enum{THINKING,
HUNGRY,
EATING

}state[5];
condition cond[5];

void pickup(int i){
state[i] = HUNGRY;
test(i);
if (state[i] != EATING)

cond[i].wait();
}

void putdown(int i){
state[i]=THINKING;
// test left and right neighbors
test(LEFT);
test(RIGHT);

}

void test(int i){
if((state[LEFT] != EATING) &&
(state[RIGHT] != EATING) &&
(state[i] == HUNGRY))
{

state[i] = EATING;
cond[i].signal();

}
}

void initialize(){
for (int i=0l i<5; i++)

state[i] = THINKING;
}

} // end Monitor

DiningPhilosopher DP;
…
while(1){

// THINK..
DP.pickup(i);
// EAT (use resources)
DP.putdown(i);
// THINK..

}

#define LEFT (i+4)%5
#define RIGHT (i+1)%5

Carnegie Mellon

Monitors: Dining Philosophers

 What are the ID’s to access neighbor philosophers?

#define LEFT ???
#define RIGHT ???

Process
i

Process
???

Process
???… …

state[LEFT] = ? state[RIGHT] = ?state[i] = ?

state=
THINKING?
HUNGRY?
EATING?

Carnegie Mellon

Monitors: Dining Philosophers

 What are the ID’s to access neighbor philosophers?

#define LEFT (i+4)%5
#define RIGHT (i+1)%5

Process
i

Process
(i+1) % 5

Process
(i+4) % 5

test(i)

… …

test((i+1)%5)test((i+4)%5)

state[LEFT] = ? state[RIGHT] = ?state[i] = ?

state=
THINKING?
HUNGRY?
EATING?

Carnegie Mellon

Banker’s Algorithm

 Suppose “worst case/maximum” resource needs of each
process is known in advance
 E.g. limit on your credit card

 Observation: If we give a process the maximum of its
resources
 Then it will execute to complete
 After that it will give back all the resources

 When a process request a new resource during its execution
 The OS decides whether to give it the resource at that time or not

 A request is delayed if there does not exist a sequence of
processes that would ensure the successful completion of all
the processes, even if they need the “maximum” of their
resources.

Why Banker’s Algorithm? While giving credits, a banker should ensure that it never allocates all of
its cash in such a way that none of its creditors can finish their work and pay back the loan.

Carnegie Mellon

Banker’s algorithm - example – 1

 System:
 5 processes P1-P5
 3 resource types: A (10), B (5), C(7)

Maximum

A B C

P1 7 5 3

P2 3 2 2

P3 9 0 2

P4 2 2 2

P5 4 3 3

Carnegie Mellon

Banker’s algorithm - example - 2

 System:
 5 processes P1-P5
 3 resource types: A (10), B (5), C(7)

 System state at t0

Allocated Max Needs

A B C A B C A B C

P1 0 1 0 7 5 3 7 4 3

P2 2 0 0 3 2 2 1 2 2

P3 3 0 2 9 0 2 6 0 0

P4 2 1 1 2 2 2 0 1 1

P5 0 0 2 4 3 3 4 3 1

Available

A B C

3 3 2

The system is in a safe state since the sequence <P2,P4,P5,P3,P1> would guarantee
the completion of all processes.

Carnegie Mellon

Banker’s algorithm - example - 3
 P2 request (1,0,2)
 Check that request <= Available

 (1,0,2) <= (3,3,2)

 Look for a safe sequence:
 <P2,P4,P5,P1,P3> is possible!

Allocated Max Needs

A B C A B C A B C

P1 0 1 0 7 5 3 7 4 3

P2 3 0 2 3 2 2 1 2 2

P3 3 0 2 9 0 2 6 0 0

P4 2 1 1 2 2 2 0 1 1

P5 0 0 2 4 3 3 4 3 1

Available

A B C

2 3 0

Carnegie Mellon

Banker’s algorithm - example - 4
 P5 requests (3,3,0)
 Check that request <= Available

 ???

 Look for a safe sequence:
 ???

Allocated Max Needs

A B C A B C A B C

P1 0 1 0 7 5 3 7 4 3

P2 3 0 2 3 2 2 1 2 2

P3 3 0 2 9 0 2 6 0 0

P4 2 1 1 2 2 2 0 1 1

P5 0 0 2 4 3 3 4 3 1

Available

A B C

2 3 0

Carnegie Mellon

Banker’s algorithm - example - 5
 P1 requests (0,2,0)
 Check that request <= Available

 ???

 Look for a safe sequence:
 ???

Allocated Max Needs

A B C A B C A B C

P1 0 1 0 7 5 3 7 4 3

P2 3 0 2 3 2 2 1 2 2

P3 3 0 2 9 0 2 6 0 0

P4 2 1 1 2 2 2 0 1 1

P5 0 0 2 4 3 3 4 3 1

Available

A B C

2 3 0

Carnegie Mellon

Banker’s Algorithm – Dining Philosophers - 1

 System resources:
 1 chopsticks in 5 positions
 Total resources: (1, 1, 1, 1, 1)

 5 “philosopher” processes
 Maximum resources table is:

Maximum

C1 C2 C3 C4 C5

P1 1 1 0 0 0

P2 0 1 1 0 0

P3 0 0 1 1 0

P4 0 0 0 1 1

P5 1 0 0 0 1

Carnegie Mellon

Banker’s Algorithm – Dining Philosophers - 2

 Safe state:

 <P4, P3, P2, P1, P5> is feasible.

Allocated Needs

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

P1 1 0 0 0 0 0 1 0 0 0

P2 0 1 0 0 0 0 0 1 0 0

P3 0 0 1 0 0 0 0 0 1 0

P4 0 0 0 1 0 0 0 0 0 1

P5 0 0 0 0 0 1 0 0 0 1

Available

C1 C2 C3 C4 C5

0 0 0 0 1

Carnegie Mellon

Banker’s Algorithm – Dining Philosophers - 3

 P5 is given the C5

 None of the processes get their need.
 Unsafe. Rejected.

Allocated Needs

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

P1 1 0 0 0 0 0 1 0 0 0

P2 0 1 0 0 0 0 0 1 0 0

P3 0 0 1 0 0 0 0 0 1 0

P4 0 0 0 1 0 0 0 0 0 1

P5 0 0 0 0 1 1 0 0 0 0

Available

C1 C2 C3 C4 C5

0 0 0 0 0

