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Tentative Schedule:

Week & Date

Introduction to Vision.
What is vision? What are its goals and problems? What are
the main processing stages?

Low-level Vision.
Cameras. Projective geometry. Calibration.

Early Vision.
Edges. Corners. Texture. Segmentation. Optic Flow.

3D Vision.
Monocular and binocular cues. 3D reconstruction.

Applications.
Video surveillance. Human behaviour understanding. Object
recognition. Image/video retrieval. Image annotation.

Paper presentations with theme: Monocular depth
estimation.

Paper presentations with theme: Image annotation.

Paper presentations with theme: Object/shape modelling.
Object recognition.

Paper presentations with theme: Feature Descriptors.

Paper presentations with theme: Context. Saliency.
Attention.

Project Presentations

Project presentations

Project presentations

Project presentations
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+ Early Vision

* corners

* Texture
* Segmentation
« Optic flow



Image matching

by Diva Sian

by swashford

Slide: Trevor Darrell


http://www.flickr.com/photos/diaphanus/136915456/
http://www.flickr.com/photos/swashford/428567562/
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by Diva Sian

Trevor Darrell

Slide


http://www.flickr.com/photos/diaphanus/136915456/
http://www.flickr.com/photos/scpgt/328570837/

Harder still?

NASA Mars Rover images

Trevor Darrell




Corners, Junctions




corners or
Junctions

* Non-accidental
features (Witkin &
Tenenbaum, 1983)

Principle of Non—Accidentalness: Critical information is unlikely to be a
conseguence of an accident of viewpoint

Three Space Inference from Image Features

2-0D Relation 3-D Inference Examples
1. Collinearity of Collinearity in 3-Space pd
points or lines //
7/
7~
2.Curvilinearity of Curvilinearity in 3-Space
points of arcs o — —
-
// - \\
N\
3. Symmetry Symmetry in 3-Space
{Skew Symmetry ?) , N -
. -EB- ‘/"(;}/
H 1
4. Parallel Curves Curves are parallel in 3-5pace
(Over Small /\/
Visual Angles) /\/
5. Vertices-- two or more Curves terminate at a
terminations ata common point in 3-Space

common point

A

" L“ LE Fork“ n Arrow 1]

Figure 4. Five nonaccidental relations. (From Figure 5.2, Perceptual
organization and visual recognition [p. 77} by David Lowe. Unpub-
lished doctorial dissertation, Stanford University. Adapted by permis-
sion.)




What is accidental?

http://en.wikipedia.org/wiki/Penrose_triangle




Corners as distinctive interest points

« Shifting a window in any direction should give a large
change in intensity

“flat” region: “edge”. “corner”:
no change in no change significant
all directions along the edge change in all

direction directions

Source: A. Efros



We will talk about two widely used

corner detectors.

T E—

* SUSAN Detector
* Moravec Detector
* Harris Detector



SUSAN Detector

nucleus of mask

boundary of mask ——=

a

b

* Center pixel is compared
with the pixels in a circular
mask.

« If they are all the same, the

. : light area
pixel is “homogeneous” :

* l f h d If Of t h e p ixe l S are section of mask where pixels have different brightness to nucleus

different, the pixel is
“edge-like” @
* If one-quarter of the pixels

€

are different, then the
pixel is corner.

oS,

section of mask where pixels have same brightness as nucleus




Moravec Detector

‘\

* Based on “self-similarity”

* Move a window in horizontal, vertical and diagonal
directions.

* Compute the similarity of the original patch with the
shifted ones.

* A corner is a local minimum in this similarity space.



Harris Detector formulation

T ————
E(u,v)=> w(x, Y)[I(X+u,y+v)—1(x, ]

\

1in window, 0 outside Gaussian

Source: R. Szeliski



Robert Collins
CSE486. Penn State

Taylor Series for 2D Functions

fx+u,y+v)=f(x,y)+ufilx,y)+vfi(x,y)+

First partial derivatives

[u:f.'u (x,) + uvfox,y +v° fiy(x,y) ]+

Second partial derivatives

12—

|

[u Y fe(,y) + UV [ (X, Y) + uvzj_}_\..\. (x,y)+Vv> fyyy(X,y )]

Third partial derivatives

o

+ ... (Higher order terms)

First order approx

fx+u,y+v) = f(x,y) +ufx,y) +vf(x,y)




Robert Collins

CSE486. Penn State Harris Corner Derivaﬁ()n

2 I(x+u,y+v)—I(x,y)]
~ 2 [I(x,y) +ul,+ vl — I(x, )‘)]2 First order approx

= 2 Wl + 2uvll, + \'2[3

= z [uv] [0 Ldy | i | Rewrite as matrix equation
L1, 1 y

2 LETY |
— [u "](2[1\'1_\, o ) :]




Harris Detector formulation

where M is a 2x2 matrix computed from image derivatives:

Gradient with
respect to x,
times gradient
with respecttoy

Sum over image region — area
we are checking for corner

Source: R. Szeliski



Harris Detector formulation

where M is a 2x2 matrix computed from image derivatives:

Gradient with
respect to x,
times gradient
with respecttoy

Sum over image region — area
we are checking for corner

Source: R. Szeliski



Interpreting the eigenvalues of M




Corner response function

a: constant (0.04 to 0.06)

Source: R. Szeliski



Harris Corner Detector

‘\

* Algorithm steps:

* Compute M matrix within all image windows to get
their R scores

* Find points with large corner response
(R > threshold)
* Take the points of local maxima of R

Slide: Trevor Darrell



Harris Detector: Properties

* Rotation invah
™ \|‘ A
i =

Ellipse rotates but its shape (i.e. eigenvalues)
remains the same

Corner response R is invariant to image rotation

Slide: Trevor Darrell



Harris Detector: Properties

# Not invariant to image sca|e ———
‘/r o~
; |

al

All points will be Corner!!
classified as edges

Slide: Trevor Darrell



Noise, Thresholding, Incompleteness

s
el

/

Optimal
/o Optima

Completeness
Spuriousness

- -
Sensitivity Completeness

(a) (b)

Kalkan et al., Int. Conf. on Computer Vision Theory and Applications, 2007.



Another problem: Localization

S

10 15 5 10 15

Kalkan, 2008; Kalkan et al., 2007.

i2D Max

5 10 15

i2D Max

5

10 15




Intersection Consistency as

a Corner Measure
\

+ A corner is where lines intersect.

* Since we know the edges and their orientation, we
can compute whether the lines in a window are
intersecting at the center.

ic(p) = f ean®PI = d(P, po)/d(p. po)] dp.

Kalkan, 2008; Kalkan et al., 2007.



Intersection Consistency as

a Corner Measure

i2D Max
5
10
15

5 10 15

IC with i1D
5
10
15

5 10 15

i2D Max

5 10 15
IC with i1D

5 10 15

10
15

i2D Max

5 10 15
IC with i1D

5 10 15

i2D Max

5 10 15
IC with i1D

3
10

15

5 10 15

Figure 4.2: Tllustration of the maximum /C for a few examples.

Kalkan, 2008; Kalkan et al., 2007.




Kalkan et al., Int. Conf. on Computer Vision Theory and Applications, 2007.




Semantic

Original _
Internretation

_ Improved
Detection

Positioning

Kalkan et al., Int. Conf. on Computer Vision Theory and Applications, 2007.



Kalkan et al., Int. Conf. on Computer Vision Theory and Applications, 2007.



Problems with Corner Detection

T E—

* Localization

* Representation
* Viewpoint

* Scale






Texture

* What is texture?
* No unique definition.
+ Certain aspects:
* Repetition
* Sometimes random
* Sometimes involving “edges”




Why study texture?

R —

+ Because the world is full of them.
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T

* Textons: analyze the texture in terms of statistical
relationships between fundamental texture elements,

called “textons”.

Slide: Trevor Darrell



Texture representation

T

i
* Textures are made up of repeated local patterns, so:

* Find the patterns
# Use filters that look like patterns (spots, bars, raw patches...)
* Consider magnitude of response

* Describe their statistics within each local window
* Mean, standard deviation
* Histogram
* Histogram of “prototypical” feature occurrences

Slide: Trevor Darrell



Texture representation: example

original image

Slide: Trevor Darrell

derivative filter
responses, squared

statistics to summarize
patterns in small
windows



Texture representation: example

Win. #1 4 10

Win.#2 18 7

original image

statistics to summarize

derivative filter patterns in small

Slide: Trevor Darrell .
responses, squared windows



Texture representation: example

Win. #1 4 10
Win.#2 18 7

Win.#9 20 20

original image

statistics to summarize

derivative filter patterns in small

Slide: Trevor Darrell .
responses, squared windows



Texture representation: example

Win. #1 4 10
. Win.#2 18 7
. Win.#9 20 20

Dimension 1 (mean d/dx value)

>

Dimension 2 (mean d/dy value)

statistics to summarize
patterns in small

Slide: Trevor Darrell .
windows



Texture representation: example

Dimension 2 (mean d/dy value)

A
Dimensjion 1 (mean d/dx value)

Windows with Windows with
small gradient in primarily vertical statistics to summarize
both directions edges patterns in small

Slide: Trevor Darrell windows



original image

derivative filter
responses, squared

Slide: Trevor Darrell




Texture representation: example

Close; similar textufal ':#2 18 4

Win.#9 20 20

\\\\\\\

Dimension 2 (mean d/dy value)

Dimension 1 (mean d/dx value)

statistics to summarize
patterns in small

Slide: Trevor Darrell .
windows



Problem: Scale

* We’re assuming we know the reley
window size for which we collect these

statistics.

Possible to perform scale
selection by looking for
window scale where texture

description not changing.

Slide: Trevor Darrell



Texture Analysis

Malik J, Perona P. Preattentive texture
discrimination with early vision mechanisms.
Slide: A. Torralba JOPT SOC AMATT: (5) 923-932 MAY 1990



Texture Analysis

Using Oriented Filter Banks
\

ENNIAE=S N7
ENNNAEESS D7
BEDDEE oo

SEENY [

Forsyth, Ponce, “Computer Vision: A Modern Approach”, Ch11., 2002.



Slide: Trevor Darrell




Slide: Trevor Darrell



Texture Analysis

Using Oriented Filter Banks

Modelling I — Learning the Texton Dictionary

Textons learnt from
other textures

Ox “'\I'\,i

=

Texton
Dictionary

Multiple, unregistered Filter responses
images of the same
texture

http://www.robots.ox.ac.uk/~vgg/research/texclass/with.html
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Shape from Texture

Problems
involving

rock_wall.jpg

X |
. ) ‘;: ‘ @ A
d “:-‘- ":‘ . -

Synthetic 256x256 pixel Texture

Texture Synthesis



Texture Synthesis
Using Pyramids

Figure 11.14. The values of pixels at coarse scales in a pyramid are a function of the
values in the finer scale layers. We associate a parent structure with each pixel, which
consists of the values of pixels at coarse scales which are used to predict our pixel’s value
in the Laplacian pyramid. as indicated in this schematic drawing. This parent structure

contains information about the structure of the image around our pixel for a variety of
differently sized neighbourhoods.

Forsyth, Ponce, “Computer Vision: A Modern Approach”, Ch11/Ch8., 2002.






Laplacian pyramid

Freeman






Texture Synthesis
Using Pyramids
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Figure 8: The distribution from which pixels in the synthesis pyra- Figure 9: An input texture is decomposed to form an analysis pyra-
mid are sampled is conditioned on the “parent” structure of those mid, from which a new synthesis pyramid is sampled, conditioned
pixels. Each element of the parent structure contains a vector of the on local features within the pyramids. A filter bank of local texture

feature measurements at that location and scale.

measures. based on psychophysical models, are used as features.

De Bonet,
1997. | i
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Markov Chains
Markov Chain

* a sequence of random variables X1,X9, ...

« Xt is the state of the model at time t

* Markov assumption: each state is dependent only on the

previous one

X4

s X1

X5

— dependency given by a conditional probability:

p(x¢|xi—1)

Source S. Seitz



Markov Chain Example: Text

is| 1
man’s 1

best 1

Xt — 1f”eft‘,d L p(Xg|x4—1)
It's| 1
eat 1

world 1
out 1

there 1

-

Sop

S|

s ,uewl
159q
pusLy
S
189
DJAOM
1IN0
aJay}

Xt Source: S. Seitz



Text synthesis

Create plausible looking poetry, love letters, term papers, etc.

Most basic algorithm

1. Build probability histogram
— find all blocks of N consecutive words/letters in training documents

— compute probability of occurrence p(X¢|X¢—1, - - - ,xt_(n_l))
2. Givenwords X1,X2,...,XL_1
— compute X[ by sampling from p(Xt|Xt_1, - ,Xt_(n_l))

WE NEED TO EAT CAKE

Source: S. Seitz



Text synthesis

+ “As I've commented before, really relating
to someone involves standing next to
Impossible.”

+"One morning | shot an elephant in my
arms and kissed him.”

+ "] spent an interesting evening recently
with a grain of salt”

Dewdney, “A potpourri of programmed prose and prosody” Scientific American, 1989.

Slide from Alyosha Efros, ICCV 1999



Synthesizing Computer Vision text

-

* What do we get if we extract
the probabilities from the
F&P chapter on Linear Filters,
and then synthesize new
statements?

Computer
Vision

A MODERN APPROACH

Slide: Trevor Darrell

Check out Yisong Yue’s website implementing text generation: build your own text
Markov Chain for a given text corpus. http://www.yisongyue.com/shaney/index.php


http://www.yisongyue.com/shaney/index.php

Synthesized text

Nis means we cannot obtain a sepal
studied regions in the sum. —

« All this activity will result in the primate visual system.
* The response is also Gaussian, and hence isn’t bandlimited.

* Instead, we need to know only its response to any data
vector, we need to apply a low pass filter that strongly
reduces the content of the Fourier transform of a very large
standard deviation.

# Itis clear how this integral exist (it is sufficient for all pixels
within a 2k +1 x 2k +1 x 2k +1 x 2k + 1 —required for the
images separately.




Markov Random Field

\

A Markov random field (MRF)

e generalization of Markov chains to two or more dimensions.

First-order MRF:

e probability that pixel X takes a certain value given the values of

neighbors A, B, C, and D: P
P(X|A,B,C,D) DX | B
C

Source: S. Seitz



Texture Synthesis [Efros & Leung, 1CCV 99]

* Can apply 2D version of text synthesis

Slide: Trevor Darrell


http://www.cs.berkeley.edu/~efros/research/synthesis.html
http://www.cs.berkeley.edu/~efros/research/synthesis.html
http://www.cs.berkeley.edu/~efros/research/synthesis.html
http://www.cs.berkeley.edu/~efros/research/synthesis.html

IEEE International Conference on Computer Vision, Corfu, Greece, September 1999

Texture Synthesis by Non-parametric Sampling

Alexei A. Efros and Thomas K. Leung
Computer Science Division
University of California, Berkeley
Berkeley, CA 94720-1776, U.S.A.
{efros,leungt} @cs.berkeley.edu

O
&

* Model the local conditional dependency of pixels
using Markov Random Field.

O

Adapted from A. Torralba
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Hole Filling

Slide from Alyosha Efros, ICCV 1999



Input texture

B1 B2 B1 | | | B2 B1 | % [ B2

Random placement Neighboring blocks Minimal error
of blocks constrained by overlap boundary cut




Minimal error boundary

overlap error min. error boundary

Slide from Alyosha Efros
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Slide from Alyosha Efros



More on texture

The Handbook of Pattern Recognition and Compurter Vision (2nd Edition), by C. H. Chen, L. F. Pau,
P. S. P. Wang (eds.), pp. 207-248, World Scientific Publishing Co., 1998.

Chapter 2.1

Texture Analysis

Mihran Tuceryan

Department of Computer and Information Science,
Indiana University -Purdue University at Indianapolis,
723 W. Michigan St. Indianapolis, IN 46202-5132

and

Anil K. Jain

Computer Science Department, Michigan State University
East Lansing, MI 48824-1027 USA
Internet: jain@cps.msu.edu



Problems with Texture

T E—

* Representation
+ Scale

* View-point
* Matching



Segmentation

http://web.mit.edu/manoli/www/imagina/imagina.html



Why study segmentation?




Segmentation as Clustering

* Merging Clustering

* Divisive Clustering

Slide: A. Torralba

Algorithm 15.3: Aggomearative dustering, or clustering by merging

Make each point a geparate cluster
Tntil the clustering iz satisfactory
Merge the two clugters with the
smallest inter-cluster diztance
end

Algorithm 15.4: Divisive clustering, or clustaring by splitting

Congtruct a single cluster containing all pointe
Tntil the clustering iz satisfactory
Split the cluster that yields the two
components with the largest inter-cluster distance
end




Segmentation by Clustering

T —

Algorithm 15.5: Clustering by K-Means

Chooge k data pointe to act ag cluster centers
TTntil the cluster centers are unchanged
Allocate each data point to cluster whose center is nearsst
Mew ensure that every cluster hag at least
one data point: possible techniques for doing thiz include |
supplying empty clusters with a point chogen at random from
pointe far from their cluster center.
E.eplace the cluster centers with the mean of the elements
in their clusters,
end

Slide: A. Torralba



K-means clustering using intensity alone and color alone

Slide: A. Torralba



Clusters on color

K-means using color alone, 11 segments

Slide: A. Torralba



Including spatial relationships

Augment data to be
coordinates.

U | ~color coordinates

~spatial coordinates

Slide: A. Torralba



4. Center the searc|

5. Repeat Steps3and4 unt|I convergence

7
+
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S

Slide: A. Torralba



4. Merge windows thatend up o
5. The data these merged windows traversed ar

s o o
-~ o
:

NORMALIZED DENSITY
N

8o

Slide: A. Torralba



Mean Shift Segmentation

—

Segmented "landscape 1" Segmented "landscape 2"

http://www.caip.rutgers.edu/~comanici/ MSPAMI/msPamiResults.html

Slide: A. Torralba



Mean Shift color&spatial Segmentation Results:

NS P R J
-0 F

Slide: A. Torralba http://www.caip.rutgers.edu/~comanici/ MSPAMI/msPamiResults.html




Onginal "fagaras”

Segmented




Minimum Cut and Clustering

Slide: A. Torralba

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf

Slide: A. Torralba



%) Mozilla Firefox

File Edit Yew Go Bookmarks Tools Help (o
- b | & A : : 7 : ; ~
> = pl | LI htep:ffwww.cs berkeley.edufprojectsfvisionfgrouping/segbench/BSDS300/html/dataset fimages/color/101085. html v| ® Go [(;,

B Getting Started B Latest Headlines

Berkeley Segmentation Dataset: Test Image #101083 [color]

S Color Segimentations

Contains a large
dataset of images
with human
“ground truth”
labeling.

SEHTRE

.H K{/_J\V/L\sm 26 Seoments e




Slide: A. Torralba
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Cow Image

Object
Category
Model

Segmented Cow

Segmentation should (ideally) be

» shaped like the o
e obtained efficient
e able to handle se

nject e.g. cow-like
y In an unsupervised manner

f-occlusion
Slide from Kumar ‘05



Feature-detector view

Slide: A. Torralba
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Slide: A. Torralba







Object-Specific Figure-Ground
Segregation

ome segmentation/detection resu

Slide: A. Torralba Yu and Shi, 2002



Implicit Shape Model - Liebe and Schiele, 2003

Matched Codebook Probabilistic

Interest Points

Voting Space
(continuous)
Backprojected Backprojection
Hypotheses of Maxima

Slide: A. Torralba



Slide: A. Torralba




Problems with Segmentation
\

+ Determining similarity between pixels.

* Determining “k” or a threshold.
* Representing them.

+ Implicit vs. explicit.
* Matching.



Perceptual Grouping




Slide: A. Torralba

Not grouped

Proximity

Similarity

Similarity

Common Fate

Common Region



Parallelism

‘

Symmetry

Continuity

DQ Closure

Slide: A. Torralba



Familiarity

Slide: A. Torralba



Familiarity

Slide: A. Torralba



Influences of grouping

’»

Grouping influences other
perceptual mechanisms such
as lightness perception

Slide: A, Torralba C http://web.mit.edu/persci/people/adelson/publications/gazzan.dir/koffka.html



Perceptual Grouping &

Statistics of the Environment
\

Contour Integration by the Human Visual
System: Evidence for a Local ““Association

Field”

DAVID J. FIELD,* ANTHONY HAYES,+ ROBERT F. HESSt
Received 2 March 1992; in revised form 9 July 1992



. Contour Integration by the Human Visual I

System: Evidence for a Local “Association
Field”

DAVID J. FIELD,* ANTHONY HAYES,t ROBERT F. HESSt
Received 2 March 1992; in revised form 9 July 1992




Perceptual Grouping

Likelihood Ratio —\
‘

I 10 |

Field, 1992.

d=1.23°

Elder, Goldberg, 2002.



What did I skip?
T E—

* Popular descriptors like:
* SIFT
* SURF
* MSER

* o0 0

* Contours/Boundaries



| will supply material for:
+ Edges
* Corners/Junctions

* Texture
* Segmentation



