CENG 230

Introduction to C Programming

Week 3 — Overview of C
Sinan Kalkan

Some slides/content are borrowed from Tansel Dokeroglu,
Nihan Kesim Cicekli.

o
Nég&e S

é‘}A
& ¢ The lectures notes:
http://www.kovan.ceng.metu.edu.tr/~sinan/ceng230/
* You can also just google my name = Follow “Courses”
- “Ceng 230"
* Location:
e Starting from “5 March, 2015”, lectures will be held in
BMB-1 (in Computer Engineering Dept.)
* Midterm:

e 28 April, 2015 at 17:40

Variables and identifiers

Qo
7
O
Qé' "int
(_}Ao =float
;\\o" sdouble
Q& =char

C has the following basic built-in datatypes.

TABLE 2.4 Type double Constants (real numbers)

Valid double Constants

Invalid double Constants

3.14159

0.005

12345.0

15.0e-04 (valueis 0.0015)
2.345e2 (valueis 234.5)
1.15e-3 (valueis 0.00115)
12e+5 (valueis 1200000.0)

150 (no decimal point)
.12345e (missing exponent)
15e-0.3 (0.3 is invalid exponent)

12.5e.3 (.3 isinvalid exponent)

34,500.99 (comma is not allowed)

Q\'
Valid ﬂentifiers

é‘%
l%&;er_l, letter 2, inches, cent, CENT PER INCH, Hello, variable
(o)
N
\’)(9
°
N

TABLE 2.2 Invalid Identifiers
Invalid Identifier Reason Invalid
lLetter begins with a letter
double reserved word
int reserved word
TWO*FOUR character * not allowed
joe's character * not allowed

intl and Intl are notthe same identifiers/variables

NS

S
v

.

&\0\‘» auto double int struct
Q*o break else Tong switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

Keywords added in C99

_Bool _Complex _Imaginary 1inline restrict

Fig. 2.15 | C's keywords.

CENG 230 - Spring 2015 Sinan Kalkan 6

CENG 230 - Spring 2015

o
4@"‘? intf(format stri 1, var2

& printf(format string, varl, var2, ...)
* Format string contains:

d,i: integers

f: float, double

e: float, double in exponential notation
c: character

S: string

&i*° * scanf(format string, &varl, &var2, ...)
¢ e varl, var2, ..: variables!
* Format string contains:
* d,i: integers
f: float, double
e: float, double in exponential notation
c: character

S: string

(‘
ks?/* Fig. 2.3: fig02 03.c
Printing on one line with two printf statements */

&3‘03 #include <stdio.h>

Q 4
5 /% function main begins program execution */
6 1int main(void)
7T {
8 printf("Welcome ");
9 printf("to C!'\n");
10
11 return 0; /* indicate that program ended successfully *

12 } /* end function main */

Fig. 2.3 | Printing on one line with two printf statements/ (Part | of 2.)

Welcome to C!

CENG 230 - Spring 2015 Sinan Kalkan

10

\,
00
%4

0. .
[ég$r1g. 2.4: fig02 04.c
2 & Printing multiple lines with a single printf */
¥\ #include <stdio.h>

Ny

& 5 /* function main begins program execution */

QY 6 int main(void)
7 {
8 printf("Welcome\nto\nC!\n");
9
10 return 0; /* indicate that program ended successfully */
Il } /* end function main */
Welcome
to
C!

Fig. 2.4 | Printing multiple lines with a single printf.

CENG 230 - Spring 2015 Sinan Kalkan

Escape sequence Description

\n Newline. Position the cursor at the beginning of the next line.

\t Horizontal tab. Move the cursor to the next tab stop.

\a Alert. Sound the system bell.

\\ Backslash. Insert a backslash character in a string.

\" Double quote. Insert a double-quote character in a string.
Fig. 2.2 | Some common escape sequences .

CENG 230 - Spring 2015 Sinan Kalkan 12

TABLE &8 Placeholders in Format Strings
Placelgdider Variable Type Function Use
é{aﬁf yp
%} char printf/scanf
$$gd int printf/scanf
é§9 $f double printf
Y
R $1f double scanf
FIGURE 2.6 number entered 30.5
miles
Effect of
30.5

scanf("%1f",

&miles);

int first, second;

scanf("%d%d", &first, &second);

double miles; /* distance in miles

scanf("%lIf", &miles);

*/

/¥ Fig. 2.5: fig02_05.c
Addition program */
#include <stdio.h>

»

&

I
N\
4
5 /* function main begins program execution */
OQ 6 1int main(void)
T {

8 int integerl; /* first number to be input by user ¥/
9 int integer?; /* second number to be input by user */
10 int sum; /* variable in which sum will be stored */
I

12 printf{ "Enter first integer\n"); /* prompt */

13 scanf("%d", &integerl); /* read an integer */

14

15 printf("Enter second integer\n"); /* prompt */
16 scanf("%d", &integer?2); /* read an integer */

17

18 sum = integerl + integerd; /* assign total to sum */
19

20 printf("Sum s %d\n", sum); /¥ print sum */

21

22 return 0; /* indicate that program ended successfully */

23 } /* end function main */

Enter first integer

45

Enter second integer
72

Sum is 117

Fie. 2.5 | Addition nrnoram (Part 2 af 71

CENG 230 - Spring 2015 Sinan Kalkan

Formating the output of integer values

A
Qo
Xe)
‘_'Speuﬁf@ﬁ the format of an integer value d]apltwed bv a C program is fair lv easy.
You émplv add a number between the & and the d of the 3d placeholder in the
Qgtf format string. This number ﬁ:pemﬁes the field width—the number of col-

&mna to use for the dl*;p]tw of the value. The statement
4\
Q@' printf("Results: %3d meters = %4d ft. %2d in.\n",

meters, feet, inches);

indicates that 3 columns will be used to display the value of meters. 4 columns will
be used for feet, and 2 columns will be used for inches (a number between 0 and
11). [f meters is 21, feet is 68, and inches is 11, the program output will be

Results: 21 meters = 68 ft. 11 in.

TABLE 2.14 Displaying 234 and -234 Using Different Placeholders

Value Format Displayed Output Value Format Displayed Output
234 $4d 1234 -234 $4d -234

234 $5d 1234 -234 $5d 1-234

234 $6d 1234 -234 $6d -234

234 $1d 234 -234 %2d -234

Formatipg the output of double values
v
&

&
" TABLE 2.16 Formatting Type double Values

Displayed Displayed
Value Format Output Value Format Output
3.14159 $5.2f 13.14 3.14159 34 .2f 3.14
3.14159 $3.2f 3.14 3.14159 $5.1f 3.1
3.14159 $5.3f 3.142 3.14159 $8.5f 13.14159
.1234 $4.2f 0.12 -.006 34 .2f -0.01
-.006 $8.3f I-0.006 -.006 $8.5f -0.00600

-.006 3.3f -0.006 -3.14159 $.4f -3.1416

Operators and
Expressions

C cpueration

$®Addition

N

Subtraction
Multiplication
Division

Remainder

CENG 230 - Spring 2015

Arithmetic operator Algebraic expression

- f+7

_ p—c

* bm

/ x;"_}fnr{or X+
% rmodsy

printf("Welcome to \%d", (3/2));

Outputis: 1

Sinan Kalkan

C expression

® O T
I
]

5

18

Operation(s)

Order of evaluation (precedence)

+ R~

CENG 230 - Spring 2015

Parentheses

Multiplication
Division
Remainder
Addition

Subtraction

Evaluated first. If the parentheses are nested,
the expression in the innermost pair is evalu-
ated first. If there are several pairs of parenthe-
ses “on the same level” (i.e., not nested),

they're evaluated left to right.

Evaluated second. If there are several, they're
evaluated left to right.

Evaluated last. If there are several, they're eval-
uated left to right.

Sinan Kalkan 19

\
,,’0

Vv
S
C . :
TABLE 2.9 Arithmetic Operators
AN
6\‘
;\\Q‘Arithmetic Operator Meaning Examples
<
¢+ addition 5+ 2 is 7
5.0 + 2.0 is 7.0
- subtraction 5 -2 is 3
5-0 - 210 iS B-G
* multiplication 5 % 2 is 10
5.0 * 2.0 is 10.0
/ division 5.0 / 2.0 is 2.5
5/ 2 is 2
% remainder 5% 2 is 1

TABLE 2.10 Results of Integer Division

3/ 15 =0 18 / 3 = 6
15 / 3 =5 16 / -3 =-5
16 / 3 =5 0/ 4=0
17 / 3 =5 4 / 0 isundefined

TABLE 2.11 Results of % Operation

3%5=3 5% 3 =2
485 =4 5% 4 =1
5%5 =0 15 $ 5 =0
6 $5 =1 15 $ 6 = 3
7 %5 =2 15 ¢ -7 =1
8 $5 =3 15 % 0 is undefined

)
o\‘r

N

\
éb

Vv
&
N
&

\\\0‘\ TABLE 2.13 Mathematical Formulas as C Expressions

Mathematical Formula

C Expression

1. b? — 4dac
2.at+tb—c
a+b
‘c+d
1
1+ X
5.4 X —(b+ ¢

3

4

b * b -4 * a * ¢
a+ b - ¢

(a + b) / (c + d)

1/ (1 + x * x)

a * —(b + ¢)

\
Q@\

S
’\,',’0
N

Rufe&(;%r Ev ehmtmg E1preﬁrens

g—}‘x Parentheses rule: All expressions in parentheses must be evaluated sepﬂratelv

b.

Nested pqrenthesmed expressions must be evaluated from the inside out, with
the innermost expression ev: alnated first.

Operator preeedenee rule: Operators in the same expression are evaluated in
the fellewing order:

unarv +. - first
* /. % next
binary +, - last

Associativity rule: Unary operators in the same subexpression and at the same
precedence level (such as + and -) are evaluated right to left (right associativity).
Binary operators in the same subexpression and at the same precedence level
(such as + and -) are evaluated left to right (left associativity).

&
é‘,@
oo
é&
. o\‘r Step 2.
é\
Q&
Step 3.
Step 4.
Step 5.
Step 6.

y

=2 *5%54+3 %5 + 7,

2 *51s 10

Y

10 * 5 + 3 * 5 + 7;
10 * 5 1is 50
|
v
50 + 3 5 + 7;
3 5 1s 15
|
Y
50 + 15 + 7;
50 + 15 1is 65
|
\
65 + 7;
65 + 7 1s 72
|
Y
72

(Leftmost multiplication)

(Leftmost multiplication)

(Multiplication before addition)

(Leftmost addition)

(Last addition)

(Last operation—place 72 iny)

Fig. 2.11 | Order in which a second-degree polynomial is evaluated.

CENG 230 - Spring 2015

Sinan Kalkan

Evaluation of a Second-Degree Polynomial

To develop a better understanding of the rules of operator precedence, let’s see how C eval-

ug’@s a second-degree polynomial.
%'\' y = a * x * x + b *¥ x + c;
Q?
O 6 1 2 4 3 5
Step |. y =2 %5%54+3%5 4+ 7; (Leftmost multiplication)
2 *51s 10
Step 2. y =10 * 5+ 3 * 5 + 7; (Leftmost multiplication)
10 * 5 1s 50
Step 3. y =50 + 3 %5 + 7; (Multiplication before addition)
3 % 5 1s 15
Step 4. y =50 + 15 + 7; (Leftmost addition)
50 + 15 is 65
|
v
Step 5. y =65 + 7; (Last addition)
65 + 7 is 72
Step 6. y =72 (Last operation—place 72 in y)

Fig. 2.11 | Order in which a second-degree polynomial is evaluated.

(a

rm, L

10

11

Today

* Continue with operators
* Relational operators
* Increment/decrement operators
* Logical operators

* Type conversion
* Examples

Algebraic equality or C equality or Example of

relational operator relational operator C condition Meaning of C condition
Equality operators

= == X ==y x is equal to y

I= X l=y x is not equal to y

Relational operators

> > X >y x is greater than y

< < X <y x 1s less than y

> >= X >= Yy x is greater than or equal to y
< <= X <=y x is less than or equal to y

Fig. 2.12 | Equality and relational operators.

I exclamation mark

= is assignment and == is an equality operator

Increment, Decrement Operators

Operator Sample expression Explanation

Ees =y Increment a by 1, then use the new value of a in
the expression in which a resides.

++ at+ Use the current value of a in the expression in
which a resides, then increment a by 1.

— --b Decrement b by 1, then use the new value of b
in the expression in which b resides.

— b-- Use the current value of b in the expression in
which b resides, then decrement b by 1.

Fig. 3.12 | Increment and decrement operators

* ++a, --a
Vs
[] a++’ a__

Assignment operators

a+=10; is the same with
a=a + 10;

Compound Assignment Operators

* var op= expr

o 4= = *= [= Op—

Some examples

rit=j=k;

ci=jH=Kk

Relational Operators

e < <= > >= == I=
* False means O (zero)

* True means anything that is not False (i.e., non-zero)

+ - 4+ - Unary Right to left
*/ % Binary Left to right
+ - Binary Left to right
< <= > >= Binary Left to right
== |I= Binary Left to right
= *= [= %= += -= Binary Right to left

Example: a=b+c<=d+e==c-d

Homework

* Write a C code that solves the following system of
linear equations:

ax + by =c
dx +ey=f

* Your program shouldread a, b, ¢, d, e and f from
standard input, and display the values of x and y to the
standard output.

* Bring the print-out of the C code to the next lecture.

