
CENG 230
Introduction to C Programming

Week 8 – Functions

Sinan Kalkan

Some slides/content are borrowed from Tansel Dokeroglu, Nihan
Kesim Cicekli, and the lecture notes of the textbook by Hanly and

Koffman.

Finding fibonacci series

Repetitions

• for loop
Initialization;
for(expr1; expr2; expr3)

statement

Initialization;
for(expr1; expr2; expr3)
{

statement;
statement;
statement;

}

for(j = 0; j < N; j++)
printf(“j: %d\n”, j);

for(i=0, j=0;
i < 0 & j > N; i++, j--);

for(; ; i++)
{

if(i > 0) return 0;
}

Nested Loops

• You can have loops within loops:

for(i=0; i<N; i++)

{

for(j=0; j<N; j++)

{

….

}

}

Nested loops

infinite loops
(loops that do not finish executing)

Factors of a number

break;

• Stop the loop/iteration and
continue with the statement
after the loop.

• Usable with while, for and do-
while

while(…)

{ …

break;

….

}

statement-X;

while(1)

{

c = getchar();

if(c == EOF)

break;

putchar(c);

}

continue;

• Skips the remaining
statements in the loop and
continues with the “loop
head”.

• Usable with while, for and
do-while

while(…)

{ …

continue;

….

}

Sum = 0;

for(i=0; i<N; i++)

{

if(i%2 == 0)

continue;

sum = sum + i;

}

Today

• Solve the previous assignment

• Modular programming with functions
• Functions without arguments

• Functions with arguments

CENG 230 - Spring 2015 Sinan Kalkan 17

Homework

• Write a program to read in numbers until the number -1
is encountered. The sum, max and min of all numbers
read until this point should be printed out.

CENG 230 - Spring 2015 Sinan Kalkan 18

Modular programming
with functions

CENG 230 - Spring 2015 Sinan Kalkan 19

Modular programming

“Experience has shown that the best way to develop
and maintain a large program is to construct it from
smaller pieces or modules, each of which is more
manageable than the original program.

This technique is called divide and conquer.”

CENG 230 - Spring 2015 Sinan Kalkan 20

Function definition

return_type function_name(parameter declarations)

{

statement-1;

statement-2;

…

}

• if is return_type not void, “return” statement has to
be used:

return expression;

Function declaration

• return_type function_name(list-of-params);

• The parameters have to have the same types as in the
function definition although the names of the
parameters may differ.

• Example:
– int factorial(int N);

– void prim(int m);

• If a function is used before it is defined, it has to be
declared first.

Function call

function_name(list of arguments)

• Example:
– Function declaration:

int greatest(int A, int B, int C);

– Example function call:

printf(“%d\n”, greatest(10, 20, -10));

Sample 1

Sample 2

Sample 3

