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Abstract—In this work, we propose a biologically inspired
framework for developing object permanence in robots. In partic-
ular, we build upon a previous work on a slowness principle-based
visual model (Wiskott and Sejnowski, 2002), which was shown to
be adept at tracking salient changes in the environment, while
seamlessly “understanding” external causes, and self-emerging
structures that resemble the human visual system. We propose
an extension to this architecture with a prefrontal cortex-inspired
recurrent loop that enables a simple short term memory, allowing
the previously reactive system to retain information through time.
We argue that object permanence in humans develop in a similar
manner, that is, on top a previously matured object concept.
Furthermore, we show that the resulting system displays the
very behaviors which are thought to be cornerstones of object
permanence understanding in humans. Specifically, the system is
able to retain knowledge of a hidden object’s velocity, as well as
identity, through (finite) occluded periods.

I. INTRODUCTION

Humans are born into persistent worlds. Through years and
countless interactions, we come to understand the world as
a place that makes temporal and spatial sense. Objects do
not appear out of nowhere, nor vanish into thin air, and as
they move from point A to point B, they indeed have to
exist for some time at every point in between. However, it
is difficult to claim that we have so far built robots that truly
make use of these basic axioms. Given that this understanding
is a basis for us humans to act effectively in our persistent
world, in this study we propose a model for building an
understanding of object permanence in terms of a higher-order
internal representation of the environment. Our ultimate goal is
to build effective environment manipulation capabilities on top
of this basis later on. But first, the robot needs to “understand”
what it is to exist in a persistent world.

Against the complexity of a world abundant with con-
tinuously changing sensory signals, we take refuge in the
“slowness principle” [1]: While the sensory signals are noisy
and erratic, their underlying physical causes are relatively
persistent in time. For instance, retinal signals can vary greatly
from one moment to another due to lightning conditions, as
well as saccadic movements of the eye, however the object
which the eye sees is constant. Therefore we must be able
to process these erratic sensory signals to extract meaningful
high-level representations, which are characteristic of varying
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more “slowly”, thereby containing more valuable “informa-
tion”, than the readily-available sensory signals.

In [1], Wiskott and Sejnowski propose Slow Feature Anal-
ysis (SFA). They show that sensory signals can be processed
through successive steps of principal component analysis to
extract optimally slow signals, which summarize the mean-
ingful event in the scene. The solutions are guaranteed to be
optimally slow within a predefined family of functions, while
still conveying meaningful information. In forthcoming work,
Wiskott et al. design a hierarchical visual architecture which
can recognize objects through translational, orientational, and
scaling transformations [2], distinguish known and novel ob-
jects, predict the type of the solutions if the transformation
is known a priori [3], survive multiple co-occuring transfor-
mations, and even adapt themselves to behave like simple
and complex visual neurons when trained with natural-life
scenes [4]. As is, this architecture develops the object concept
very plausibly. However, it is reactive in time, responding
momentarily to inputs; and not being able to retain information
through time, it cannot survive the object permanence problem.
We propose a prefrontal cortex inspired extension to serve as
a working memory.

The contributions of this paper are threefold: First, we
apply SFA to real world images to demonstrate that the
invariant object recognition capabilities can indeed survive real
world data. (Note that with the exception of Zhang and Tao
[5] and Berkes and Wiskott [4], SFA has not been used for
real world images before. Furthermore, in these two studies,
it has not been utilized for object recognition.) Second, we
propose a quantitative method to estimate the sufficient number
of slowly varying signals to represent a certain event. Finally,
and most significantly, we propose an extension to develop an
understanding of object permanence.

Our fundamental claim in building our extension on top
of the SFA framework is that the object permanence can be
regarded as a stage which develops on top of an already
developed reactive object concept. In this sense, we claim
that the SFA architecture fulfills the initially maturing object
concept understanding, on top of which the object permanence
understanding develops later in time on a par with the matura-
tion of the prefrontal cortex. Last but not least, we show that
the proposed framework demonstrates similar characteristics
(and pitfalls) like an infant learning permanence of objects.



II. RELATED WORK

A. Object Permanence

Piaget famously proposed that the cognitive functions of an
infant progresses in developmental “stages” [6]. Within the first
stage, he singles out the object permanence understanding as
one of the cornerstones, at the end of which objects come to be
identified as independent entities. Furthermore, he also claimed
that object permanence similarly develops in substages. The
object concept forms in the second substage (1–4 months),
indicated by the infant starting to follow their movements. She
reaches for partially hidden objects by 4–8 months, and for
fully hidden objects 8–12 months. By this time, she makes the
A-not-B error 1, which disappears by 12–18 months.

Once fully developed, Michotte identifies two indicators of
the object permanence understanding [7]:

The Tunnel Effect is the infant’s capability of judging when
an object, having previously disappeared behind a screen, will
reappear again. This indicates the ability to track the object’s
position even while it’s not directly observable. It also depends
on the length of the occluded period: Young infants (of 4
months) can track the objects behind sufficiently short screens
(< 14.8 cm), but their performance degrades to chance level
as the occluded time gets longer. Older infants (of 6 months)
can handle longer periods.

The Screen Effect is the surprise of the infant when object
A enters behind a screen, and reappears not as itself, but
having transformed into object B, indicating she understands
the integrity of the object’s identity.

B. Neurological Bases of Object Permanence

The close relationship between the maturation of the pre-
frontal cortex, and the emergence of object permanence un-
derstanding, has attracted much attention from neuroscientists
[8]–[12]. Diamond and Goldman-Rakic [8] are one of the
first to the demonstrate the link between the maturation (or
integrity) of the dorsolateral prefrontal cortex and successful
performance at the A-not-B task. They conduct a longitudinal
study of infants performing the A-not-B task, as well as of
adult rhesus monkeys with bilateral prefrontal and parietal ab-
lations. They note a significant performance increase between
7.5-9 and 12 months, since the delay necessary to elicit the A-
not-B error increases from 2-5s to 10s. In addition, monkeys
with bilateral ablations of DL-PFC perform at the level of
7.5-9-month-olds, while unoperated and parietally operated
monkeys are as successful as 12-month-olds; showing the
direct dependence of A-not-B task on DL-PFC maturation.

Imaruoka et al. [11] and Saiki [12] introduce a novel
paradigm, called the multiple object permanence tracking task,
in which objects are moving in a display. They are distinguish-
able by their features, such as color and shape. The participants
are required to track the objects, while also maintaining their
features mentally. In this dynamic environment, Saiki [12]
shows that our ability to keep bindings of objects color, shape
and spatiotemporal locations was significantly impaired when
objects move. Even though the visual short-term memory is

1In the A-not-B task, an object is first hidden at a location A several times,
until the infant learns to retrieve it successfully. Afterwards, it is visibly taken
away from A and moved to a second hidden location B, however infants at
this stage still try to retrieve it from the previously learnt location A.

generally assumed to be capable of maintaining 3-5 feature
bound object representations, when the objects are on the
move, this ability regresses down to 1 or 2 objects. Employing
the same paradigm in an fMRI experiment, Imaruoka et al. [11]
demonstrates the activation of anterior prefrontal cortex.

One thing significant about the prefrontal cortex is that it is
abundant with recurrent loops, both intrinsic [13], and through
other brain areas [14]. The generally accepted hypothesis is
that these recurrent loops are the key structure to keep track
of time concept in sequential events [15].

C. Robotics Studies

Chen and Weng [16] propose a value-based behavior to
develop a rudimentary object permanence. The system is hard-
coded to (1) be “surprised” when events are incongruent with
its predictions, and (2) gaze longer upon surprising events.
After habituation, it gazes longer at events which violate
object permanence principles. Roy et al. [17] propose a mental
imagery system for the robot, with a global physical model of
itself, the objects, and the human partner. The system has an
object tracking module, which maintains invisible objects for
some time, and dropping ones that are hidden for too long.

A highly relevant work is the MTRNN model by Yamashita
and Tani [18]. MTRNN is composed of two groups of con-
textual neurons, one group with a slow learning timescale,
and one with a fast learning timescale. The fast neurons
adapt themselves to rapid changes in the environment, thus
discovering motion primitives, while the slow neurons learn to
discern the context, thereby learning the sequence of necessary
primitives to perform a certain behaviour. The major downside
is that the slow neurons must be set to a certain discriminative
initial state, both to learn, and to reproduce a certain sequence.
Therefore, even though it uses the same idea of separating fast
and slow signals, MTRNN needs a level of supervision that is
not available in the classic object permanence scenario.

D. Slow Feature Analysis

Wiskott and Sejnowski [1] take a novel approach to vi-
sual perception. Through a rigorous mathematical procedure
called Slow Feature Analysis, they extract the slowest signals
carrying most information about the scene. These signals
have a total ordering, allowing the selection of the slowest
and most informative ones. The resulting system turns out
to be highly robust, with some extra features emerging as
well. Many identical SFA modules can be stacked together
hierarchically, enabling feasible processing and parallelization
of high-dimensional images. The system develops invariant
object recognition [2]. It can withstand (possibly multiple)
transformations such as translation, rotation, and scaling, dis-
tinguishing known and novel objects, while also providing
insight about the transformation. For instance, in case of
multiple moving objects, the system not only distinguishes
different objects, but it can also identify the position of any
of them. It is not negatively affected by multiple co-occuring
transformations (translation, rotation, and/or scaling), render-
ing it suitable for real-life scenarios, where transformations
do not generally occur in isolation. It is also mathematically
treatable [3], and it is possible to predict the exact shape of
outputs that will result from each of these transformations.

An interesting feature is the biologically plausible prop-



erties that emerge. For instance, the nodes self-organize to
behave like simple and complex cells of the visual cortex
[4]. When trained with natural life-like scenes, they adapt
to prefer Gabor-filter-like inputs, responding maximally to
certain directions, and minimally to others. In addition, certain
nodes self-specialize to display end-inhibition or side inhibi-
tion, again similarly to specialized V1 complex cells. These
adaptations are purely due to the input characteristics: Since
the visual sequences are natural, they bear spatial and temporal
continuity, resulting in these preferences. In yet another study,
Franzius et al. [19] show the emergence of hippocampal place
cell, head direction cell, and spatial view cell-like formations,
which have specialized in rodents to represent its spatial state.
Again, they emerge completely due to the nature of the input.

SFA has also been successfully employed for practical pur-
poses. Zhang and Tao [5] propose an SFA-based system to rec-
ognize human actions. They also introduce three variants: (1)
supervised, (2) discriminative, and (3) spatial discriminative.
Kompella et al. [20] devise incremental and online deduction
of slow features, while retaining computational feasibility in
the face of high-dimensional input. The original SFA approach
requires a (costly) offline learning phase, therefore this is an
important step for real-time applications.

To the best of our knowledge, there has been no a priori
studies to enhance this system with recurrence, nor any at-
tempts to carry a trace of activation through time. The previous
studies of slow feature analysis are purely reactive in time.

III. METHODS

A. Slow Feature Analysis

Wiskott and Sejnowski [1] formalize the following op-
timization problem: Given an I-dimensional input signal,
x(t) = [x1(t), x2(t), ..., xI(t)]T , the objective is to find a
set of input-output functions, g(x), which will produce a J-
dimensional output signal y(t) := g(x(t)), whose components
vary as slowly as possible, while still containing information.
The objective is to minimize 〈(̇y)2j 〉, ∀j ∈ 1, ..., J , with:

〈yj〉 = 0 (zero mean), (1)
〈y2j 〉 = 1 (unit variance), (2)

∀j′ < j : 〈yj′yj〉 = 0 (decorrelation). (3)

The angular brackets indicate averaging over time.

The unit variance constraint avoids the trivial solution with
zero information content. The decorrelation constraint ensures
non-redundant signals. It also enforces a total order: The
smaller the index j is, the more optimal is the solution yj .

This optimization problem is difficult to solve, but it can
be simplified by constraining the output functions to be linear
combinations of a finite set of nonlinear functions, that is,
yj(t) = gj(x(t)) := wT

j z(t). The nonlinear functions z(t) can
be obtained via applying a set of functions h = [h1, ..., hK ]
on the input signals, thus expanding them nonlinearly: z(t) =
h(x(t)). After this nonlinear expansion, the problem can be
treated as linear in the expanded signal components zk(t),
similar to using a kernel to linearize the classification problem.

Then the problem reduces to finding the weight vectors
wj = [wj1, ..., wjK ]T to minimize 〈ẏ2j 〉 = wT

j 〈żżT 〉wj .

Assuming that the functions hk are chosen such that the

expanded signal z(t) has zero mean and unit covariance matrix
(〈z = 0〉 and 〈zzT = I〉), the constraints:

〈yj〉 = wT
j 〈z〉 = 0,

〈y2j 〉 = wT
j 〈zzT 〉wj = wT

j wj = 1,

∀j′ < j : 〈yj′yj〉 = wT
j′〈zzT 〉wj = wT

j′wj = 0,

are fulfilled if and only if the weight vectors form an orthonor-
mal set. Therefore the set of eigenvectors of 〈żżT 〉 gives us the
weight vectors that satisfy the constraints. From these eigen-
vectors, we choose the ones with the smallest eigenvalues as
the weight vectors, 〈żżT 〉wj = λjwj ,with λ1 ≤ λ2 ≤ · · ·λJ ,
resulting in the input-output functions: gj(x) = wT

j h(x).

In other words, to find the slowest signal, we use the
eigenvector of the smallest eigenvalue, corresponding to the
direction of the least variance in the time derivative of the
input. For other signals, orthogonal directions can be used,
given by eigenvectors of increasing eigenvalues. They are
found by a principle component analysis on the matrix 〈żżT 〉.

For nonlinear expansion, Wiskott et al. use the first and
second-degree monomials of the input: z(t) = h(x(t)) =
[x1(t), · · · , xI(t), x1(t)x1(t), x1(t)x2(t), · · · , xI(t)xI(t)]T .
Higher order expansions are possible, but not necessary, since
a hierarchical architecture results in increasing complexity in
higher-levels, performing this expansion in every layer.

Notice that the outputs signal are computed instanta-
neously, i.e., they are not a result of simple temporal low-pass
filtering. Hence, the optimization problem is being solved by
instantaneously calculating a higher level representation.

B. Recurrent SFA

We use a hierarchical architecture composed of SFA nodes
(Figure 1) [2]. The input images have a resolution of 65x65.
The bottom layer reads from the input, and is formed of 15x15
SFA nodes, each with a 9x9 receptive field, among which 5
pixels overlap. The higher 3 levels have 7x7, 3x3, 1x1 nodes
respectively, all but the last one with 3x3 receptive fields. This
part of the architecture is proposed in previous studies [2], and
called thereupon Feed-forward SFA for clarity.

We extend Feed-forward SFA with an extra 1x1 layer on
top, which feeds its output at time t is back to itself at t+∆t.
The new architecture is called Recurrent SFA. The input to
the top (nth) layer at time t, xn(t), becomes:

xn(t) = [yn−11 (t), yn−12 (t), ..., yn−1J (t),

yn1 (t−∆t), yn2 (t−∆t), ..., ynJ (t−∆t)]T .

where yn is the output of the nth layer.

Input Image: 65x65

Layer 0: 15x15

Layer 1: 7x7

Layer 2: 3x3

Layer 3: 1x1

Layer 4: 1x1

Feed-forward SFA

Recurrent SFA

Fig. 1: The architecture of Feed-forward and Recurrent SFAs.
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Fig. 2: The feed-forward SFA response to a single moving object. (a-h) Object enters into view from left at t=110, leaves from
right at t=320. (i-j) The slowest two responses of the system, y1 and y2. (k) Phase diagram y1 vs. y2. Every point on the phase
diagram corresponds to a unique location of the object on the retinal plane. (l) Actual versus estimated position values of the
object. (n) Mutual information between the (actual) position values of the object, and y1, y2, and y1&y2.

The time difference ∆t, as the single parameter of the
system, determines the maturity of the emulated prefrontal
cortex, and hence called the “maturity” parameter. The smaller
it is, the “younger” the system will be, and recall only the near
past. As the system gets more mature, it can be increased to
allow a longer window.

Note that a hierarchical structure: (1) maintains feasibility
by restricting the input matrices of each node to a constant
size, (2) enables parallel processing, (3) forms a biologically
accurate model of the visual cortex, with strongly position-
dependent lower-level cells, and position-independent higher-
level cells. Furthermore, higher-level cells can represent in-
creasingly more complicated input-output functions (starting
with degree of 2 at the lowest-layer, and increasing as 4, 8,
16, and so on.)

IV. EXPERIMENTAL RESULTS

The experiments are divided into two sets to distinguish
capabilities that are already offered by feed-forward SFA, ver-
sus the newly introduced ones. In the first set, we demonstrate
feed-forward SFA in various cases, such as a single moving
object, a single object that disappears and reappears again, and
multiple objects moving around. These are also interesting as
a proof-of-concept that the original SFA approach is feasible
for object recognition in real-world images. The second set
demonstrates recurrent SFA in an object permanence scenario.
Specifically, we show that, when recurrence is introduced, the
tunnel and screen effects emerge. We further demonstrate how
it is possible to model an increasingly mature prefrontal cortex,
by manipulating the single parameter. For each set, same object
and behavior was used for both training and testing.

A. Feed-forward SFA

The first experiment shows the response of the feed-
forward SFA to an object traversing the x-axis from left to
right (Figure 2a-h, data was grayscaled to remove the color
cue, which makes classification too easy for different objects.)
This set is important for establishing a basis of the output
shapes. Figures 2i and 2j show the slowest two signals, whose
shapes are exactly as predicted by the theoretical analysis

[3]. Let [tA, tB ] denote the whole experiment duration, and
[ta, tb] ∈ [tA, tB ] a time interval in the experiment during
which the object is visible. A single pattern is visible during
[ta, tb], and is out of the view during [tA, tB ]\[ta, tb] (\
indicating set difference). The case with ta 6= tA and tb 6= tB ,
is called a bounded case, since the output must equal to a
constant c1 all during the interval [tA, tB ]\[ta, tb], given that
the system sees the (approximately) same background all the
while. Due to the zero mean constraint (Equation 1), c1 tends
to 0 in the limit (tB−tA)→∞. The analysis predicts that the
slowest signal (y1) should be a half cosinus, with the second
slowest signal (y2) being a sinus of a single oscillation. (The
other signals which are not shown here are cosinuses and
sinuses of increasing oscillations.)

The slowest two signals have a significance: They predict
the object’s 1D position uniquely. On the phase diagram of
y1 vs. y2 (Figure 2k), every point corresponds to a single
position on the x axis. This is because, as shown previously, the
SFA outputs reflect the main underlying free variable causing
the change in the system, called the configuration variable,
which in this case is the position. Exact position values can
be estimated via a simple regression [2]: Figure 2l depicts the
actual and regressed position values.

Ideally, one would like to predict the states of the con-
figuration variables based on the outputs. However which
output combination would be necessary or sufficient is not
automatically given by the network. For instance, in this case,
notice that y1 on its own is not enough to retrieve the position
values, and neither is y2, due to nonlinearities of both signals.
Here, a combination of the two is sufficient. However different
transformations need different outputs to be combined. When
there is more than one configuration variable, this can be even
more complicated: In one case in [1], where both position and
identity are changing, a combination of y1 and y3 estimate
the position, while y2 and y4 estimate the identity. So far, a
qualitative (human-supervised) assessment have been used to
decide. We propose using mutual information for a quantitative
assessment, without supervision. Specifically, we calculate the
mutual information between all the output combinations, and
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Fig. 3: A single moving object which is occluded for some time (between t=350 and 410) during the trial. (a-h) Snapshots from
the input images. (i) Feed-forward SFA. (j) Recurrent SFA and the “Tunnel Effect”.

the position values, then perform a thresholding to select the
minimum sufficient number of outputs. Figure 2m displays
the mutual information provided by y1, y2 and y1&y2. As
expected, y1&y2 is sufficient for this case.

The second experiment stands as a proof-of-concept: As
the object is traversing the retinal plane, it disappears behind
a screen. It continues to move behind the screen with a constant
velocity, and reappears in due time (Figure 3a-h). As expected,
due to the reactive nature SFA, as soon as it disappears,
the SFA outputs diminish to 0, and on its reappearance they
increase again (Figure 3i).

A final issue is the response of the system to more than
one object. In this case, there are two objects, the first one
in view at t=100-360; the second one at t=710-880. Both
are occluded shortly, the first between t=230-250, and the
second between t=820-830 (Figure 4a-k). As predicted, the
system develops highly object-dependent outputs (4l-n). It is
still possible to estimate the position of the objects, but in
addition, the outputs also code the identity of the object at
any time. For instance, a positive y1 response during the first
visible interval distinguishes the first object from the second
one, which has a negative y1 response for that interval. As
shown in [2], a kNN classifier with ≈ 95% success rate can
be trained to estimate the identity (Figure 4o).

B. Recurrent SFA

When a recurrent input is added, the system begins to
behave similarly with infants with maturating prefrontal cortex.
The first indicator is an ability of tracking the position of an
object behind a screen. This is demonstrated by the child’s
ability to guess when it will become visible again (the tunnel
effect). Figure 3j demonstrate the occluded object case with
recurrent input. Recurrent SFA is able to retain its activation
throughout occlusion, giving a comparable phase diagram y1
vs. y2 with the visible case. This means we can “track” the
position of the object uniquely, even through occlusion.

Psychological studies indicate that the tunnel effect de-
pends on the length of the “tunnel”. Younger infants are
successful for short tunnels only, while older infants can
manage increasingly longer ones. A similar effect is observed
in Figure 5 with two longer tunnels. Keeping the maturity

parameter constant, there is a limit to the occluded period
which can be compensated, similar to infants.
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Fig. 5: As the tunnel gets longer, Recurrent SFA is no more
able to sustain the signals from vanishing.

The final indicator of a mature understanding of object
permanence is the screen effect, in which the infant maintains
the object’s identity. She is surprised if a different object
reappears from behind the screen. To demonstrate the effect,
we show that the architecture has difficulty adjusting when a
different object reappears, in which case its predictions collide
with the apparent stimuli, resulting in a “surprise”. Figure 6a
demonstrates the feed-forward case: When Object A disap-
pears behind the screen, and reappears having changed into
Object B at time 150, the system responds immediately. Figure
6b demonstrates the recurrent case, with maturity parameters
of ∆t = 20 and ∆t = 40, where the system needs time to
adjust itself to the changed object. The delays, in which the
system insists on seeing Object A, indicate an expectation that
the object’s identity should have been preserved.

V. CONCLUSION

We have shown how slow feature analysis, previously
shown to develop the object concept, can be extended with
a recurrent loop to retain information through time. The pro-
posed extension mimics an important developmental stage, the
object permanence understanding. We argue that the building
of one ability on top of another is reminiscent of the way
humans maturate. The resulting system can predict an occluded
object’s movements, as well as keeping in mind its identity.
These abilities are not infinitely powerful: After a long enough
occlusion, they give in, just as in infants. Our study also serves
as a minor contribution to the SFA framework: We demonstrate
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Fig. 4: The feed-forward SFA response to two objects presented sequentially, both of which are occluded for some time. (a-k)
The first object is in view from t=100 to 360, occluded between t=230 and 250; the second object is in view between t=710 and
880, occluded between t=820 and 830. (l-n) The slowest three responses. (m) kNN classification of object identity.
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Fig. 6: The “Screen Effect”. The identity classification made by the recurrent SFA. Object A is changed with object B at t=150.
(a) Feed-forward case. (b) Recurrent case with maturity parameters ∆t = 20 and ∆t = 40. Notice that as the maturity parameter
increases, the system takes more time getting over its reluctance to accept the chance.

how mutual information can estimate the sufficient outputs, as
well as validating SFA for recognizing real-world objects.

An interesting question is whether a gradually increasing
maturation parameter will boost cognitive development, since
as shown repeatedly, initial limitations of our body promote de-
velopment by restricting the complexity. The effect of working
memory restrictions, other levels of recurrence, and real robotic
applications are all promising future directions.
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