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Abstract

We study how a robot can link concepts represented by adjectives and
nouns in language with its own sensorimotor interactions. Specifically,
an iCub humanoid robot interacts with a group of objects using a reper-
toire of manipulation behaviors. The objects are labeled using a set of
adjectives and nouns. The effects induced on the objects are labeled as
affordances, and classifiers are learned to predict the affordances from the
appearance of an object. We evaluated three different models for learn-
ing adjectives and nouns using features obtained from the appearance
and affordances of an object, through cross-validated training as well as
through testing on novel objects. The results indicate that shape-related
adjectives are best learned using features related to affordances, whereas
nouns are best learned using appearance features. Analysis of the feature
relevancy shows that affordance features are more relevant for adjectives
and appearance features for nouns. We have shown that adjective predic-
tions can be used to solve the odd-one-out task on a number of examples.
Finally, we linked our results with studies from Psychology, Neuroscience
and Linguistics that point to the differences between the development and
representation of adjectives and nouns in humans.

Keywords: affordances, nouns, adjectives

1 Introduction

Seamless communication with humans is an ambitious challenge for robots
that requires linking linguistic categories (such as nouns and adjectives) to
the sensorimotor interactions of the robot. The gap between the discrete
symbols of language, such as nouns and adjectives, and the continuous
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and high-dimensional stream of sensorimotor data was pointed out by
Harnad (Harnad, 1990) as the symbol grounding problem. Experimen-
tal data (Borghi, 2007; Cangelosi and Harnad, 2001; Fischer and Zwaan,
2008; Gallese and Lakoff, 2005) has supported the view that language is
grounded in the sensorimotor experiences of the organism (Cangelosi and Riga,
2006; Cangelosi et al., 2010; Steels, 2003; Glenberg and Kaschak, 2002;
Cangelosi, 2010) and that understanding words requires the very same
neural circuitry that is active during the sensorimotor interactions of
the organism related to the meaning of the word (Glenberg et al., 2008;
Zwaan and Taylor, 2006).

The question that we address in this paper can be simply put forward
as: How can a robot ground nouns and adjectives into its own sensory-
motor interactions? That is, when we command the robot to grasp the
tall cup, how can it map the symbols tall and cup into its perceptual view
of the world.

2 Robots, Language and Affordances

The issue of what exactly nouns, such as strawberry, represent is subject to
debate. One view argues that nouns are categories formed by the visual
appearance of objects, whereas another argues for categories based on
the function of objects (Borghi et al., 2002). However, there is evidence
that humans use both mechanisms which operate in an interconnected
manner based on context or goal (Helbig et al., 2006; Borghi et al., 2002).
The hypothesis that there might be distinct mechanisms for categorizing
objects is further supported by studies in neuroscience and psychology
which suggest that objects are processed through two different pathways
(Goodale and Milner, 1992), one involving the Object Recognition (OR)
system categorizing an object based on its visual appearance, the other
involving the affordances that the object offers to the organism.

The categorization of objects based on their visual appearances is a
well-studied and hot topic in computer vision. However, such approaches
often fail to capture the essence of a noun such as chair which may appear
in very different forms (see Figure 1 for some examples) and is beyond the
focus of our study. Since objects provide certain functionalities to us in
our daily lives, objects can also be categorized by other aspects that are
consistently related to their function (Borghi et al., 2002). This function-
based categorization can be used along with the appearance-based cate-
gorization of objects.

There have been many attempts at linking nouns to the sensorimotor
experiences of robots in the robotics community. For example, Yu and Ballard
(2004) proposed a system mapping words in speech to co-occurring fea-
tures in images using a generative correspondence model. Carbonetto and de Freitas
(2003) presented a system that splits a given image into regions and finds
a proper mapping between regions and nouns inside the given dictionary
using a probabilistic translation mode similar to a machine translation
problem. From a different perspective, Cangelosi et al. (2010) suggested
an interactive approach to learning lexical semantics by demonstrating
how an agent can use heuristics to learn simple shapes which are presented
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by a tutor with unrestricted speech. Their method matches perceptual
changes in a robot’s sensors with the spoken words and uses a k-nearest
neighbors algorithm in order to learn the names of shapes. In similar stud-
ies, Morse et al. (2011); Cangelosi and Parisi (2004) use neural networks
to link words with behaviors of robots and with extracted visual features.

For learning adjectives from the sensorimotor interactions of the robot,
many attempts have recently been made. McMahon et al. (2012) devel-
oped a method for learning haptic adjectives from interactions whereas
Petrosino and Gold (2010),Dindo and Zambuto (2010), and Chella et al.
(2009) studied learning color, size and distance related adjectives based on
visual features. Similar studies (Chauhan and Lopes, 2011; Haazebroek et al.,
2011; Sugita et al., 2011; Glenberg and Gallese, 2011; Morse et al., 2011;
Gold et al., 2009) proposed methods for learning object categories; how-
ever, systematic evaluation of nouns and adjectives based on appearance
and affordances has not been performed previously.

Figure 1: Objects with various differences, yet all called chair.

2.1 Affordances and Language

The notion of affordances was introduced by Gibson to explain how inher-
ent “values” and “meanings” of things in the environment can be directly
perceived and how this information can be linked to the action possibilities
offered to the organism by the environment (Gibson, 1986).

The link between affordances and language comprehension has already
been pointed out in Psychology. The indexical hypothesis (Glenberg and Robertson,
2000) claims that words are linked to entities or objects in the real world,
or to representations such as pictures or perceptual symbols (Barsalou,
1999). For example, the word can is linked to its referent, a can, or to
an analogical representation of a can. Therefore, words that refer to ob-
jects would initially activate perceptual information corresponding to such
objects from our previous experiences.

Since perceptual and motor processes are tightly linked, one expects
that words should also activate motor information. In fact, depending
on their perceptual features, objects can activate affordances (Bub et al.,
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2008; Jax and Buxbaum, 2010; Pellicano et al., 2010). For instance, dif-
ferent kinds of cans may afford different actions: some can be filled-in,
some can be used as steps. This suggests that affordances of objects can
be linked to words representing these objects.

Inspired by the notion of affordances, Montesano et al. (2008a, 2009)
proposed a probabilistic model to encode the relations between objects,
actions and observed effects. Through imitation games, they show that
such a representation can be used to learn what objects afford and hence
provide an implicit way of categorizing objects. Their work is further
extended in Salvi et al. (2012) towards associating the meaning of words
with affordance information. Sun et al. (2010) studied the categorization
of objects in terms of probabilistic relations between objects and affor-
dances in a scenario where traversability of different types of floors and
objects was learned.

Although the relationship between language and affordances has been
pointed out by many (such as Gibson (2000)), the issues of how such a
link can be created in robots has not yet been fully tackled.

In a similar way, for categorizing objects, one can consider in what
kind of activities or sequences of actions objects are utilized. Aksoy et al.
(2010) use how spatial relations between image segments change in time
to cluster action sequences, and categorize objects based on the action
sequences in which they are used. Likewise, Wu and Aghajan (2009)
approach the object recognition problem by modeling the prior knowl-
edge of the relationship between the users activity and objects. They
approached the problem with an explicit modeling of the environment,
leading to a computationally expensive methodology. The key points in
these approaches lie in selecting or designing state-of-the-art features and
descriptors, and then linking them with functionalities through symbolic
descriptions that represent actions.

2.2 The Current Study

Learning noun and adjective categories has been mostly studied as a map-
ping of the visual appearance of objects to linguistic categories. The
few exceptions focused only on categorizing objects based on the kinds
of tasks or activities they are used in (see, e.g., Aksoy et al. (2010);
Wu and Aghajan (2009)). Another exception is our previous study (Dag̃ et al.,
2010; Atıl et al., 2010) in which we categorized objects based on their af-
fordances. The similarities and differences between learning nouns and
adjectives from the appearance and affordances of objects have not been
investigated in the literature.

In this study, we are concerned with linking adjectives and nouns with
the sensorimotor experiences of the humanoid robot iCub. Towards this
end, we use the notion of affordances by Gibson (1986) as formalized by
Şahin et al. (2007), and we provide a systematic evaluation of nouns and
adjectives based on appearance and affordances.

In this article we focus only on concrete nouns (nouns that can be
directly linked to physical entities in the world). The results and the con-
clusions drawn in the article do not apply to abstract nouns (such as joy,
hatred). For the distinction between concrete and abstract nouns we refer
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to Borghi et al. (2011),Crutch and Warrington (2005), and Pexman et al.
(2007). Moreover, there is a syntactical difference between nouns and ad-
jectives - see, e.g., Baker (2003). In this article, we only focus on their
differences in terms of learning.

The current article is an extension of our previous study (Yuruten et al.,
2012) in the following aspects: (i) the computational analyses are extended
in terms of the models used as well as their extensive comparison with re-
spect to using appearances or affordances, (ii) the models are tested on
a publicly available 3D object database (the KIT 3D object database -
Kasper et al. (2012)), (iii) the models are applied to the “Odd-one Out”
task, and (iv) the distinction between adjectives and nouns in their pref-
erence for affordances or appearances is discussed in depth in relation to
findings from Psychology and Neuroscience, and Linguistics.

3 Affordance Formalization

In Şahin et al. (2007), we argued that each interaction episode of an agent
with its environment would create an affordance relation instance between
three sets of information as,

(entity, behavior, effect), (1)

where entity denotes the perceived information from the environment ob-
tained and the robot itself1. Behavior denotes the means of interaction
for the robot, and finally, effect is the change in the environment gener-
ated when the behavior is executed (for similar formalizations, see, e.g.,
Montesano et al. (2008b); Krüger et al. (2011)). For instance, a robot ap-
plying its lift-with-right-hand behavior on a blue-can to generate a lifted
effect can be represented with a relation instance as:

(blue-can, lift-with-right-hand, lifted), (2)

where the terms blue-can, lift-with-right-hand, and lifted are merely place-
holders for the corresponding perceptual and proprioceptive representa-
tions. However, a single relation instance provides little predictive ability
over future experiments, such as whether the application of the same be-
havior on a red-can or a blue-desk will generate the same effect or not.
Only after interacting with other objects, such as a green-can, can one
join the relation instances together as:

(

{
blue-can

green-can

}
, lift, lifted). (3)

These types of instances can be abstracted by a mechanism to produce
an abstract entity equivalence class like:

(< can >, lift-with-right-hand, lifted), (4)

where <can> represents the derived invariants of the entity equivalence
class. In this example, <can> means “cans of any color” that can be
lifted upon the application of lift-with-right-hand behavior. These types
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of abstractions create a general affordance relationship, which allows the
robot to predict the effect of the lift-with-right-hand behavior applied to
an unseen object like a red-can. Such a skill facilitates great flexibility
in a robot. For example, when needed, the robot can search and find
objects that would provide support for a desired affordance. We argue
that the creation of equivalence classes covering the three components of
the relation provides a mechanism for creating abstract categories that
can be linked to concepts represented by nouns and adjectives.

Figure 2: iCub interacting with an object.

4 Experimental Framework

We used the iCub robot platform (Metta et al., 2008), a 53 DoF humanoid
in the form and size of a 3.5-year-old child, in our study. In order to
perceive the environment, a fixated Kinect range camera was used as
shown in Figure 2. The camera captured the point cloud images of the
table placed in front of the robot with a resolution of 640× 480 at 30fps.

4.1 Behaviors

The robot interacted with the objects using a repertoire of six manipu-
lation behaviors: push-left, push-right, push-forward, pull, top-grasp and
side-grasp. The push-* and pull behaviors pushes or pulls back the ob-
ject in the stated direction. Both top-grasp and side-grasp behaviors are
used to grasp the object. In the former, the robot approaches the object
from top, whereas in the latter one the robot approaches the object from
the side. The behaviors are similar to the ones used by Bergquist et al.
(2009), and Metta and Fitzpatrick (2003).

4.2 Objects

The objects (35 in total) are labeled with three adjectives picked from
D = {edgy × round, short × tall, thick × thin} and one noun from picked
N = {ball, cylinder, box, cup} as shown in Figures 3 and 4.

The co-occurrences between nouns and adjectives as well as within
adjectives are shown in Table 1 and Table 2 respectively. It can be seen
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(a) cups (b) boxes (c) balls (d) cylinders

Figure 3: Objects grouped by the nouns.

(a) round (b) edgy (c) short

(d) tall (e) thin (f) thick

Figure 4: Objects grouped by the adjectives. Note that cups that have varying
width (from thin to thick) are labelled as thin.

that no adjective-adjective or noun-adjective pairs have a 100% correla-
tion. This means that, for instance, if an object is known to be round,
neither will it imply the object to be a ball, nor will it imply it to be thin
or thick.

4.3 Perceptual features

Objects placed on the table are segmented from the rest of the scene by
filtering out the planar table-top. This is achieved by filtering out the 3D
points that fall outside of the table. The point cloud of the object is then
processed to extract its perceptual representation which consists of:

Table 1: Co-occurrences between adjectives and nouns in our dataset.

Noun Edgy Round Short Tall Thin Thick Total

Ball 0 8 7 1 6 2 8

Cup 1 8 7 2 4 5 9

Box 10 0 5 5 5 5 10

Cylinder 0 8 4 4 4 4 8

7
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Table 2: Co-occurrences between adjectives in our dataset.

Adjective Edgy Round Short Tall Thick Thin

Edgy x 0 9 2 6 5
Round 0 x 14 10 10 14
Short 9 14 x 0 11 12
Tall 2 10 0 x 5 7
Thick 6 10 11 5 x 0
Thin 5 14 12 7 0 x

• Surface features: surface normals (azimuth and zenith angles - two
20-bin histograms), principal curvatures (20-bin histogram), and
shape index (20-bin histogram) using the methods provided by the
Point Cloud Library (Rusu and Cousins, 2011). These features pro-
vide information about the 3D shape of the object. Principal cur-
vatures K1,K2 at a point give information about how the surface
normal changes along two orthogonal directions at the point. Shape
index is effectively a combination of the two principal curvatures
(K1+K2
K1−K2

), and a compact measure for describing the surface type at
a point.

• Spatial features: bounding box, center, orientation, and dimensions
(along x, y, z). The orientation of the object is determined by
finding the principal axes of the point cloud. The bounding box is
then determined by finding the farthest points along the principal
axes. The center is simply the average of the points in the point
cloud. Finally, elongations along the x, y and z axes are taken as
the dimensions of the object.

• Object Presence: a binary feature indicating the presence/absence
of an object on the table. This is calculated by checking whether
there are any 3D points on the table or not.

Hence, the object is represented by a perceptual vector of size 88,
denoted by VE .

5 Methods

The robot made 413 interactions with objects placed at random orien-
tations and positions on the table, using its behavioral repertoire. Each
interaction episode is encoded as an affordance relation between an object
oj ∈ O, a behavior bi ∈ B and an effect f as

(eoi , bj , f
bj
oi ),

where eoi ∈ VE is the initial perceptual representation of the object oi,

and bj ∈ B is a behavior2. f
bj
oi denotes the effect label provided by the

user from the set F = {no effect, moved left, moved right, moved forward,

8
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Table 3: Notations used in the article.

Notation Meaning

o An object.
O The set of objects used in the experiments.
eo Perceptual feature of object o.
b A behavior the robot is equipped with.
B The set of behaviors the robot is equipped with.
f An effect that can be generated on an object.
F The set of effects that the robot can generate.
VE Perceptual feature vector (E for entity).
VA Affordance feature vector (A for affordance).
VC Combined vector (C for combined).
M A mapping from one space to another.
MY

X A mapping from VX to Y , where X ∈ {E,A,C} and Y ∈ {N ,D}.
N The set of nouns.
D The set of adjectives.

Table 4: Set of behaviors, nouns, adjectives and effect labels.
Behaviors Nouns Adjectives Effect Labels
push-left ball edgy vs. round moved right
push-right box short vs. tall moved left
push-forward cup thick vs. thin moved forward
pull cylinder pulled
top-grasp knocked
side-grasp no effect

grasped
disappeared

9
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induces an effect. During the interaction a human provides an effect label, a
noun label, and three adjective labels.

(a) Learning affordances

(b) Predicting effects

Figure 6: Learning and predicting affordances. (a) For each behavior, an SVM
is trained to link the perceptual features of the object to the effect labels. (b)
The trained SVMs can be used to predict the affordances of an object.

pulled, grasped, knocked, disappeared}. These labels correspond to the set
of affordances that the robot has within the experimental setup.

Note that the behaviors induce different effects on the objects based on
their type as well as on their position and orientation. For example, the
push-* (any of the push behaviors) behaviors would make a ball placed
anywhere on the table roll away and disappear(ed). However the same
behaviors would make boxes disappear when they are placed on the edges
of table and pushed in the right direction, but would cause the boxes to
be moved-* if they are placed at the center of the table.

5.1 Learning Affordances

For each behavior, we train a classifier that maps the initial perceptual
view of the object to the effect label using the data collected from the
interactions. Specifically, we first analyze the data using the ReliefF al-
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Table 5: Sample confidences of obtaining each effect label from each behavior
on an object. The matrix is transformed into a vector called the affordance
vector.

Behaviors push-right push-left push-forward pull top-grasp side-grasp
vs. Effects
moved right 0.93 0.00 0.00 0.01 0.01 0.02
moved left 0.00 0.96 0.00 0.02 0.03 0.15
moved forward 0.00 0.00 0.89 0.01 0.01 0.04
pulled 0.00 0.00 0.00 0.87 0.01 0.02
disappeared 0.00 0.00 0.00 0.09 0.00 0.03
grasped 0.00 0.00 0.00 0.00 0.23 0.17
knocked 0.03 0.02 0.08 0.00 0.07 0.10
no effect 0.04 0.02 0.03 0.00 0.64 0.47

gorithm (Kononenko, 1994) to compute the relevancy of each feature to
the prediction of the effect labels f ∈ F in the data set. Then, using only
those features whose (relevancy) weights are larger than zero, we train an
SVM for each behavior bi to learn a mapping of the form VE → F as can
be seen in Figure 6. In our experiments, the SVM’s, using Radial Basis
Functions as kernel functions, were trained using 5-fold cross-validation
where, in each iteration, 80% of the data was used for training and the
remaining for testing to achieve accuracy values above 90%.

After training, the SVM classifiers denoted by Mbk can then be used

to predict the effect label f
bk
ol of a behavior bk on a novel object ol, as

sketched in Figure 6(b). This allows the robot to predict the effects along
with confidences, that are likely to be generated as a result of applying
that behavior.

Table 5 shows the matrix of effect confidences for a single object. For
instance, the first column of the matrix shows that, when the robot applies
the push right behavior on the object, we have have 93% confidence that
the object will be pushed-right, and 3% confidence that the object will be
knocked and 4% confidence that the object will have no change. All the
confidences in this matrix are used as the affordance vector.

6 Experimental results

We proposed and evaluated three different models for learning adjectives
and nouns. As shown in the lower row of ellipses in Figure 7, these models
are essentially SVM classifiers that map their input into adjectives or
nouns from one of the following inputs:

• Entity: VE which consists of the perceptual view of the object ob-
tained from the point cloud data as described in Section 4.3. In this
sense, VE includes features obtained from the visual appearance of
the object and is also referred to as appearance features in the rest
of the article.

11
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Entity
( )

SVM for each 
behavior

(𝑀𝑏𝑖: 𝑉𝐸 → ℱ) 

Effect 
Categories ( )

Affordance
Vector ( )

Entity
( )

SVM

(𝑀𝐸
𝒟: 𝒱𝐸 → 𝒟) 

or

(𝑀𝐸
𝒩: 𝒱E → 𝒩)

SVM 

(𝑀𝐴
𝒟: 𝒱A → 𝒟) 

or

(𝑀𝐴
𝒩: 𝒱A → 𝒩) 

SVM

(𝑀𝐶
𝒟: 𝒱𝑐 → 𝒟)  

or

(𝑀𝐶
𝒩: 𝒱𝑐 → 𝒩) 

Adjectives ( ) or Nouns ( )

Perception

Learning
Affordances

Learning
Adjectives or

Nouns

Combined Vector
( )

Figure 7: Overview of the system. The robot first learns the affordances of
objects and then adjectives and nouns. For learning adjectives and nouns we
have four different methods, M∗E , M∗A and M∗C (∗ denotes either D or N ), that
map to the set of adjectives D or the set of nouns N . M∗E is appearance-based,
whereas M∗A is functional since they are based on objects’ affordances. M∗C , on
the other hand, includes both appearance and functional aspects.

• Affordance vector: VA = (f̂b1
1 , ..., f̂b1

8 , ..., f̂b6
1 , ..., f̂b6

8 ), where f̂
bj
i is

the confidence of behavior bj producing effect fi on the object o,
as shown in Figure 5. In this sense, VA includes features about the
affordances of the object and is also referred to as affordance features
in the rest of the article.

• Combined vector: VC which is formed by the concatenation of VA
and VE .

6.1 Learning Adjectives

We constructed and evaluated three different models, denoted as MDA , MDE
and MDC , based on their input. Each model consisted of three different
SVM classifiers for each pair of adjectives.

Figure 8(a) depicts the average, maximum, and minimum predic-
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tion accuracies for the different models obtained during the 5-fold cross-
validation training. It can be seen that MDA performs slightly better than
MDE and much better than MDC . This result indicates that adjectives can
be learned better using affordance features rather than using appearance
features. This is interesting since affordances are also computed from the
appearance of the object. The MDC model which used concatenated affor-
dance features with appearance features performed the worst, indicating
that inclusion of appearance features provided conflicting information that
deteriorated the quality of the generalization for predicting adjectives.

E/R S/T T/T E/R S/T T/T E/R S/T T/T
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A
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ur
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y

(b)

Figure 8: Whisker plot depicting the distribution of prediction accuracies of each
model for learning (a) adjectives and (b) nouns. In (a), for the sake of space,
we abbreviate adjective groups Edgy/Round, Short/Tall and Thin/Thick with
E/R, S/T and T/T, respectively.
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6.2 Learning Nouns

We used one SVM classifier for nouns in each model to learn the map-
ping between VA,VE and VC and nouns. These models are denoted as
MNA , MNE and MNC . Figure 8(b) depicts the average, maximum and mini-
mum prediction accuracies for different models obtained during the 5-fold
cross-validation training. It can be seen that MNE performs better than
MNA . The result indicates that, unlike the case for adjectives, appearance
features are better than affordance features in predicting nouns. More-
over, the concatenation of appearance features with affordance features
improves the prediction accuracy for nouns as can be seen for MNC .

6.3 Adjectives versus Nouns

Figures 8(a) and 8(b), with the significance analysis in Table 6, show that
adjectives are better learned with affordance features whereas nouns are
better learned from appearance features, indicating an underlying dis-
tinction. In order to further investigate this finding, we analyzed the
relevancy weights of affordance and appearance features in VC for learn-
ing adjectives and nouns using the ReliefF algorithm (Kononenko, 1994).
In ReliefF, the larger the weight of a feature, the more relevant the fea-
ture is for classification. A weight of zero means that the given feature
has no contribution in classification with respect to the given labels. On
the other hand, a negative weight indicates that the given feature is more
likely to cause misclassifications.

Table 6: χ2 significance test results for the noun and adjective learning models
based on the three representations ( VA, VE and VC). The test outcomes with
statistical significance (p ≤ 0.05) are marked in bold. The noun models have 3
degrees of freedom while each adjective pair model has 1 degree of freedom.

Nouns Edgy/Round Short/Tall Thin/Thick
(df=3) (df=1) (df=1) (df=1)

VA 0.67 1.21 0.21 1.00
VE 0.22 10.28 3.66 2.83
VC 0.0 211.76 4.0 2.83

Figure 10 plots the relevancy weights of features (grouped into ap-
pearance and affordance) for learning nouns and adjective pairs. It can
be seen that perceptual features are more important for nouns than af-
fordance features, but vice versa for adjectives. Figure 9 plots the dis-
tribution of relevancy weights for appearance and affordance features for
nouns and adjectives proving the distinction between the two types of
concepts in language. The plot in (a) shows that appearance features are
informative for nouns but detrimental for adjectives. On the other hand,
the plot in (b) shows that affordance features are detrimental for nouns
but informative for adjectives. The negative relevance weights of appear-
ance features explains the drop in the prediction performance of MD

C for
learning adjectives.
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Figure 9: Whisker plot for the distribution of the relevance of features of the
appearance vector VE (a) and the affordance vector VA (b) for nouns and ad-
jectives.

Table 7: Average, maximum and minimum ReliefF weights of each category
test.

Appearance Features Affordance Features

Categorizations Avg. Max. Min. Avg. Max. Min.

Nouns 0.13 0.42 0.00 -0.07 0.04 -0.30
Edgy/Round -0.03 0 -0.09 0.03 0.45 -0.06
Tall/Short -0.03 0 -0.08 0.03 0.46 -0.05
Thin/Thick -0.03 0 -0.09 0.05 0.41 -0.07

15



Acc
ep

te
d

M
an

us
cr

ip
t - Ada

pt
iv

e
Beh

av
io

r
 

 

Nouns

Edgy/Round

Short/Tall

Thin/Thick

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

A
1
..........A

20
Z
1
..........Z

20
C
1
..........C

20
SI

1
.......SI

20
P F

1
.........................................F

48

Perceptual Features Affordance Features

Figure 10: Relevance of the features in the combined vector representation Vc.
The features with higher weights are denoted with a lighter shade of gray. The
features are abbreviated as Li (Azimuth Histograms), Zi (Zenith Histograms),
Ci (Curvature Histograms), SIi (Shape Index Histograms), P (Position, Orien-
tation, Size and Presence), and Ai (Affordance features).

This significant distinction has important implications regarding the
functional distinction between nouns and adjectives. Differences between
adjectives and nouns have already been pointed out or implied by neuro-
scientists, psychologists and linguists. For example, recent fMRI record-
ings regarding which parts of the brain are activated for verbs, nouns and
adjectives, show that adjectives are related to actions more than nouns
(Liang et al., 2006). This is in line with our findings, since adjectives are
better learned with objects’ affordances.

Developmental psychologists have reported that young children have
more difficulty learning noun modifying adjectives than nouns (Sandhofer and Smith,
2007). Considering that the adjectives used in our experiments are noun
modifying adjectives, one can consider using affordances for learning ad-
jectives as providing a middle-layer of abstraction over the raw sensori-
space. In other words, this mid-level abstraction layer increases the per-
formance of the learning of adjectives.

Linguists like Sassoon (2011) hypothesize that adjectives describe ob-
ject categories along single or few dimensions of feature space whereas
nouns use almost all the dimensions. The adjectives used in our experi-
ments conform to this hypothesis since they are dependent only on a few
dimensions such as “width”, “height” etc. SVMs thus have more difficulty
learning these adjectives directly from appearance because the irrelevant
changes in other dimensions distract the learner. However, when affor-
dances are used, they provide a layer of abstraction that captures only
information in the relevant dimensions, making the learning of adjectives
easier.
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6.4 Adjectives and Nouns for Novel Objects

We evaluated the adjective and noun prediction performances of the dif-
ferent models on novel objects in our lab as well as on novel objects from
the KIT 3D object database (Kasper et al., 2012).

Figure 11 shows the adjectives and nouns predicted for novel objects by
the different models. For adjectives, MDA , which uses affordance features
as input, makes a single misprediction (describing O3 as short) out of
42 predictions. The other models, MDE and MDC , that use appearance
features as input made 10 and 4 mispredictions in agreement with our
earlier results that adjectives are best described by affordances.

For nouns, all the models agree on 12 of the 14 objects, all being correct
but one. All models mispredicted O4 (a plastic hamburger toy) as a box,
possibly due to its sharp edges. The models disagreed on naming objects
O4 (a plastic bone toy for dogs) and O6 (a glue bottle). MNE and MNC
named the plastic bone as a cylinder correctly, whereas MNA mispredicted
it as a box. There are no correct noun descriptors for the glue bottle,
O6, and all predictions are considered as wrong. MNE and MNC prediction
confidences for box prediction was below 50%. MNA ’s prediction of the
object as a cup with a confidence of 89% can be considered as bad.

The number of correct noun predictions for all models are close to each
other, and a closer look at the confidences is needed. MNE ’s confidence
in the correct predictions is above 86%, whereas its confidence drops to
46% for the glue bottle case. In contrast, MNA ’s confidence for the correct
predictions ranged between 56% and 89%. However it is disappointing to
see that the model has high confidence values (94% for the plastic bone
and 89% for the glue bottle) for mispredictions.

The performance of MNC , which used both appearance and affordance
features lies in between the other models. Its confidence values for correct
noun predictions are even lower (between 52% and 80%) than the ones
obtained from MNA . However, it correctly predicts the plastic bone as a
cylinder (with 52% confidence) and has low confidence in its prediction
for the glue bottle. It confirms our prior results that the inclusion of
affordance features taints the model and deteriorates its performance.

6.5 Odd One Out

Finding an odd object in a set is a challenging cognitive benchmarking
task in which the subject is presented with a set of objects and asked to
mark the item that is least similar to the others. Odd-one out is a feasible
way to comment on the robustness of object representation, especially in
terms of dealing with unknown objects. However, only few robotics and
computer vision researchers have studied this interesting problem.

We used the MDA , which has the best adjective prediction performance,
for finding an odd object in a set of objects. For this, the robot predicts
the adjectives (ai

1, ai
2, ai

3 ∈ D) of each object oi in a scene with the
corresponding prediction confidences pi1, pi2, pi3. The robot then compares
the predicted adjectives of an object against others to find the odd one
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as:

D(oi) =
∑

oj ∈ S

3∑
k=1

d(oi, oj , k), (5)

where S is the set of objects in the scene, and d(·) is defined as:

d(oi, oj , k) =

{
|pik − pjk|, if ai

k = aj
k

pik + pjk, otherwise
. (6)

marking the object with the highest D() as odd.
Five sample executions for the odd-one-out task are shown in Figure

12. Note that although there are many possible ways to select an odd
object, the robot does so by comparing each object via the predicted
adjectives. As can be seen from Figure 11, the robot can choose the odd
object in a set by looking at objects’ adjectives which are estimated from
the objects’ affordances.

There are a number of related studies on the Odd-One-Out problem.
For example, Choi et al. (2010) used probabilistic reasoning over a large
database of object categories to form hierarchical context structures. With
their methodology, they can extract the odd object from a scene. In
their study, an object is determined as “odd” if its pose, scale, scene or
occurrence is inconsistent.

Lemaignan et al. (2010) use a common-sense ontology designed for
robots to draw useful conceptual information about objects. In their
experiments, the robot picks each object and asks a human about the
object’s properties until it can successully match it with available con-
cepts. After all the objects have been identified in the available concepts,
the odd object can be selected. Although this study is based on common
sense knowledge, the conceptualizations are not linked with the robot’s
own sensorimotor experiences.

The study by Sinapov and Stoytchev (2010) has strong parallels with
our approach. With a behavior repertoire consisting of lift, shake, drop,
crush and push, they have their robot interact with a large set of objects.
Using the sensory feedback data associated with the interaction expe-
riences of each object, they form a matrix to formulate the similarities
between the objects. When a group of objects is presented, their robot
utilizes this matrix to distinguish the odd object.

7 Conclusion

In this article we studied the links between nouns and adjectives in lan-
guage with the sensorimotor interactions of a robot. Specifically, an iCub
humanoid robot interacted with a set of objects using a repertoire of ma-
nipulation behaviors. During these interactions, a human observed the
object being manipulated as well as the effect induced. The objects are
labeled by three shape-related adjectives and a noun, whereas the effect
is labeled as an affordance. The data collected through these interactions
is used (i) to learn the affordances of objects, and (ii) to learn a map-
ping from the affordance and appearance related features of objects to
adjectives and nouns.
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We proposed and evaluated three different models for the learning of
adjectives and nouns through cross-validated training as well as through
testing on novel objects. Moreover, we have analyzed the relevancy of
affordance and appearance related features for the learning of adjectives
and nouns. We have also shown that adjective predictions can be used to
solve the odd-one-out task in a successful way on a number of examples.

The results showed that adjectives are better learned using objects’
affordances, whereas nouns are better learned using objects’ appearance.
This distinction is discussed in relation to findings from Psychology and
Neuroscience, and Linguistics. Furthermore, our computational results (i)
provide evidence, especially relevant to Developmental Psychologists, that
learning adjectives and nouns show underlying differences, (ii) support the
hypothesis (Sassoon, 2011) that adjectives span fewer feature dimensions
than nouns do.

8 Discussion

• We argue that our main contribution lies in the proposed computa-
tional framework, as well as analysis method, for studying the links
between word categories in language and the sensorimotor interac-
tions of an organism in the environment. The proposed framework
allows us to study the conflicts between appearance and affordance
(of function) based views of categories in language.

• Obviously the learning of adjectives and nouns is studied in a rather
limited context that is mostly determined by the perception and ma-
nipulation capabilities of the robot platform. The limited set of ma-
nipulation behaviors, although on a par with related studies, forced
us to use only the basic physical affordances of objects. The use of
point cloud data (rather than visual data) allowed us to use features
that are more related to the physical affordances of an object. How-
ever, it also limited our study to use shape-related adjectives and
nouns. Moreover, the number of physical interactions that can be
obtained from a physical robot is rather limited due to the physical
unreliability and the cost of these platforms.

• The limited context of our study prohibits us from making gen-
eral claims about the learning of adjectives and nouns in language.
Nevertheless, the argument that shape-related adjectives are mostly
based on the affordances of objects is likely to hold. However, this
claim does not apply to all adjectives. An obvious example is color
adjectives which are based on the appearance of objects and have
nothing to do with their affordances.

• We would like to point out that affordances depend on the behav-
ioral interactions of the robot. Although the proposed method is
independent of the robot platform, the use of a human-like robot
and human-like behaviors is likely to develop concepts similar on
robots to the ones that humans have.

• The use of human labeling is a must for creating human-like cat-
egories or concepts in the robot. Self-organized categorization of
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interaction data is highly dependent on the perceptual representa-
tion of the robot, and can generate categorizations that may not
necessarily coincide with the linguistic concepts that humans have.

• Finally, we would like to point to a complimentary study (Kalkan et al.,
ress) where we studied the linking of verbs to the sensorimotor in-
teractions of the robot through affordances.
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Object Adjectives Nouns
MDA MDE MDC MNA MNE MNC

O1 edgy (54%) edgy (89%) edgy (60 %)
short (97%) short (55%) short (80 %) box box box
thin (59%) thin (52%) thin (52%) (74%) (97%) (56%)

O2 round (77%) edgy (79%) round (65%)
short (77%) short (58%) short (68%) ball ball ball
thin (89%) thin 67% thin (62%) (83%) (97%) (80%)

O3 edgy (63%) edgy (64%) edgy (60%)
short (94%) tall (67%) tall (68%) cyl. cyl. cyl.
thin (96%) thin (84%) thin(80%) (87%) (95%) (60%)

O4 round (84%) round (77%) round (75%)
short (98%) short (68%) short (71%) box cyl. cyl.
thick (91%) thin ( 62%) thick (51%) (94%) (86%) (52%)

O5 round (84%) round (89%) round (80%)
short (97%) short (67%) short (66%) box box box
thick (95%) thick (58%) thick (54%) (89%) (94%) (62%)

O6 edgy (84%) edgy (79%) edgy (75%)
short (98%) tall (55%) short (65%) cup box box
thin (92%) thick (62%) thick (52%) (89%) (46%) (45%)

O7 edgy (62%) round (84%) edgy (60%)
short (98%) short (54%) short (56%) box box box
thick (78%) thick (68%) thick (66%) (89%) (93%) (64%)

O8 round (72%) edgy (89%) round (62%)
short (98%) short (67%) short (69%) cup cup cup
thick (79%) thick (52%) thick (53%) (89%) (98%) (61%)

K1 round (60%) edgy (92%) round (60%)
tall (97%) tall (100%) tall (80%) cyl. cyl. cyl.
thick (76%) thick (96%) thin (52%) (61%) (98%) (56%)

K2 round (55%) edgy (90%) round (62%)
tall (96%) tall (98%) tall (82%) cyl. cyl. cyl.
thick (72%) thick (91%) thick (54%) (56%) (98%) (58%)

K3 edgy (55%) edgy (92%) edgy (92%)
tall (97%) tall (95%) tall (79%) box box box
thin (72%) thin (93%) thin (81%) (58%) (97%) (59%)

K4 round (58%) edgy (%76) edgy (82%)
tall (98%) tall (100%) tall (83%) cup cup cup
thick (87%) thick ( 86%) thick (70%) (61%) (96%) (68%)

K5 round (55%) edgy (76%) edgy (80%)
tall (95%) tall (98%) tall (80%) cup cup cup
thick (71%) thick (94%) thick (52%) (56%) (98%) (56%)

K6 edgy (59%) edgy (83%) edgy (62%)
tall (92%) tall (96%) tall(78%) box box box
thick (92%) thick (90%) thick (52%) (56%) (99%) (62%)

Figure 11: Predicted adjectives and nouns, along with confidence values in
parenthesis, for novel objects. Objects labeled as Oi are picked within our lab,
where as objects labeled as Ki are picked from the KIT 3D object database
(Kasper et al., 2012). Bold labels denote correct classifications.
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Scene Selected Predicted Adjectives
Odd Object

Object Properties
Spray Glue Paint Box Lamp Box

edgy (63%) edgy (84%) edgy (62%) edgy (54%)
short (94%) short (98%) short (98%) short (97%)

(Paint Box) thin (96%) thin (92%) thick (78%) thin (59%)

Plastic Cup Hamburger Ball Toy Bone
round (72%) round (84%) round (77%) round (84%)
short (98%) short (97%) short (91%) short (98%)

(Ball) thick (79%) thick (95%) thin (67%) thick (91%)

Lamp Box Glue Ball Spray
edgy (54%) edgy (84%) round (77%) edgy (63%)
short (97%) short (98%) short (91%) short (94%)

(Ball) thin (59%) thin (92%) thin (67%) thin (96%)

Ball Wooden Cyl. Small Cyl. Pencil Box
round (77%) round (80%) round (86%) round (84%)
short (91%) tall (82%) short (92%) short (96%)

(Wooden Cyl.) thin (67%) thin (62%) thin (90%) thin (72%)

Paint Box Hamburger Wooden Cyl. Ball
edgy (84%) round (84%) round (80%) round (77%)
short (98%) short (97%) tall (82%) short (91%)

(Wooden Cyl.) thin (92%)) thick (95%) thin (62%) thin (67%)

Figure 12: Odd-One-Out experiments with the MDA model. The robot success-
fully detects the adjectives for each object, then chooses the odd object. The
selected odd objects and the adjectives that are most effective for determining
the oddness are marked in bold.
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