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1Middle East Technical University, Ankara, Turkey
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Abstract: For finger-vein recognition, many successful methods, such as Line Tracking (LT), Maximum Curvature (MC)
and Wide Line Detector (WL), have been proposed. Among these, LT has a very slow matching and feature-
extraction phase, and LT, MC and WL are translation and rotation dependent. Moreover, we show in the
paper, they are affected by noise. To overcome these drawbacks, we propose using popular feature descriptors
widely used for several Computer Vision or Pattern Recognition (CVPR) problems in the literature. The
CVPR descriptors we test include Histogram of Oriented Gradients (HOG), Fourier Descriptors (FD), Zernike
Moments (ZM), Local Binary Patterns (LBP) and Global Binary Patterns (GBP), which have not been applied
to the finger-vein recognition problem before. We compare these descriptors against LT, MC, and WL and
evaluate their running times, performance and resilience against noise, rotation and translation. We report that
the LT and WL methods accuracy are comparable to each other and WL gives the best accuracy, LT method’s
speed is the slowest. Our results indicate that WL can be used together with ZM and GBP in case of rotation
and noise, respectively.

1 INTRODUCTION

Biometric human identification has become very im-
portant due to pitfalls even in extreme security sys-
tems, and alternative methods that can be used in
place of or together with finger-print have been being
sought during the last decade. It has been shown that
finger-vein pattern is distinctive enough for human
biometric identification (Yanagawa et al., 2007), and
with the advent of technology, and especially since
finger-vein is more difficult to manipulate compared
to, e.g., fingerprints, we have seen many successful
applications.

We can divide existing studies regarding finger-
vein feature extraction into three main categories
(without aiming to be comprehensive): (i) Those that
use filtering or transformation methods: Such meth-
ods mainly use Gabor filters to extract filter responses
using the following Gabor function at different scales
and orientations (Yang et al., 2011; Yang et al., 2009),
steerable filters (Yang and Li, 2010) or wavelets
(Xueyan et al., 2007). After filtering, from the filter
responses, using histograms, minimum-maximum or
average values, features are extracted, and these fea-
tures are usually compared using Euclidean or Cosine

distance (Yang et al., 2011). Moreover, Fourier Trans-
form (Mahri et al., 2010) can be applied to the finger
vein images and the phase components of the images
can be taken as feature vectors. (ii) Those that track
finger veins, segment the pixels corresponding to the
veins, and represent or directly compare these pixels
(Miura et al., 2004; Qin et al., 2011). (iii) Those that
use descriptive feature extraction methods such as lo-
cal binary patterns (Lee et al., 2011; Yang et al., 2012)
or local derivative patterns (Lee et al., 2011).

Among these methods, Line Tracking (LT -
(Miura et al., 2004)), Maximum Curvature (MC -
(Miura et al., 2007)) and Wide Line Detector (WL
- (Huang et al., 2010)) are widely used and shown
to perform very well. However, LT has a very slow
matching and feature-extraction phase. Moreover, LT,
MC and WL are rotation dependent, and they are
affected by image noise. To overcome these draw-
backs, we propose using some popular feature de-
scriptors widely used for several Computer Vision or
Pattern Recognition (CVPR). These descriptors in-
clude Histogram of Oriented Gradients (HOG) (Dalal
and Triggs, 2005), Fourier Descriptors (FD) (Gonza-
lez and Woods, 2001), Zernike Moments (ZM) (Teh
and Chin, 1988), Local Binary Patterns (LBP) (Ojala



et al., 1994) and Global Binary Patterns (GBP), (Sivri,
2013). Among these, HOG, FD, ZM and GBP have
not been applied to finger-vein recognition before. We
compare these descriptors against line tracking (LT),
Maximum Curvature (MC), and Wide Line Detec-
tor (WL), which are most widely used methods for
finger-vein recognition. The novelty of the paper is in
(i) applying new feature extraction methods that have
not been used for finger-vein recognition before and
(ii) evaluating the performance of all these methods
under translation, rotation and noise.

We focus on the “feature extraction” step, and
the preprocessing step is kept as simple as possible.
As for “matching”, the matching method specific to
LT, MC and WL which is called mismatch ratio is
used and for all other descriptors, three different dis-
tance metrics called Euclidean distance, Chi-Square
distance and Earth Mover’s distance have been used
and compared to each other. For performance evalua-
tion, we use the SDUMLA-HMT finger-vein database
that is publicly available1.

2 Feature Extraction and Matching

In this section, we briefly describe the methods
that we analyze in the article.

2.1 Line Tracking (LT)

LT-based method of Miura et al. (Miura et al., 2004)
is one of the leading approaches used in finger-vein
extraction. The method exploits the fact that, due to
the light-absorbing nature of finger veins, finger veins
appear darker in the image, making veins look like
‘valley’s in the infrared image. The LT method is
based on randomly finding a pixel in a valley, and
tracking the pixels along a valley as long as possi-
ble. To determine whether a pixel is on a valley (i.e., a
part of the finger vein), the LT method checks whether
the cross-section orthogonal s.p.t. to the center pixel
form a valley in intensity values. The method tracks
“valley pixels” and restarts randomly in another posi-
tion in the image for tracking finger-veins. The output
is a locus table that list how many times a pixel has
been tracked, and this captures the finger-vein in the
infrared image.

2.2 Maximum Curvature (MC)

Miura et al. (Miura et al., 2007) proposed a method
that is based on calculating curvatures in cross-
sectional profiles of a vein image. In each profile, the

1http://mla.sdu.edu.cn/sdumla-hmt.html

location of the maximum curvatures are found, and
those maxima and their width are taken as the center
and the width of the veins respectively.

2.3 Wide Line Detector (WL)

WL (Huang et al., 2010) uses a circular sliding region
to detect pixels belonging to a finger vein. At each
location, the intensity distribution of the pixels in the
neighborhood is evaluated with respect to the inten-
sity of the center. If a small proportion of the pixels
have different intensities, then the center of the win-
dow is taken as belonging to a finger vein.

2.4 Local Binary Patterns (LBP)

LBP (Ojala et al., 1994) is one of the widely used
methods for feature extraction from finger-vein im-
ages. In LBP, a window is placed on each pixel in the
image, and within each window, the intensity of the
center pixel is compared against the intensities of the
neighboring pixels. During this comparison, bigger
intensity values are taken as 1 and smaller values as
0. These numbers are interpreted as binary numbers
and histogram of their corresponding decimal values
are used as descriptors in LBP.

2.5 Fourier Descriptors (FD)

FD are constructed by applying a Fourier transform
on a shape signature, which is a one dimensional
function derived from the shape boundary (Zhang and
Lu, 2002). Any shape signature can be used to ob-
tain Fourier descriptors, such as complex coordinates,
centroid distance and curvature function.

The first step to compute Fourier descriptors from
the image is to extract points representing the finger-
vein: (x0,y0),(x1,y1), ...,(xN−1,yN−1). For these
points, we use the locus table that the LT method re-
turns. Then, pixel coordinates (xk,yk) are converted to
complex coordinates as zi = xk + jyk, where j2 =−1.
Complex numbers, z0,z1, ...,zN−1, in spatial domain
are converted to frequency domain using the Discrete
Fourier Transform (Proakis and Manolakis, 2006).
After complex coordinates are transformed to the fre-
quency domain, the coefficients are normalized by the
first term, and the normalized first K (empirically de-
termined as 100) coefficients are taken to be the de-
scriptor.

2.6 Zernike Moments (ZM)

ZM (Teh and Chin, 1988) is one of the most popu-
lar geometric moments in the literature and defined as



follows (Teague, 1980):

Anm = [(n+1)/π]
∫ ∫

f (x,y)[Vnm(p,θ)]dxdy, (1)

where f (·, ·) is the function, i.e., image, n defines the
order and Vnm is known as the Zernike polynomials:
Vnm(x,y) =Vnm(ρsinθ,ρcosθ) = Rnm(ρ)expilθ. Rota-
tion invariance is achieved by using the magnitudes
of Zernike moments because rotation does not affect
the magnitude (Khotanzad and Hong, 1990). Trans-
lation invariance is achived by shifting the origin of
the image to the centroid of the finger vein image. In
this study, we set n = 40 (determined empirically),
m = n and n− |m| being even and extracted Anm on
the median thresholded locus table produced by the
Line Tracking algorithm, thresholded Maximum Cur-
vature map and Wide Line Detector map.

2.7 Histogram of Oriented Gradients
(HOG)

HOG constructs a histogram of gradient occurrences
in localized grid cells (Dalal and Triggs, 2005). HOG
has been demonstrated to be very successful in hu-
man detection or tracking, and in this study, the per-
formance of HOG on finger-vein recognition is ana-
lyzed and compared with other popular descriptors.
HOG in an image patch P is defined as follows:

HOG(k) = ∑
p∈P

δ

( ⌊
θp

L

⌋ )
, (2)

where δ(·) is the Kronecker delta function, L is a nor-
malizing constant and θp is the orientation at point
p, which is equal to the image gradient at that point.
HOG(k) corresponds to the value of the kth bin in
a K-bin histogram. The value of K used in the ex-
periments is set to 9, and the value of the normalizing
constant, L, is equal to 180/K = 20 (Dalal and Triggs,
2005).

2.8 Global Binary Patterns (GBP)

GBP (Sivri, 2013) is a simple, yet efficient, shape de-
scriptor similar to LBP. The method creates a set of
bit strings for any direction of a thresholded binary
image and interprets these bit strings as binary num-
bers to build a global descriptor (see Figure 1). In its
simplest form, GBP of a row, r, of a binary image I is
defined as follows:

GBPh(r) =
R

∑
j=1

I(r, j) ·2 j−1, (3)

where R is the number of columns in image I. GBPh
computes GBP along horizontal direction. Similarly,
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Figure 1: GBP computation. (a) The binary image. (b) Af-
ter rows are multiplied by powers of two. (c) After each row
is summed horizontally. (d) After columns are multiplied by
powers of two. (e) After columns are summed vertically. (f)
Resulting GBP descriptor. (Source: (Sivri, 2013))

GBP along vertical direction, denoted GBPv, can be
defined as follows:

GBPv(c) =
C

∑
i=1

I(i,c) ·2i−1, (4)

where C is the number of rows in image I. See Fig-
ure 1 for an illustration of GBP computation along
horizontal and vertical directions, denoted GBPhv.

GBPh and GBPv are defined along horizontal and
vertical directions. In fact, GBP can be constructed
along any arbitrary direction, which may effect the
performance of the descriptor (Sivri, 2013).

Figure 2: Illustration of the projection of a pixel onto a line
that passes through the pixel po with orientation θ. (Source:
(Sivri, 2013))

It is possible to use any number of projections to
form the GBP descriptor. Analysis in this study is per-
formed using horizontal and vertical projections de-
noted GBPh and GBPv respectively.



2.9 Matching

Different matching methods have been used for
matching the features extracted from each method.
For LT, MC and WL, the literature uses the so-called
mismatch ratio in which a query map is compared
against a stored map pixel by pixel (like in template
matching). For FD, ZM, HOG, LBP and GBP, the
literature uses many distance metrics, like Euclidean
distance, Chi-Square distance and Earth Mover’s dis-
tance. In this article, we use the mismatch ratio for
LT, MC and WL, and Euclidean distance, χ2 distance
and Earth Mover’s distance for FD, ZM, HOG, LBP
and GBP.

3 Results

For performance evaluation, we use the
SDUMLA-HMT finger-vein database that is publicly
available2. SDUMLA-HMT database contains in
total 3,816 images of index fingers, middle fingers
and ring fingers of both hands. Moreover, for each
finger of an individual, 6 different snapshots are
included, making it ideal for extensive analysis. The
methods are compared based on the False-Rejection
Rate (FRR) and False-Acceptance Rate (FAR), as
widely used by the finger-vein recognition literature
(e.g., (Miura et al., 2004)). FAR is the rate of
accepting imposters by mistake and calculated as
follows:

FAR =
FA

FA+CR
, (5)

where FA denotes the number of false acceptances
and CR the correct rejections. FRR is the rate of re-
jecting authorized users by mistake and calculated as
follows:

FRR =
FR

FR+CA
, (6)

where FR denotes the number of false rejections and
CA the correct acceptances. Another important met-
ric for evaluating the methods is the EER rate, which
is the point where FAR equals FRR. As we discussed
before, our aim is to improve the running times and
the resilience of LT, MC and WL using HOG, ZM,
FD, LBP and GBP. We apply HOG, ZM, FD, LBP
and GBP to the binarized locus table (from LT), the
binarized Maximum Curvature map and the Wide
Line Detector map. For the sake of simplicity and
space, in the remainder of the article, we will use
X+Y , where X ∈ {FD, ZM, LBP, HOG, GBP},Y ∈
{LT, MC, WL}, to refer to the application of method
X to the output of method Y .

2http://mla.sdu.edu.cn/sdumla-hmt.html
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Figure 3: Change of EER values under rotation, translation
and noise using χ2 distance. (a) Rotation. (b) Translation.
(c) Salt and Pepper Noise. (d) Gaussian Noise.



3.1 Rotation, Translation and Noise
Resilience

We tested the methods on their resilience against
translation, rotation and noise. This is crucial since in
finger-vein image capturing systems, fingers tend to
be not aligned and positioned the same each time they
are scanned. We arbitrarily selected 20 images which
are translated horizontally for different shift amounts
(0−20 pixels) and rotated clockwise for different an-
gles (0o−20o).

Figures 3(a), 4(a) and 5(a) show the changes in
EER values for different horizontal translations. We
see that HOG-based features are not affected by trans-
lation. The reason is that histograms that HOG extract
from each block are not affected by shifts in positions.
Moreover in terms of translation, all methods seem
to be good enough to be translation invariant except
GBP.

As for the rotation performance of the methods,
which is shown in Figures 3(b), 4(b) and 5(b), we
see that all the methods except for ZM-variants are
severely affected by rotation. ZM is not affected by
rotation due to its polar formulation.

Two different noises are added to the images
called salt and pepper (SP) noise and Gaussian noise.
The variables whose effect were investigated are the
likelihood of changing a pixel’s intensity in the case
of SP noise and the variance in the case of Gaussian
noise. In Gaussian noise, the mean was kept zero. The
effect of SP noise can be seen in Figures 3(c), 5(c) and
4(c), and the effect of Gaussian noise in Figures 3(d),
5(d) and 4(d). From the figures, we see that GBP and
its variants are affected less from noise while the oth-
ers suffer significantly from the added noise.

3.2 Overall Performance Comparison

Figure 6 displays the FAR-FRR graph for best vari-
ant of each method (e.g., the best FD among FD+LT,
FD+MC and FD+WL). We see that LT, MC and WL
provide the best performance. However, HOG+WL
provides better FRR rate. This is striking because
HOG is usually used in human detection and track-
ing applications, and simple histograming of gradi-
ents in grids may provide better results than directly
comparing images using mismatch ratios. ZM+WL
result is comparable with HOG+WL since ZM is in-
variant to translation and rotation. GBP+WL also has
comparable result with HOG+WL and ZM+WL. Sur-
prisingly, FD, which has been successfully applied to
similar problems such as hand-written digit recogni-
tion, yields the worst results as far as the FAR-FRR
values are concerned.

As we discussed in Section 2.9, original matching
method of LT, MC and WL as well as Euclidean dis-
tance, Ch-Square distance and Earth Mover’s distance
are evaluated. The best results of each distance metric
in Figure 6 are placed in Figure 7. As seen in Figure
7, EMD and χ2 perform better than the Euclidean dis-
tance.

3.3 Running Time Comparison

We compared the methods based on their running
times as well. Each method is run on the same
machine using MATLAB. We compared 100 images
against a total of 3804 images in the database, and cal-
culated the average times for both feature extraction
and feature matching over 3804 images. As shown
in Table 1, we see that FD, HOG and GBP are the
fastest among the methods since their computational
complexities are quite low; whereas LT, which pro-
vides best results when there is no translation, ro-
tation or noise, is the slowest. The reason for LT’s
slowness is due to the fact that the feature extraction
step requires tracing veins for several iterations. WL,
the other method providing best results when there is
no translation, rotation or noise, is among the best in
terms of speed.

Table 1: Running-time comparison of all methods.

Method Time Speed
(seconds) Rank

LT (feat. extraction only) 9.2831 15
MC (feat. extraction only) 0.0585 1
WL (feat. extraction only) 0.1286 8
LT 9.4675 19
MC 0.0595 3
WL 0.1335 10
FD + LT + Euc 9.2837 16
FD + MC + Euc 0.0586 2
FD + WL + Euc 0.1289 9
ZM + LT + Euc 9.6507 21
ZM + MC + Euc 0.5183 7
ZM + WL + Euc 0.5920 14
GBP + LT + Euc 9.2850 17
GBP + MC + Euc 0.0601 4
GBP + WL + Euc 0.1454 12
HOG + LT + Euc 9.2925 18
HOG + MC + Euc 0.0664 5
HOG + WL + Euc 0.1368 11
LBP + LT + Euc 9.5831 20
LBP + MC + Euc 0.0890 6
LBP + WL + Euc 0.1686 13
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Figure 4: Change of EER values under rotation, translation
and noise using Euclidean distance. (a) Rotation. (b) Trans-
lation. (c) Salt and Pepper Noise. (d) Gaussian Noise.
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(d)
Figure 5: Change of EER values under rotation, translation
and noise using Earth Mover’s Distance. (a) Rotation. (b)
Translation. (c) Salt and Pepper Noise. (d) Gaussian Noise.
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Figure 6: FAR vs. FRR graphs for the best of each
method (e.g., the best FD among FD+LT, FD+MC and
FD+WL) compared with LT+mismatch, MC+mismatch and
WL+mismatch (a) Using χ2 distance. (b) Using Euclidean
distance. (c) Using Earth Mover’s distance.

4 Conclusion

Using a publicly available database, we have com-
pared several feature extraction methods for finger-
vein recognition. Among the feature extraction meth-
ods we have considered, Histogram of Oriented Gra-
dients (HOG), Fourier Descriptors (FD), Zernike Mo-
ments (ZM), Local Binary Patterns (LBP) and Global
Binary Patterns (GBP) that have not been applied to
finger-vein recognition before. We show that Wide

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

FAR

F
R

R

 

 

ZM+WL−Euc
HOG+WL−Euc
GBP+WL−Euc
ZM+WL−Chi
HOG+WL−Chi
GBP+WL−Chi
HOG+WL−Emd
GBP+WL−Emd

Figure 7: Best of Earth mover’s, χ2 and Euclidean dis-
tances.

Line Detector method outperforms others in terms
of accuracy, however, it is affected by rotation and
noise. Methods like HOG and GBP and ZM provide
comparable performance where HOG and GBP have
better running time and ZM is invariant to rotation
and translation with slowest running time in compar-
ison to HOG and GBP. Our results indicate that in
the case of no noise, no rotation and no translation,
WL is the best method. In a scenario involving ro-
tation, ZM+WL, and in a scenario involving noise,
GBP+WL can be used. If time is a critical issue, then
MC can be chosen since it is the next best method in
terms of EER values.
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