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Abstract 

This paper proposes a method for computing disparity 
maps from a multimodal stereovision system composed 
of an infrared and a visible camera pair. The method 
uses mutual information (MI) as the basic similarity 
measure where a segmentation-based adaptive window-
ing mechanism is proposed for greatly enhancing the 
results. On several datasets, we show that (i) our pro-
posal improves the quality of existing MI formulation, 
and (ii) our method can provide depth comparable to the 
quality of Kinect depth data.   

1. Introduction 

Stereovision [1],[2] deals with computing depth in-
formation in a scene by finding the projections of 3D 
points in images of the scene captured from two or more 
cameras. Finding which pixels in the different images are 
the corresponding projections of the same 3D point is the 
most crucial part in stereovision. Although there are 
many approaches in the literature for the correspondence 
problem in unimodal stereo, they are not directly appli-
cable to multimodal stereovision since they depend on 
pixel intensities, which cannot be used in multimodal 
stereovision as images are captured by multimodal cam-
eras, such as for an infrared/thermal camera vs. visible 
camera pair.  

Although there are plenty of local (e.g. [7],[8]) or 
global [9], dense [5],[9] or sparse [3],[6] approaches 
available in the literature for unimodal stereo (see also 
[3],[4],[5] for reviews), there are not many studies on 
multi-modal stereo vision (except for  [10]-[18]). All 
these studies use Mutual Information (MI) as the basis 
for computing the similarity measures. Egnal [10] is, up 
to our knowledge, the first to use mutual information 
(MI) for stereo image pairs that were unimodal but red / 
blue filtered or differently lighted, but also multimodal 
(an Near-IR and  Visible/NearIR couple). The results 
were promising and revealed the power of MI compared 
to standard correlation based methods especially on im-
ages with different spectral characteristics for the same 
scene, although still had low accuracy / quality. Fookes 
et al. extended the MI-based approach with adaptive 
windowing [11] and integrated prior probabilities using a 
2D match surface [12]. However, their methods were 
only tested on synthetically altered unimodal images, 
which do not actually include different segmentation / 
edge characteristics that multimodal images may have. 
Similarly, Krotosky and Trivedi [13]-[15] used MI suc-

cessfully for pedestrian detection / person tracking using 
a multimodal (infrared / visible camera pair) stereovision 
system. They constrained stereo correspondence within 
region of interests (ROI) including people’s bodies, and 
proposed a disparity voting method for computing the 
final depth information for the corresponding regions. 

In a very recent work on multi-modal stereovision, 
Campo et. al. [16] propose an MI-based method where 
the similarity measures were extended using the gradient 
information. They implemented a multimodal stereo 
head (thermal vs. visible) and a database also. The 3D 
depth results presented in their work are yet quite sparse 
for the scenes tested however claimed promising due to 
the challenge of trying to match two separate spectral 
bands.  

Recently, LSS (local self similarity), originally pro-
posed for image template matching [19] is tried as a 
thermal-visible stereo correspondence measure [17], 
since it is already shown to outperform MI in template 
matching, and has some advantages like better handling 
textured / colored regions as long as they have a similar 
spatial layout. They implemented an ROI based image 
matching by tracking people in the scene and compared 
with MI based similarity descriptors, and showed that 
LSS measures outperform MI and HoG (Histogram of 
Oriented Gradients) [18], however this measure is not 
yet tested for a dense disparity / depth map calculation. 

1.2 This study and the contributions 

We propose a new MI-based multimodal stereovision 
framework whose novelty is a new adaptive windowing 
method MI formulation. We determine the adaptively 
sized windows by the segmentation of the images, which 
help generating a robust correlation surface when com-
puting joint probabilities to compute the joint entropy 
and the MI similarity metric. Our results are not quanti-
tatively comparable to existing MI-based methods since 
they have used different sets of images; however, by 
visual evaluation, it is possible to say that there is sig-
nificant improvement in obtained disparity/depth maps. 
Besides, using synthetically altered images of Middle-
bury stereo image database [20] (where the left images 
are replaced with the synthetically altered versions of 
these images (similar to [12]), it was possible to compute 
the statistics of test results to gain more knowledge of the 
performance of our method. In addition, by using the 
Kinect device having an IR and RGB camera along with 
an IR projector, evaluation of the method has been pos-
sible for a real multimodal camera system since it has a 
built in depth computation, which was not performed 
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before as we know of for such applications. 

2. Method 

Our method 
(Figure 1) takes 
a rectified mul-
timodal image 
pair and follows 
these steps:  

Step1-Segmenta
tion of the IR 
Image: We 
use the mean shift segmentation algorithm [23] for 
segmenting the IR image. With this step, we get non- 
overlapping segments representing homogenous re-
gions in the IR image. We assume that each segment 
corresponds to a planar surface in the scene (a com-
mon assumption, see, e.g., [24]). The reason for 
segmenting only the IR image is that the surfaces in 
IR images are also common in the RGB images but 
the reverse is not true. RGB images contain more de-
tailed and textured surfaces which do not exist in the 
IR images in our datasets.  

Step2-Computation of Cost Matrix: The cost matrix 
computation step is the most important step containing 
our contributions in this study (see Alg. 1). The inputs 
to the algorithm are the left (IR) image L, the right 
(RGB) image R and the left segmentation Sl.  

 

Algorithm 1: Cost Matrix Computation 
 
Inputs: L, R, Sl,  
 Compute Pprior(L,R) 
 for r=[0:height)  do: 

for c = [0, width) do: 
  for d = [0, dmax] do: 
      C(r,c,d)= - M(WL(r,c),WR(r,c-d),Sl,Pprior) 
  end for 
 end for 
end for 

 
The algorithm first computes joint prior probabilities 

for all corresponding pixel intensities in left and right 
images without considering any disparities, in a straight-
forward fashion: 
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where Il, Ir are the intensity of corresponding pixels. 
Prior probabilities are computed using h, the 2D histo-
gram of corresponding pixel intensities. 

Next, we compute the cost matrix for all pixels by 
computing MI (negative of the MI measure is used) us-
ing the proposed adaptive windowing scheme as: 
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where �cl and �cr are distances to the border of the seg-
ment which the current pixel (r,c) belongs to, and the 
window is enlarged by �, the assumed thickness of dis-

continuity at the images on the segment border (Figure 
2). �r similarly provides the window size in vertical di-
rection and it is currently a user configured parameter (� 
5 pixels) determined experimentally. We did not consider 
the segment borders in the vertical direction since the 
segment plane may not be a fronto-planar surface and 
may confuse the cost calculation. We applied the same 
window to the right image by moving the window for 
each candidate disparity d.  
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Figure 2. Adaptive window calculation 

 
After we determine the adaptive windows to be 

matched, we compute MI between the two windows (WL, 
WR) using the segment information and the prior prob-
abilities as: 
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where joint probabilities are computed using the adaptive 
correlation surface that we developed (Pw), which is in-
corporated with prior probabilities [12] (Pprior) as below: 
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The correlation surface enabling joint probability cal-
culation is another key contribution of ours for the MI 
cost calculation, where the joint histogram is calculated 
by considering pixels within the current segment in the 
window and the pixels nearby the edge of the segment 
as: 
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The L1 distance term (Figure 3) in Eq. 9 incorporates 
the pixels near the segment borders to MI calculation 
with some penalty due to possible occlusions around 
borders and this way we managed to consider both the 
segment and the edges excluding other segments within 
the rectangular window in MI measure computation. 

 

 

Figure 1. Overview of the 
Method 
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Figure 3. Adaptive MI computation surface using 
segmentation 

 

Step3-Computation of Disparity Planes: In this step, 
we first compute the WTA (“winner take all”) 
disparities for all pixels by selecting the disparity with 
minimum cost for all pixels in the cost matrix. Later, 
we fit planes to WTA disparities in a segment using 
RANSAC [22].  

 However, we perform this iteratively by splitting 
segments if the outliers of the computed plane 
constitute regions of size greater than a designated 
threshold. This way, we reduce the dependency of the 
performance of the algorithm on the initial 
segmentation. 

3. Results & Discussion 

Regarding the Middlebury images [20], it is possible 
to compute the performance statistics with the ground 
truth provided for unimodal stereovision as percentage of 
bad pixels having the disparity error greater than a des-
ignated threshold. In Table 1 & Table 2, we generated the 
percentage of bad disparities (disparity error > 1 pixel) 
for a set of Middlebury images [20], although, the im-
ages are synthetically altered (cos (I*�/255)) for the left 
images. Table 1 includes the Winner-Take-All (WTA) 
results and Table 2 includes the final disparity planes 
fitted to segments. In each table, we also provide the 
statistics computed when no adaptive windowing is used 
but rather, a regular rectangular window extracted from 
the neighborhood of corresponding pixels are used for 
MI measure computation. 
 

Table 1. Results on Synt. Altered Middlebury Images 
for WTA Disparity Selection 

Image* Adap. Bad  
(all) 

Bad  
(nocc) 

Bad  
(disc) 

Tsukuba No  17.7% 16.1% 24.7% 
 Yes 6.6% 5.6% 16.7% 

Venus No  26.0% 24.8% 40.7% 
 Yes 10.5% 9.7% 20.0% 
Teddy No  43.3% 36.9% 45.1% 
 Yes  36.2% 29.9% 36.6% 
Cones No  35.8% 27.8% 40.2% 

 Yes 28.3% 20.0% 30.7% 
*none-adaptive method window size=11, adaptive method 

vertical window size=11 
 

 
Table 2. Results on Synt. Altered Middlebury Images 

for Disparity Plane Computation 
Image* Adap. Bad  

(all) 
Bad  
(nocc) 

Bad  
(disc) 

Tsukuba No 16.8% 15.4% 24.9% 
 Yes 6.2% 5.4% 16.7% 

Venus No 24.9% 23.6% 39.1% 
 Yes 11.8% 11.1% 20.1% 
Teddy No 43.4% 37.0% 44.5% 
 Yes 36.1% 30.0% 37.5% 
Cones No 34.5% 26.5% 39.0% 

 Yes 28.0% 19.9% 30.5% 
*none-adaptive method window size=11, adaptive method 

vertical window size=11 
 
In Figure 4, we provide an example Middlebury image 

pair, along with adaptive and non-adaptive window dis-
parity plane results with the initial and final 
segmentations after the disparity plane computation step. 

Figure 4. Results on a synthetically altered Mid-
dlebury image (see text for details). 

 
As can be observed from both visual and statistical 

results, significant progress is achieved by the method 
when compared to a non-adaptive local window MI cal-
culation scheme for multi-modal stereovision. 

 In Figure 5, we provide sample results from Kinect 
data, including Kinect’s native depth image and our 
none-adaptive and adaptive method result disparity im-
ages for visual comparison. We see that our method 
again improves the disparity map compared to the 
fixed-window MI method. Moreover, we observe that the 

L1 distance 
to Segment 
border 

l(r,c) – any 
neighbor 
pixel 

lc(r,c) – window center 

Si(lc) – Segment of window 
center pixel 

 

(a) Left Image 

 

(b) Right Image 

 

(c) Ground Truth 

 

(d) Initial Segmentation 

 

(e) No Adaptive 
Windowing Result 

 

(f) Adaptive Windowing 
Result 
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disparity map generated by our method can be used to 
improve the quality of the depth calculated by Kinect, 
especially on edges and non fronto-planar surfaces. 

 

 Figure 5. Results on a Kinect captured image pair 
(*brighter pixels has more depth)  

4. Conclusion 

In this paper, we proposed a multi-modal stereovision 
framework using novel adaptive-window based MI 
similarity. On synthetically altered Middlebury database 
and a set of Kinect-captured RGB-IR image pairs, we 
show that our method can improve over MI-based simi-
larity. We have also developed an energy-based 
optimization method and observed similar improvements 
(results not provided). 
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(a) Left Image (IR) 

 

(b) Right Image (RGB) 

 

(c) Kinect’s Native Depth 
Image * 

 

(d) Initial Segmentation 

  

   (e) No Adaptive 
Windowing Result Disparity 

(f) Adaptive Windowing 
Result Disparity 
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