CEng 583 - Computational Vision

2011-2012 Spring Week – 4

18th of March, 2011

Tentative Schedule:

	Week & Date	Торіс
\checkmark	1	Introduction to Vision. What is vision? What are its goals and problems? What are the main processing stages?
\checkmark	2	Low-level Vision. Cameras. Projective geometry. Calibration.
\checkmark	3	Early Vision. Edges. Corners. Texture. Segmentation. Optic Flow.
	4	3D Vision . Monocular and binocular cues. 3D reconstruction.
	5	Applications. Video surveillance. Human behaviour understanding. Object recognition. Image/video retrieval. Image annotation.
	6	Paper presentations with theme: Monocular depth estimation.
	7	Paper presentations with theme: Image annotation.
	8	Paper presentations with theme: Object/shape modelling. Object recognition.
	9	Paper presentations with theme: Feature Descriptors.
	10	Paper presentations with theme: Context. Saliency. Attention.
	11	Project Presentations
	12	Project presentations
	13	Project presentations
	14	Project presentations

Today

* 3D Vision

* Binocular (Multi-view) cues:

- * Stereopsis
- * Motion
- * Monocular cues
 - * Shading
 - * Texture
 - * Familiar size
 - * etc.

"God must have loved depth cues, for He made so many of them." -- (Yonas & Ganrud, 1985)

Binocular Cues: Stereopsis

Depth with stereo: basic idea

Source: Steve Seitz

Depth with stereo: basic idea

Basic Principle: Triangulation

- Gives reconstruction as intersection of two rays
- Requires
 - camera pose (calibration)
 - point correspondence

The Problem

Picture: http://www.imec.be/ScientificReport/SR2007/html/1384302.html

The Problem

The Problem

- Calibration
 - If you are interested in 3D reconstruction or utilizing the epipolar line
- * Matching
 - Computing Similarities
 - Finding the "best" match for each pixel/feature
 - Gives us the disparities
- * 3D Reconstruction

Correspondence Problem

- * How can we match pixels?
 - Local versus Global Matching
- * Especially homogeneous ones?
- * What if we cannot find a match?
 - * \rightarrow Interpolation, Filling-in

(Barrow&Tenenbaum, 1981)

Stereo correspondence constraints

Trevor Darrell

Stereo correspondence constraints

*Geometry of two views allows us to constrain where the corresponding pixel for some image point in the first view must occur in the second view.

Epipolar constraint: Why is this useful?

• Reduces correspondence problem to 1D search along conjugate epipolar lines

Stereo image rectification

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FUSIELLO/tutorial.html

Stereo image rectification: example

Source: Alyosha Efros

Correspondence problem

- Beyond the hard constraint of epipolar geometry, there are "soft" constraints to help identify corresponding points
 - * Similarity
 - * Uniqueness
 - * Ordering
 - Disparity gradient
- * To find matches in the image pair, we will assume
 - Most scene points visible from both views
 - * Image regions for the matches are similar in appearance

Correspondence problem

Neighborhood of corresponding points are similar in intensity patterns.

Source: Andrew Zisserman

Computing Similarity

TABLE 2 Common Block-Matching Methods (See Fig. 4 for Visual Description of Terms)

MATCH METRIC	DEFINITION
Normalized Cross-Correlation (NCC)	$\frac{\sum_{u,v} (I_1(u,v) - \bar{I}_1) \cdot (I_2(u+d,v) - \bar{I}_2)}{\sqrt{\sum (I_1(u,v) - \bar{I}_1)^2 \cdot (I_2(u+d,v) - \bar{I}_2)^2}}$
Sum of Squared Differences (SSD)	$\frac{\bigvee u, v}{\sum_{u, v} (I_1(u, v) - I_2(u + d, v))^2}$
Normalized SSD	$\sum_{u,v} \left(\frac{\left(I_1(u,v) - \bar{I}_1\right)}{\sqrt{\sum_{u,v} \left(I_1(u,v) - \bar{I}_1\right)^2}} - \frac{\left(I_2(u+d,v) - \bar{I}_2\right)}{\sqrt{\sum_{u,v} \left(I_2(u+d,v) - \bar{I}_2\right)^2}} \right)^2$
Sum of Absolute Differences (SAD)	$\sum_{u,v} I_1(u,v) - I_2(u+d,v) $
Rank	$\sum_{u,v} \left(I_1(u,v) - I_2(u+d,v) \right)$ $I_k(u,v) = \sum_{m,n} I_k(m,n) < I_k(u,v)$
Census	$\sum_{u,v} HAMMING(I_1(u,v), I_2(u+d,v))$ $I_k(u,v) = BITSTRING_{m,n}(I_k(m,n) < I_k(u,v))$

Correlation-based window matching

left image band (x)

Dense correspondence search

For each epipolar line

For each pixel / window in the left image

- compare with every pixel / window on same epipolar line in right image
- pick position with minimum match cost (e.g., SSD, correlation)

Effect of window size

Grauman

Effect of window size

W = 3

W = 20

Want window large enough to have sufficient intensity variation, yet small enough to contain only pixels with about the same disparity.

Uniqueness

For opaque objects, up to one match in right image for every point in left image

Figure from Gee & Cipolla 1999

Ordering constraint

Points on same surface (opaque object) will be in same order in both views

Ordering constraint

• Won't always hold, e.g. consider transparent object, or an occluding surface

Pugeault et al., 2006; 2008.

Figure 5.6: Illustration of the effects of the 3D-primitives' correction using interpolation.

Disparity gradient

Assume piecewise continuous surface, so want disparity estimates to be locally smooth

Given matches ● and ◎, point ○ in the left image must match point 1 in the right image. Point 2 would exceed the disparity gradient limit.

Scanline stereo

Try to coherently match pixels on the entire scanline Different scanlines are still optimized independently

Grauman

Coherent stereo on 2D grid

Scanline stereo generates streaking artifacts

• Can't use dynamic programming to find spatially coherent disparities/ correspondences on a 2D grid

As energy minimization...

$$E = \alpha E_{\text{data}}(I_1, I_2, D) + \beta E_{\text{smooth}}(D)$$

$$E_{\text{data}} = \sum_{i} \left(W_1(i) - W_2(i + D(i)) \right)^2$$

$$E_{\text{smooth}} = \sum_{\text{neighbors}i, j} \rho (D(i) - D(j))$$

Examples...

left image

right image

range map

left image

right image

Stereo vision

After 30 feet (10 meters) disparity is quite small and depth from stereo is unreliable...

Slide: A. Torralba

Choosing the stereo baseline

Large Baseline

Small Baseline

What's the optimal baseline?

- Too small: large depth error
- Too large: difficult search problem

Multibaseline Stereo

*Basic Approach

- * Choose a reference view
- * Use your favorite stereo algorithm BUT
 - * replace two-view SSD with SSD over all baselines

*Limitations

- * Must choose a reference view
- Visibility: select which frames to match [Kang, Szeliski, Chai, CVPR'01]

Active stereo with structured light

Li Zhang's one-shot stereo

- * Project "structured" light patterns onto the object
 - simplifies the correspondence problem

Szeliski

http://vision.middlebury.edu/stereo/

Support for this work was provided in part by NSF CAREER grant 9984485 and NSF grant IIS-0413169. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
Problems with Stereo

- * Calibration
- * Matching is difficult.
 - * Deciding on what to match:
 - * Pixels vs. features.
 - * How to match:
 - * Local vs. global.
- * Accuracy of depth is limited by the baseline.

Further Reading

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 8, AUGUST 2003

Advances in Computational Stereo

Myron Z. Brown, Member, IEEE, Darius Burschka, Member, IEEE, and Gregory D. Hager, Senior Member, IEEE 993

Human Stereo Vision: Fixation, convergence

From Bruce and Green, Visual Perception, Physiology, Psychology and Ecology

Disparity: d = r - l = D - F.

Adapted from M. Pollefeys

Do you have stereo vision?

THE FRAMING GAME

In order to see 3D your brain has to use the visual information from both eyes. If the two eye views are too different and cannot be matched up, the brain will be forced to make a choice. It will reject all or part of the information from one eye. The brain can suppress or turn off visual information it cannot use. The Framing Game can tell you whether both your eyes are **TURNED ON** at the same time. The illustration to the left demonstrates what should happen.

- Center your nose over the brown eye below.
- Focus your eyes on the single brown eye.
- Put your free thumb in front of your nose.
- Continue to focus on the eye. If both eyes are on, you will see two thumbs framing one eye.
- Now, switch your focus to your thumb. You should see two eyes framing one thumb.

SUCCESSFUL?

Both your eyes are **ON** and you are an excellent candidate for 3D viewing fun. Continue with this guide and enjoy!

http://www.vision3d.com/frame.html

Binocular Cues: Motion

Structure from motion

Given: *m* images of *n* fixed 3D points

*
$$\mathbf{x}_{ij} = \mathbf{P}_i \mathbf{X}_j, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

 Problem: estimate *m* projection matrices P_i and *n* 3D points X_j from the *mn* correspondences x_{ij}

Lazebnik

Bundle adjustment

Non-linear method for refining structure and motion

Minimizing reprojection error

Lazebnik

Building Rome in a Day

Sameer Agarwal^{1,*} Noah Snavely² Ian Simon¹ Steven M. Seitz¹ Richard Szeliski³ ¹University of Washington ²Cornell University ³Microsoft Research

Problems with motion

* Structure from optic flow:

- Estimation of optic flow is not easy: Flow field is usually over-smooth, noisy and incomplete.
- * Gives a rough estimate only.
- * Structure from Motion:
 - * Requires too many views/frames
 - Matching is now more difficult due to many views
 - * Illumination becomes a bigger problem

Monocular Cues

An important fraction of people don't use stereo vision.

Monocular cues

Figure 7.3: Line drawing of a scene. Picture courtesy of [van Diepen and Graef, 1994].

'No news is good news' [W.E.L. Grimson]

- No contrast in 2D means continuity in 3D
- Utilized a lot in surface
 interpolation & dense
 stereo methods.
- Quantified & extended in (Kalkan et al., 2006)

Examples for monocular cues

Monocular cues to depth

* Relative depth cues:

 provide relative information about depth between elements in the scene

* Absolute depth cues:

 (assuming known camera parameters) these cues provide information about the absolute depth between the observer and elements of the scene

Relative depth cues

Simple and powerful cue, but hard to make it work in practice...

Interposition / occlusion

Texture Gradient

FIGURE 8.27 Texture gradients provide information about depth. (Frank Siteman/Stock, Boston.) © Frank Sitman/Stock Boston

FIGURE 8.28 Texture discontinuity signals the pre corner.

A Witkin. Recovering Surface Shape and Orientation from Texture (1981)

Illumination

* Shading
* Shadows
* Inter-reflections

Shading

 Based on 3 dimensional modeling of objects in light, shade and shadows.

Source: A. Torralba

Does Shading Play a Central Role?

- Contour plays a more important role
 - Variations in intensity are same on both shapes
 - Upper region is perceived as composed of three cylindrical pieces illuminated from above
 - Lower region is perceived as sinusoidal, illuminated from one side
 - Note the ambiguities of the surface perceptions, depending on assumed illumination direction

2 possible illumination hypotheses

5

Larry Davis, Ramani Duraiswami, Daniel DeMenthon, and Cornelia Fermüller

Shadows

Cornell CS569 Spring 2008

Lecture 8 • 3

Slide by Steve Marschner

http://www.cs.cornell.edu/courses/cs569/2008sp/schedule.stm

Atmospheric perspective

Far objects:

- * Bluish
- * Lower contrast

Predicting Depth from Existing Depth

* Combination of different depth cues.

(a)

(b)

Kalkan et al., 2008.

(a)

(b)

Image

(c)

Kalkan et al., 2008.

(e)

(f)

Kalkan et al., 2008.

Kalkan et al., 2008.

Labeled Data

Learn to Estimate Surface Orientations

Learn structure of the world from labeled examples

Slides by Efros

Label Geometric Classes

- * **Goal:** learn labeling of image into 7 <u>Geometric Classes</u>:
- * Support (ground)
- * Vertical
 - * Planar: facing Left (\leftarrow), Center (\uparrow), Right (\rightarrow)
 - * Non-planar: Solid (X), Porous or wiry (O)

* Sky

What cues to use?

Vanishing points, lines

Slides by Efros

Color, texture, image location

Texture gradient

The General Case (outdoors)

- Typical outdoor photograph off the Web
 - Got 300 images using Google Image Search keyboards:
 "outdoor", "scenery", "urban", etc.
- Certainly not random samples from world
 - * 100% horizontal horizon
 - 97% pixels belong to 3 classes -- ground, sky, vertical (gravity)
 - * Camera axis usually parallel to ground plane
- * Still very general dataset!

Let's use many weak cues

SURFACE CUES

* Material

- * Image Location
- * Perspective

Location and Shape
L1. Location: normalized x and y, mean
L2. Location: norm. x and y, 10^{th} and 90^{th} pctl
L3. Location: norm. y wrt estimated horizon, 10 th , 90 th pctl
L4. Location: whether segment is above, below, or straddles estimated horizon
L5. Shape: number of superpixels in segment
L6. Shape: normalized area in image
Color
C1. RGB values: mean
C2. HSV values: C1 in HSV space
C3. Hue: histogram (5 bins)
C4. Saturation: histogram (3 bins)
Texture
T1. LM filters: mean abs response (15 filters)
T2. LM filters: hist. of maximum responses (15 bins)
Perspective
P1. Long Lines: (num line pixels)/sqrt(area)
P2. Long Lines: % of nearly parallel pairs of lines
P3. Line Intersections: hist. over 8 orientations, entropy
P4. Line Intersections: % right of center
P5. Line Intersections: % above center
P6. Line Intersections: % far from center at 8 orientations
P7. Line Intersections: % very far from center at 8 orientations
P8. Vanishing Points: (num line pixels with vertical VP membership)/sqrt(area)
P9. Vanishing Points: (num line pixels with horizontal VP membership)/sqrt(area)
P10. Vanishing Points: percent of total line pixels with vertical VP membership
P11. Vanishing Points: x-pos of horizontal VP - segment center (0 if none)
P12. Vanishing Points: y-pos of highest/lowest vertical VP wrt segment center
P13. Vanishing Points: segment bounds wrt horizontal VP
P14. Gradient: x, y center of gradient mag. wrt. image center
Slides by Efro

Image Segmentation

Naïve Idea #1: segment the image

* Chicken & Egg problem

* Naïve Idea #2: <u>multiple</u> segmentations

Slides by Efros
Estimating surfaces from segments

- * We want to know:
 - Is this a good (coherent) segment?
 P(good segment | data)
 - * If so, what is the surface label?

P(label | good segment, data)

* *Learn* these likelihoods from training images

Slides by Efros

Labeling Segments

For each segment:

- Get P(good segment | data) P(label | good segment, data)

Slides by Efros

Image Labeling

Labeled Segmentations

Labeled Pixels

Slides by Efros

No Hard Decisions

Support

Vertical

V-Left

V-Center

V-Right

V-Porous

V-Solid

Labeling Results

Input image

Ground Truth

Our Result Slides by Efros

Reasoning about spatial relationships between objects

- 1. LEFT OF
- 2. RIGHT OF
- 3. BESIDE (alongside, next to)
- 4. ABOVE (over, higher than, on top of)
- 5. BELOW (under, underneath, lower than)
- 6. BEHIND (in back of)
- 7. IN FRONT OF
- 8. NEAR (close to, next to?)
- 9. FAR
- 10. TOUCHING
- 11. BETWEEN
- 12. INSIDE (within)
- 13. OUTSIDE

Freeman, 1974

Guzman, 1969

Scene layout assumptions

Recovering scene geometry

- * Polygon types
 - * Ground
 - * Standing
 - * Attached
- * Edge types
 - * Contact
 - * Attached
 - Occluded
- * Camera parameters

Recovering scene geometry

- * Polygon types
 - * Ground
 - * Standing
 - * Attached
- * Edge types
 - Contact
 - * Attached
 - Occluded
- * Camera parameters

Relationships between polygons

Part-of

Recovering scene geometry

- * Polygon types
 - * Ground
 - * Standing
 - * Attached
- * Edge types
 - * Contact
 - * Attached
 - Occluded
- * Camera parameters

Edge types

Ground and attached objects have attached edges

Standing objects can have contact or occluding edges

Cues for contact edges:

Orientation

Please <u>contact us</u> if you find any bugs or have any suggestions.

Label as many objects and regions as you can in this image

Sign in (why?)

With your help, there are 91348 labelled objects in the database (more stats)

Instructions (Get more help)

Use your mouse to click around the boundary of some objects in this image. You will then be asked to enter the name of the object (examples: car, window).

Labeling tools

Polygons in this image (XML)

door door road stair window window sidewalk building region house window window

window

Polygon quality

Online Hooligans Do not try this at home

Sign in (any7)

There are 158302 labelled objects

Instructions (Get more help)

Use your mouse to click around the boundary of some objects in this image. You will then be asked to enter the name of the object (examples, car, window)

Labeling tools

and an and an an

Polygons in this image

Benen torenickeam houti tear sog1 sog2

towel

Absolute (monocular) depth cues

Are there any monocular cues that can give us absolute depth from a single image?

Familiar size

Which "object" is closer to the camera? How close?

Familiar size

- * Apparent reduction in size of objects at a greater distance from the observer
- Size perspective is thought to be conditional, requiring knowledge of the objects.

Distance from the horizon line

This flower appears smaller and nearer to the horizon; therefore it is farther

This flower appears larger and further from the horizon; therefore it is closer

- Based on the tendency of objects to appear nearer the horizon line with greater distance to the horizon.
- * Objects approach the horizon line with greater distance from the viewer.

http://en.wikipedia.org/wiki/Moon_illusion

Adapted from: A. Torralba

Relative height

- The object closer to the horizon is perceived as farther away, and the object further from the horizon is perceived as closer
- * If you know camera parameters: height of the camera, then we know real depth

Image

Slide by Derek Hoiem

Image

Camera parameters

Assume

- flat ground plane
- camera roll is negligible (consider pitch only)
- Camera parameters: height and orientation

Camera parameters

X – World object height (in meters)C – World camera height (in meters)

Camera parameters

Human height distribution 1.7 +/- 0.085 m (National Center for Health Statistics) Car height distribution 1.5 +/- 0.19 m (automatically learned)

Object heights

Database image

Pixel heights

Real heights

Slide from J-F Lalonde

Depth from Vanishing Lines

Three-dimensional reconstruction from single and multiple images.

Antonio Criminisi

Microsoft Research, Cambridge, UK

Visual cues

Visual cues

Masaccio's *Trinity*

Source: A. Criminisi

vanishing line (horizon)

$$\frac{h}{h_r} = \frac{d(\mathbf{x}_t, \mathbf{x}_b)}{d(\mathbf{i}, \mathbf{x}_b)}$$

Measuring heights in real photos

Problem: How tall is this person?

Assessing geometric accuracy

Problem:

Are the heights of the two groups of people consistent with each other?

Piero della Francesca, Flagellazione di Cristo, c.1460, Urbino

Measuring relative heights

a

b

Problems with Monocular Depth Cues

- They provide relative information.
- * The ones that provide absolute information require a "reference".
- * What features/visual-information to investigate?
 - * Usually hand-designed.
 - * How can we also learn the features that lead to monocular cues?
- One cue is not sufficient.
 - Different cues should be combined.

What did I skip?

- * Shape from silhouette.
- * The details of most of the monocular cues (i.e., shading, shadow, occlusion, etc.).
- * Reconstruction from disparity, especially for features like edges and corners.

Reading

* I will supply material for:

- * Stereo
- Depth from motion
- Monocular cues