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Abstract

We propose a method for computing disparity maps from a multi-modal

stereo-vision system composed of an infrared-visible camera pair. The method

uses mutual information (MI) as the basic similarity measure where a segment-

based adaptive windowing mechanism is proposed along with a novel MI

computation surface. The computed cost confidences are aggregated using s

novel adaptive cost aggregation method, and the resultant minimum cost dis-

parities in segments are plane-fitted in their respective segments. Finally, the

estimated disparities are iteratively refined by merging and splitting segments

according to the confident disparities, and in order to reduce the dependence

of the disparity computation upon the initial segmentation, all these steps

(i.e., MI computation, cost aggregation, plane fitting, segment splitting and

merging) are repeated. On an artificially-modified version of the Middlebury

dataset and a Kinect dataset that we created in this study, we show that (i)

our proposal improves the quality of existing MI formulation, and (ii) our
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method can provide depth comparable to the quality of Kinect depth data.

Keywords: multi-modal stereo-vision, mutual information, adaptive

windowing, adaptive cost aggregation, iterative stereo, RGB-D

1. Introduction

(a) (b)

Figure 1: An example illustrating the difficulty of finding correspondences in an IR-RGB

image pair. (a) The RGB image. (b) The IR image. [Best viewed in color].

Using multi-modal cameras for surveillance systems has been popular

since the year 2000 [1, 2, 3, 4] since using cameras of different modalities,

such as a pair of infrared and visible cameras, has advantages over using

unimodal cameras in surveillance systems. These advantages include being5

able to work under low visibility or lighting conditions, better segregation of a

target from the background, allowing a richer set of information like thermal

signatures in the scene or the different reflectance properties of objects in

different bands of the electromagnetic spectrum etc. When considering to
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enhance the performance and usefulness of such multi-modal systems, the10

question of whether stereo-vision from multi-modal cameras can yield an

accurate depth information or not has attracted well-deserved attention. One

reason for this attention is that, for such systems, the distance of an intruder

or the depth map of the scene under surveillance is very valuable.

A powerful method for computing depth from multiple cameras is stereo-15

vision. Stereo-vision [5, 6] deals with computing depth by finding the corre-

sponding pixels in different views. The correspondences, which are generally

determined by comparing intensities of pixels, are used for computing the 3D

positions using simple triangulation. It is one of the most studied problems of

Computer Vision - for reviews, see [5, 7, 8, 9, 10, 11]. Stereo-vision methods20

are mainly clustered around two main axes: Sparse or feature-based methods

(e.g., [8, 18]) vs. dense methods (e.g., [10, 19] ); and local methods (e.g.,

[20, 22]) vs. global methods (e.g., [29, 31]) . The former grouping describes

whether correspondences (and therefore the pixel disparities) are computed

for all the pixels in the images (i.e., the dense methods), or only for some25

reliable features (such as salient points, edges, corners, curves etc.) extracted

from the images. Regarding the latter grouping, local methods use only the

local neighborhood and intensity information for finding stereo correspon-

dences. Global methods, on the other hand, use global constraints to correct

false correspondences that would be otherwise impossible to correct locally.30

Although classical stereo-vision techniques have had tremendous success

in terms of both accuracy and running time, they are not directly applicable

in a multi-modal setting. The reason is that computing similarities between

intensities of pixels or windows will not work using unimodal matching meth-
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ods simply because the intensities of the corresponding pixels will be differ-35

ent. For example, an RGB-thermal image pair would have totally different

intensities for corresponding pixels (see, e.g., Figure 1). This study aims to

investigate how to compute reliable stereo correspondences for such an image

pair and compute its depth information.

1.1. Related Studies40

Stereo-vision from multi-modal cameras was not studied much until the

2000’s. The earliest of such studies, per the authors’ knowledge, is from Eg-

nal [22], who, influenced by Viola’s studies of multi-modal registration [33],

applied mutual information (MI) as the basic similarity measure for stereo

correspondence. Egnal tested his method on images that were made multi-45

modal by red-blue filtering or altering the illumination of the different views.

The results were promising and revealed the power of MI compared to stan-

dard correlation-based methods, especially on images with different spectral

characteristics. However, using MI still not produced depth information of

sufficient quality.50

Fookes et al. extended the MI-based approach with adaptive window-

ing [34] and integrated prior probabilities using a 2D matching surface [35].

However, their methods were only tested on synthetically-altered unimodal

images, which do not actually include different segmentation or the edge

characteristics that genuine multi-modal images have. Nonetheless, Fookes’s55

contributions are important for showing that stereo-vision using mutual in-

formation could be significantly enhanced when combined with other state-

of-the-art stereo-vision techniques.

Later, Krotosky and Trivedi [1, 2, 3] used mutual information for an
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infrared-visible camera pair in order to detect and track pedestrians. They60

applied mutual information for stereo correspondence within regions of inter-

ests (ROI) including human bodies, and proposed a disparity voting method

for computing the final depth information of the corresponding regions as a

significant restriction. Finally, this depth information was used to accurately

register the multi-modal images for the ROIs.65

In a very recent work on multi-modal stereo-vision, Campo et al. [36]

proposed an MI-based method where the similarity measures were extended

using the gradient information. They developed a multi-modal stereo rig

(with thermal and visible cameras) and a database. The 3D depth results

presented in their work were quite sparse for the scenes tested; however, their70

results are promising for showing that stereo-vision is possible from images

with very distinct spectral characteristics.

Recently, a measure, called local self similarity (LSS), originally proposed

for image template matching [37], has been applied as a thermal-visible stereo

correspondence measure by Torabi and Bilodeau [38]. They implemented a75

ROI-based image matching system by tracking people in the scene according

to their silhouettes, and compared it against MI-based similarity descriptors.

In their first publication [39], they showed that the LSS measure outperforms

MI and HoG (Histogram of Oriented Gradients). Later, they used the LSS

measure in an energy minimization framework, enhancing the results when80

compared to their previous work [40]. In a recent study [41], with more data,

they compared LSS and MI with (i) “traditional” descriptors such as SIFT,

SURF, HOG, (ii) binary descriptors such as Census, Fast REtina Keypoint

(FREAK) or Binary Robust Independent Elemantary Feature (BRIEF) and
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(iii) direct comparisons of windows based on SSD, NCC. In their study, MI85

and LSS were shown to be the leading measures for ROI-based image match-

ing of human silhouettes. MI outperformed LSS showing that it is still the

best choice for multi-modal image windows matching; however, for smaller

window sizes where the objects of interest were small or segmented into small

fragments or there were many occlusions between objects, LSS performed90

better. On the other hand, LSS measure has not yet been tested for a dense

disparity map estimation and still requires larger windows than is used in our

study. Moreover, it is computationally more expensive, and performs poorly

on uniform regions or small regions at salient points that are dissimilar to

their neighboring regions [38]. Such regions constitute non-informative de-95

scriptors and for this reason, they are eliminated in the beginning of their

method, which makes their method sparse, i.e., not suitable for dense dis-

parity map calculation.

1.2. The Current Study

In this article, we propose a new multi-modal stereo-vision method based100

on mutual information which can accurately generate dense disparity maps of

images taken from cameras of different modalities. The method is compared

to previous MI-based methods in the literature quantitatively and visually,

and it is shown to outperform them. The contributions of the article are

summarized as follows:105

• Contribution of two datasets for evaluating multi-modal stereo-vision

methods. One is based on cosine-transformed versions of the widely-

used Middlebury Stereo Evaluation Dataset [32], and the other is col-

lected from the RGB and IR cameras of a Kinect device.
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• Adaptive computation of the window used in computing the cost ma-110

trix. The adaptively sized and shaped windows for matching the pixels

are determined by the segments in the images, and in turn, these win-

dows help generate a robust correlation surface when computing joint

probabilities to be used in calculating joint entropy and the mutual

information similarity metric.115

• Adaptive aggregation of raw costs for all pixels, enabling us to deter-

mine stable disparities, which are used for fitting planes in a segment.

• An iterative method which uses the estimated disparities for re-calculating

the prior probabilities in MI calculation, and repeating the subsequent

steps (i.e., cost estimation, cost aggregation, plane fitting, and segment120

splitting and merging).

This study extends an earlier version of our article [45] where only the

preliminary results on for the adaptive windowing mechanism were presented.

The current article differs mainly in the following aspects - see also Figure

2: (i) The method is now iterative, (ii) an adaptive cost aggregation method125

is proposed using confidences of disparities (iii) the segments are split and

merged using confidence information of disparities and the disparity planes

fitted, thus reducing the dependence of the method to the initial segmenta-

tion.

2. Methodology130

The overview of our method is depicted in Figure 2. Our method takes

as input a pair of rectified multi-modal images, satisfying the epipolar line
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constraint so that correspondences can be found on horizontal scanlines. The

initial step is to segment the left(IR) image. Next, the cost matrix for all

candidate matching pixels in each scanline of the rectified image pair accord-135

ing to designated maximum disparity is computed by the MI computation

algorithm using the adaptive windowing method proposed uniquely in this

study. Later, the raw costs are adaptively aggregated using confidence met-

rics and segmentation information. Next, the disparity planes corresponding

to segments are computed from the stable pixels where the outliers of each140

disparity plane are inspected for segment splitting. Finally, the segments are

inspected for merging with a neighboring segment by comparing the similar-

ities between the associated disparity planes. The new iteration uses refined

segmentation and the current disparity map for the new disparity plane com-

putation. In the following subsections, each of these steps are explained in145

more detail. Table 1 provides definitions of the symbols used throughout the

article.

2.1. Segmentation of the IR Image

We segment the IR image since the rest of the processing will rely on

this segmentation. The reason for segmenting only the IR image is that the150

surfaces in IR images are also common in the RGB images, but the reverse is

not true (see Figure 1) since RGB images contain more detailed and textured

surfaces which do not exist in the IR images of our datasets. With this step,

we get non-overlapping segments representing homogeneous regions in the IR

image (see Figure 3). We assume that each segment corresponds to a planar155

surface in the scene, which is a common assumption in segmentation-based

stereo-vision techniques [46, 47, 48, 49, 50, 51, 52].
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Figure 2: Overview of our method. The red (filled) stars are the extensions over the

preliminary version of our work [45], and the yellow (empty) stars are the steps that are

modified compared to our previous work. [Best viewed in color]

We use the Synergistic Image Segmentation algorithm [53] for segmenting

the IR image. This method incorporates an edge magnitude/confidence map

into the mean-shift segmentation algorithm [54] enhancing the results espe-160

cially on weak edges, hence, separating the objects better. The algorithm

makes use of the parameters of the mean shift segmentation algorithm; the

spatial bandwidth hs, the feature (range) bandwidth hr, and the minimum

segment size M as well as the size of the gradient window n used, the mixture

parameter for blending of gradient magnitude aij, and the threshold for the165

discontinuities te - see [53] for the details.

2.2. Computation of the Cost Matrix

The computation of the cost matrix is the key step in this study, repre-

senting a significant part of our contributions (see Algorithm 1). The inputs
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 3: The intermediate steps. (a) WTA disparities of raw costs with No-Adaptive

Windowing - 1st iteration. (b) WTA disparities of raw costs with Adaptive Windowing -

1st iteration. (c) WTA disparities after adaptive cost aggregation - 1st iteration. (d) Plane

fitted disparities - 1st iteration. (e-h) Resultant plane-fitted disparities for iterations 1-4.

(i) The initial segmentation of the left image. (j-l) The input segmentations for iterations

2-4 (after the segment splitting and merging steps are applied in the previous iteration).

(m-p) Edge map of the corresponding input segmentation at each iteration. [Best viewed

in color]
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Table 1: List of notations and acronyms.

Symbol Definition Symbol Definition

L Left (IR) image lc current center pixel in left image

R Right (RGB) image Conf Confidence map regarding calculated costs

(i) Iteration number (i ∈ [0, N ]) c1 Min. cost of the candidate disparities

S Segmentation c2 Second min. cost of the candidate disparities

C Cost matrix ρ Ceiling value for the maximum confidence

D Disparity map w Weights for performing cost aggregation

MI Mutual Information b Half-size of the window for cost aggregation

WTA Winner Takes All SD Spatial Distance

x Column number of a pixel DD Disparity Distance

y Row number of a pixel λSD Designated scaling constant for spatial distance

d Disparity in range [0, dmax] λDD Scaling constant for disparity distance

p Current pixel f Function for subpixel disparity computation

q Neighbor pixel τic Confident inlier disparity threshold

s Segment in (s ∈ S) τir Stable segment ratio threshold

Il Intensities of left image pixels τod Outlier disparity distance threshold

Ir Intensities of right image pixels τos Outlier disparities size threshold

W Local window of computation for a center pixel τoc Confident outlier disparity threshold

ω Assumed thickness of discontinuities in images Plane Set of disparity planes

P Joint Probability α Angle between two disparity planes

Pprior Prior Joint Prob. of Left & Right Images τα Angle threshold for parallel planes

Pwindow Joint Prob. of Left & Right Images τpd Plane to plane distance threshold

λ Ratio of incorporating prior prob. to joint prob. hs Spatial bandwidth in mean-shift segm.

hw Histogram computed for the adaptive window hr Feature (range) bandwidth in mean-shift segm.

T () Counter function for hist. computation M Minimum segment size in mean-shift segm.

L1 L1 distance n Size of the grad. window in syn. image segm.

k Increment of counts for histograms aij Mixture parameter in syn. image segm.

te Threshold value for the edge computation

to the algorithm are the left (IR) image L, the right (RGB) image R, the170

segmentation S(i) (computed from L for the initial iteration and modified for

the following iterations) and the disparity map D(i) (D(0) = 0, and otherwise,

D(i) is the disparity map generated disparity map in the previous iteration).

Algorithm 1 first computes joint prior probabilities for all corresponding

pixels in left and right images using the current disparity map (for the sake175

of simplicity, in the rest of the section, the current iteration superscript ((i))
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Algorithm 1 Cost matrix computation.

Inputs: L : Left (IR) Image

R : Right (RGB) Image

S(i) : Input segmentation (i ∈ [0, N ] : iteration)

D(i) : Input disparity map (D(0) is zero)

Outputs: C(i) : The cost matrix

1: Compute P
(i)
prior(L,R,D

(i)) //See Eqn. 1

2: for y = 0 to height do

3: for x = 0 to width do

4: for d = 0 to dmax do

5: C(i)(x, y, d)← −M
(
WL(x, y),WR(x− d, y), S(i), P

(i)
prior

)
// see Eq. 8 for M()

6: end for

7: end for

8: end for

9: return C(i)

is omitted since all the variables are for the current iteration):

Pprior(Il, Ir) =
h(Il, Ir)∑
l,r h(Il, Ir)

, (1)

where Il, Ir are respectively the intensities of the pixels l(i, j) ∈ L and the

corresponding pixel r(i, j − D(l)) ∈ R. Prior probabilities are computed

using h(), the 2D histogram of all the corresponding pixel intensities.180

Next, we compute the cost matrix for all pixels by computing MI (the

negative of the MI measure is used as the cost) using the proposed adaptive
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windowing scheme as:

WL(x, y) = L(xmin : xmax, ymin : ymax), (2)

xmin = x− δxl − ω, (3)

xmax = x+ δxr + ω, (4)

ymin = y − δy, (5)

ymax = y + δy, (6)

where δxl and δxr are distances to the border of the segment to which the cur-

rent pixel (x, y) belongs, and the window is enlarged by ω, the assumed thick-185

ness of discontinuity at segment borders (Figure 4). δy similarly provides

the window size in the vertical direction and it is currently a user-configured

parameter (δy ≤ 4 pixels for the Middlebury database) determined experi-

mentally. We did not consider the segment borders in the vertical direction

because the segment plane may not be a fronto-planar surface and may con-190

fuse the cost calculation. We applied the same window to the right image by

moving the window for each candidate disparity d.

WR(x, y) = R(xmin − d : xmax − d, ymin : ymax). (7)

After we determine the adaptive windows to be matched, we compute MI

between the two windows using the segment information and the prior prob-

abilities as:195

M(WL,WR, S, Pprior) =
∑
W

P (Il, Ir) ln
P (Il, Ir)

P (Il)P (Ir)
, (8)

where joint probabilities are computed using the adaptive correlation surface

that we developed and the prior probabilities incorporated just as Fookes did
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Figure 4: Adaptive window calculation.

[35] as follows:

P (Il, Ir) = λPwindow(Il, Ir) + (1− λ)Pprior(Il, Ir). (9)

The correlation surface enabling joint probability calculation is another key

contribution of our study to the MI cost calculation, where the joint his-200

togram is calculated by considering the pixels within the current segment in

the window and the pixels nearby the edge of the segment as:

Pwindow(Il, Ir, S) =
hw(Il, Ir, S)∑
w hw(Il, Ir, S)

, (10)

hw(Il, Ir, S) =
∑
w

T (Il, Ir, S), (11)

(12)

where the T () function is defined as follows:

T (Il, Ir, S) =



k if S(l) = S(lc) & L1 > ω

k − k
exp(L1)

elif S(l) = S(lc) & L1 ≤ ω

k
exp(L1)

elif L1 ≤ ω

0 otherwise

(13)
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Figure 5: Adaptive MI computation surface using segmentation.

where L1 = ‖l−S(lc)‖ is the L1 distance between the neighbor pixel l within

the generated window and the border of the segment to which the current205

pixel lc belongs; and ω is the assumed thickness of the segment border as

was defined in Equation 2.

The use of L1 distance (Figure 5) in Eq. 13 incorporates the pixels near

the segment borders into the MI calculation with some penalty due to possible

occlusions around borders. This allowed us to consider both the segment and210

the edges excluding other segments within the rectangular window in our MI

measure computation.

2.3. Adaptive Cost Aggregation

In this step, our major concern is to detect, revise, and reduce those

un-confident cost estimates computed in the previous step and causing the215

majority of incorrect winning disparities in the WTA or in the subpixel dis-

parity calculations. We use cost confidence measures to detect un-confident

costs computed for the pair of corresponding pixels and for this purpose, a
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modified version of the confidence measure that was used in [50] is proposed

as:220

Conf(x, y) = min

(
|c1 − c2|
|c1|

, ρ

)
, (14)

where c1 is the minimum cost within the disparity range [0..dmax], and c2 is

the second minimum cost. The ratio of the minimum and the second mini-

mum cost value margin to the minimum cost value is used as the confidence

measure and the obtained values are truncated with respect to some pre-

determined value ρ. This way, higher confidence values are prevented from225

dominating the cost aggregation step. Figure 6 shows confidence values.

Figure 6: Cost confidences for Tsukuba (scaled and truncated to [0..255] range for the

sake of visibility).

We perform cost aggregation by visiting all the pixels p in the initially

computed cost matrix C(i)(p, d) (see Algorithm 1) and aggregating the costs
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according to the following weights within a local neighborhood for all the

disparities d in range [0..dmax]:230

C(i)
agg(p, d) =

∑
q∈wp

w(p, q)C(i)(q, d), (15)

where wp is a square support window of size (2b + 1) × (2b + 1) (b: the

half window size) where the costs of the same disparity in the neighborhood

are aggregated by a weighting mechanism which incorporates the current

segmentation effectively as:

w(p, q) =

{
Conf (i)(q) if S(i)(p) = S(i)(q)

Conf (i)(q) exp(−(SD(p,q)
λSD

+ DD(p,q)
λDD

)) if S(i)(p) 6= S(i)(q)
(16)

where Conf (i)(q) is the confidence of aggregating pixel q (See Eqn. 14);235

SD(p, q) is the spatial distance between pixels p and q; DD(p, q) is the WTA

(winner takes all) disparity distance of initial costs C(i) between pixels p and

q; λSD and λDD are the designated scaling constants for the spatial distance

and the disparity distance.

Therefore, the proposed scheme aggregates costs of neighboring pixels240

within the same segment according to the confidence of aggregating pixels

while penalizing aggregating weights according to their spatial distance and

their WTA disparity distances of initial costs for the pixels in the neighboring

segments.

2.4. Computation of Disparity Planes245

In this step, the main idea is to fit planes to the segments using disparities

of confident pixels in the aggregated disparity map yielding disparity planes

as the final disparity map. Algorithm 2 shows the major steps of the method

proposed in this step.
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Algorithm 2 Computation of disparity planes.

Inputs: S(i) : Segments of current iteration, (i ∈ [0, N ]: iteration)

C
(i)
agg : Aggregated cost matrix, (refer to Section 2.3)

Outputs: S
(i)
final : Revised segmentation,

D
(i)
final : Disparity map computed from the fitted planes

1: D
(i)
agg ← WTA disparity map corresponding to C

(i)
agg aggregated cost matrix

2: D
(i)
aggsub ← D

(i)
agg + f(C

(i)
agg) //estimate subpixel disparities - Eq. 18

3: D
(i)
aggsub,m ← medWm

(D
(i)
aggsub) //3x3 median filter to subpixel disparities

4: Conf
(i)
agg ← Compute confidences for aggregated cost matrix C

(i)
agg

// Eq. 14

5: (S
(i)
split, P

(i)
split)← Perform iterative segment splitting step

using (D
(i)
aggsub,m, S(i), Conf

(i)
agg) // Alg. 3

6: (S
(i)
final, P

(i)
final, D

(i)
final)← Perform segment merging & finalization step

using (D
(i)
aggsub,m, S

(i)
split, P

(i)
split, Conf

(i)
agg) // Alg. 4

7: return (S
(i)
final, D

(i)
final)

The inputs for the algorithm are the segmentation for current iteration250

S(i) and the aggregated cost matrix C
(i)
agg (computed as described in the pre-

vious step - Section 2.3). Below, each step of the algorithm is described in

detail:

1. WTA of aggregated costs: The Winner Takes All (WTA) dispar-

ities D
(i)
agg corresponding to the aggregated cost matrix C

(i)
agg that was255

computed in the previous step (See Equation 15) are computed in the

first step.

2. Subpixel disparity computation: For the next step, the subpixel

disparity estimates (D
(i)
aggsub) are computed using the aggregated cost

matrix C
(i)
agg by fitting a parabola to the minimum cost disparity in D

(i)
agg260
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Algorithm 3 Iterative plane fitting & segment splitting.

Inputs: D : Input disparity map

S : Initial segmentation map

Conf : Confidences of the disparities

Outputs: S : Revised segmentation,

PlaneS : Fitted disparity plane equations for each segment

1: repeat

2: for all segment s ∈ S do

3: repeat

4: Cloud ← {(p, d) | ∀p ∈ s, d = D(p), Conf(p) > τic} //extract the point cloud of confident

pixels p in s

5: if size(Cloud) < 4 or size(Cloud)/size(s) < τir then

6: stable(s)←FALSE

7: else

8: stable(s)←TRUE

9: Fit plane PlaneS(s) to Cloud using RANSAC

10: OutCloud← {(p, d) | ∀p ∈ s : d = D(p), |d−PlaneS(s, p)| > τod} //extract outlier point

cloud of disparities according to fitted plane

11: if (size(OutCloud) > τos) then

12: OutCloud2← {(p, d) | ∀(p, d) ∈ OutCloud,Conf(p) > τoc}

13: Split segment s for all the connected subsets of OutCloud2

14: Append splitted segments to segments list S

15: end if

16: end if

17: until segment s is not splitted

18: end for

19: Re-compute segments map S //since new segments can break bigger segments to two or more

disconnected sub-segments

20: until no segment splitting performed

21: return (S,PlaneS)

and the two neighboring cost values and then analytically solving for

the minimum.

Therefore, defining d as the integer disparity of minimum cost (the

WTA disparity) in the cost matrix C within the disparity range d0 to
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Algorithm 4 Segment Merging and Finalization
Inputs: D : Input disparity map

S : Input segmentation map

Conf : Confidences of the disparities

PlaneS : Fitted disparity planes for segments

Outputs: S : Revised segmentation by merged segments

PlaneS : Fitted disparity plane equations for each segment

DPlane : Disparity map computed from fitted disparity plane equations

// Phase 1: merge stable segments & retry for unstable segments

for all segment s ∈ S do

if stable(s) =TRUE /* See Algorithm 3 */ then

for all s′ ∈ Ω(s) {Ω(s): neighboring segments of s} do

if cop(s, s′) =TRUE /* Coplanar planes - See Equation 20 */ then

s← Merge(s, s′) //Segments are merged

merged(s)← TRUE

S ← S − s′ //remove s′ from set S since it is merged with s

end if

end for

else if stable(s) =FALSE then

repeat

τic2 ← τic ∗ λτic //Decrement confidence threshold by λτic ∈ (0, 1)

Re-compute plane fitting PlaneS(s) for Cloud where: Cloud← {(p, d) | p ∈ s, d = D(p), Conf(p) > τic2}

if size(Cloud) < 4 or size(Cloud)/size(s) < τir then

stable(s)←FALSE

else

stable(s)←TRUE

end if

decrement(λτic , γ) //Decrement λτic by γ ∈ (0, 1)

until (λτic2 = 0) or (stable(s) =TRUE)

end if

end for

// Phase 2: recompute plane fits for merged segments

for all (segment s ∈ S) and (stable(s) =TRUE) and (merged(s) =TRUE) do

Re-compute plane fitting PlaneS(s) for Cloud where Cloud← {(p, d) | p ∈ s, d = D(p), Conf(p) > τc}

end for

//Phase 3: compute final disparity map

for all segment s ∈ S do

if stable(s) =TRUE then

Compute disparities DPlane(s) for pixels in segment s using fitted plane equation Plane(s)

else if stable(s) =FALSE then

Set disparities DPlane(s) for pixels in segment s to original disparities in input D(s) // for segments which are

still unstable

end if

end for

return (S,PlaneS ,DPlane)
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dmax;265

d = arg min
di∈{d0,...,dmax}

C(di). (17)

The subpixel disparity estimate is defined as:

dsub = d+ f(C(d− 1), C(d), C(d+ 1)), (18)

where f is the function for parabola interpolation defined as:

f =
C(d− 1)− C(d+ 1)

2(C(d− 1)− 2C(d) + C(d+ 1))
. (19)

This way we have floating point disparity values with more smooth

transitions within the segment in which plane-fitting is performed.

3. Median filtering: Next, a median filter is applied to the subpixel270

disparities so that noisy disparities are eliminated (yielding D
(i)
aggsub,m),

if there are any. This step improves the quality of the planes fitted to

disparities.

4. Compute confidences of the aggregated cost matrix: The con-

fidence values (Conf
(i)
agg) corresponding to the aggregated cost matrix275

C
(i)
agg is computed in order to take into consideration only the confident

pixels in the subsequent steps.

5. Iterative segment splitting: In the next step, the confident dispar-

ities within the segments are plane fitted and the outlier disparities

are re-evaluated by splitting the segments. The step is iteratively re-280

applied for the new segmentation map (S
(i)
split) until no further segment

splitting occurs - see Section 2.4.1 for the details of this step.

6. Segment merging & finalization: Finally, the split segments (S
(i)
split)

and corresponding disparity planes (P
(i)
split) are inspected for finalization
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by (i) merging neighbor segments which are co-planar at the same dis-285

parity level and (ii) refining unstable segments that may be generated

during the segment splitting operations or which may have an inad-

equate number of confident pixels to be able to compute a disparity

plane (i.e., when the number of pixels <4). The final disparity map

is computed from the resultant segmentation and the corresponding290

segment plane equations - see Section 2.4.2 for the details of this step.

2.4.1. Iterative Plane Fitting and Segment Splitting Step

Algorithm 3 includes the details of this step where the aim is to revise

the input segmentation according to the confident outlier disparities within

the corresponding segments once plane fitting is performed. This way, we295

reduce the dependency of the performance of the algorithm upon the initial

segmentation.

In the algorithm, the disparity plane for each segment in the current

segmentation map S is computed from the confident disparities only. The

plane fitting is performed using RANSAC (RANdom SAmple Consensus -300

[55]). Next, we analyze the outlier disparities in each plane fitted segment

and check whether they constitute connected regions of a significant size; if so,

the outlier region is split out. This operation is performed iteratively until the

segment is no longer split. Finally, in the outer loop, the segmentation map is

re-computed and the above described steps are re-applied since the segments305

may break more than once. This way, the segmentations and the plane

fits are revised iteratively until no further segment splits can be performed.

The algorithm returns the revised segmentation map along with the fitted

disparity plane equations to the segments.
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Algorithm 3 makes use of several thresholds. τic is the disparity confi-310

dence value threshold used to construct the initial point cloud of disparities

from the segment disparities. τir is the stable segment ratio threshold which

determines whether a segment is stable or not by checking the ratio of the

size of the confident disparities point cloud and the segment size. If the size

of the cloud is smaller than 4 pixels then it will not be possible to fit a plane315

and therefore such segments are marked as unstable and left for the next

step for correction. τod threshold is used for determining the outlier points of

the fitted plane which is designed to be greater than the RANSAC distance

threshold parameter used for plane fitting. τos determines the minimum size

of the outlier point cloud of disparities to continue the splitting operation320

and τoc is the confidence threshold for the outlier points which are to be se-

lected for segment splitting. Therefore, to be able to create a new segment by

splitting from the original segment, a connected region whose size is greater

than a designated threshold should be available.

2.4.2. Segment Merging and Finalization of Disparity Planes Step325

This step computes the final segmentation and disparity map of the scene

where the details are presented in Algorithm 4. The step is composed of three

phases: In the first phase, all the stable segments are inspected along with

their neighbors and merged if they are coplanar. The coplanarity of two

disparity planes are defined as:330

cop(s, s′) =

{
1, if (α(s, s′) < τα) and (‖s− s′‖< τpd)

0, otherwise
(20)

which checks if the normals of the planes are parallel (the difference in their

normals α is smaller than a threshold τα) and if they are at the same disparity
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level (the distance between planes is smaller than a threshold τpd). Moreover,

the segments that were marked as unstable are re-evaluated by decrementing

the confidence threshold iteratively.335

In the second phase, the equations for the disparity planes are recomputed

for the merged segments and finally, in the third phase, the disparity of each

pixel is computed from the disparity plane equations, except for the still-

unstable segments where the input disparity map is accepted as-is for those

pixels.340

2.5. Iterative Refinement

Finally, we have an updated segmentation map along with its correspond-

ing disparity map computed from the fitted disparity planes for each segment.

We can go over the same steps again, as a new iteration. A new iteration can

use the current disparity map for better estimation of the joint prior prob-345

abilities (see Equations 1 and 9) along with some adjustments that can be

performed with such a priori data. Therefore, this step starts with the seg-

mentation S(i+1) set to resultant segmentation of the current iteration S
(i)
final,

and disparities D(i+1) set to resultant disparity map D
(i)
final for the current

iteration (see Algorithm 2).350

Moreover, for iterations after the first one (i.e., i ≥ 1), we now have the

opportunity to adjust the adaptive window calculation method in Equation

2, where the xmax value can be moved back in the direction of the center

pixel if the right neighboring segment has a disparity level higher than the

current segment. In such a case, how much xmax is shifted is determined by355

the difference in the disparity levels of the segments. This enables us to not

use the pixels in the right segment when the same window is applied to the
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right image for correspondence matching.

3. Experiments and Results

In this section, we test our method on the two datasets generated. The360

synthetically altered sets from the Middlebury Stereo Dataset [56] and the

RGB-IR images captured from a Kinect device.

3.1. Dataset #1 - The Middlebury Dataset

This dataset contains the four popular image pairs (Tsukuba, Venus,

Cones and Teddy) in the Middlebury Stereo-vision Dataset [56], where the365

left images are synthetically altered by using a cosine transform (cos(πI/255))

of pixel intensities just as Fookes did [35]. See Figure 7 for the image pairs

used in the experiments. Note that, in the left images, important details

are lost due to the cosine transformation. In our experiments, we used the

non-occluded regions and discontinuity regions “as is” as provided by the370

Middlebury page [56]1. Figure 8 shows the “all” regions used for evalu-

ating the results. For the experiments in the Middlebury set, we use the

empirically-set parameters listed in Table 2. The parameter values were de-

termined experimentally except for the histogram binning Size(hw) and λ for

1Regarding the “all” regions, we performed clipping on the left border for the regions

that do not exist in the right image because we do not perform any extrapolation for those

regions. Besides, in Teddy and Cones, image borders are also excluded for 20 pixels as

they were for Tsukuba & Venus since this is a window-based method. This decision was

explained in the description page of “Middlebury Stereo-Vision Evaluation Version 2”

[57] item-5 in the section describing differences to the “old table”.
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joint prior probability incorporation which was already analyzed by Fookes375

in [35]

Figure 7: Tsukuba, Venus, Teddy and Cones stereo pairs from the Middlebury Stereo

Vision Page - Evaluation Version 2. Left column: Synthetically altered left images. Middle

column: The right images. Right column: The ground truth disparities. Note that, in the

left image, important details are lost due to cosine transformation.
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(a) (b) (c) (d)

Figure 8: Regions where evaluations are performed, including both non-occluded and

discontinuities: the “all” regions provided as “white pixels” for Tsukuba (a), Venus (b),

Teddy (c), and Cones (d) pairs.

Table 2: Parameter Settings Used in Dataset #1 (Synt. Altered Middlebury) Experiments.

Segmentation
hs hr M n aij te

7 6 50 7 0.5 0.2

Adaptive Windowing
δy λ ω Size(hw) k

4 0.3 1 40 5

Adaptive Cost Aggregation
ρ λSD λDD Size(w(p, q))

0.25 1 1 17x17

Iterative Plane Fitting & Segment Splitting
τic τir τod τos τoc

0.007 0.25 1.0 20 0.014

Segment Merging & Finalizing
τα (o) τpd γ

0.1 0.15 0.25

Table 3 shows the performance of the proposed method for each step of (i)

adaptive windowing (Section 2.2)(ii) cost aggregation (Section 2.3) (iii) plane

fitting (Section 2.4) without any iterations yet. The resulting disparity maps

of adaptive windowing and cost aggregation steps are computed as Winner380

Take All (“WTA”) disparities where the disparity having the minimum cost is

selected. The performance metrics are computed in terms of both RMS (root

mean squared) error and the Bad pixels (i.e., percentage of bad matching

pixels). These metrics are computed between the estimated disparity map

27



dC(x, y) and the ground truth dT (x, y) as follows [10]:385

RMS =

√√√√ 1

N

∑
(x,y)

|dC(x, y)− dT (x, y)|2, (21)

Bad =
1

N

∑
(x,y)

(|dC(x, y)− dT (x, y)| > δd) . (22)

The error threshold value δd for the Bad pixels metric is set to 1.5 disparity

distance as was performed in the Middlebury Stereo Vision Evaluation Page

(in the description page [57] for non-integer subpixel disparities unless they

are rounded).390

As one can observe in the results, the WTA results after cost aggregation

improve the disparity estimation of the adaptive windowing step. Plane-

fitting, however, improves the RMS values of the estimated disparities in

all image pairs. The bad matching percentage is almost the same as WTA

of cost aggregation in Tsukuba image pair, composed of fronto-parallel sur-395

faces, while it is worse in Teddy image pair, which includes mostly curved

surfaces, whereas for Venus, which is only composed of planar surfaces, the

bad matching percentage improves significantly. We also observe that, for

discontinuities, the performances can get slightly worse due to the fact that,

in the initial segmentation of the cosine transformed images, some of the400

edges may get lost, generating inaccurate disparities within those regions.
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Table 3: Results of the Proposed Method on Synt. Altered Middlebury Images for WTA

of Adaptive Windowing Costs, WTA of Adaptively Aggregated Costs and Plane Fitting.

Image* Method RMS RMS RMS Bad Bad Bad

(all) (nonocc.) (disc.) (all) (nonocc.) (disc.)

Tsukuba

WTA of Adap.W. 1.621 1.495 2.419 7.72% 6.64% 16.88 %

WTA of Agg. 1.425 1.315 2.433 6.15% 5.43% 17.09%

Plane Fitting 1.378 1.269 2.484 6.20% 5.47% 18.32%

Venus

WTA of Adap.W. 1.729 1.689 2.464 8.77% 8.09% 25.45%

WTA of Agg. 1.224 1.173 3.259 6.21% 5.54% 27.18%

Plane Fitting 1.003 0.939 2.754 3.42% 2.75% 19.18%

Teddy

WTA of Adap.W. 8.092 5.420 6.570 24.27% 23.69% 31.61 %

WTA of Agg. 7.111 4.100 5.439 19.42% 20.18% 32.24 %

Plane Fitting 6.721 3.543 4.700 24.28% 24.03% 32.72%

Cones

WTA of Adap.W. 10.102 8.384 10.285 27.32% 22.67% 35.24%

WTA of Agg. 7.802 5.715 8.037 19.93% 14.80% 28.25%

Plane Fitting 7.240 5.150 7.359 19.48% 14.58% 27.24%

* adaptive windowing vertical window size=9 and adaptive cost aggregation step window

size =17x17, no iterative refinement yet

Next, we analyze the effect of iterative refinement on the estimated dis-

parities. Figures 9 and 10 show the qualities of the estimated disparities

in 10 iterations following Section 2.5. We see from the figure that the RMS

and bad matching percentage decrease drastically in the second iteration and405

the values more or less stabilize. This suggests that iterating twice over the

disparity estimation steps as suggested in Section 2.5 is sufficient.

Figure 3 shows the resultant WTA disparity maps of non-adaptive win-

dowing costs, adaptive windowing costs, aggregated costs, and plane-fitted

disparities as well as the resultant first 4 iterations of disparity maps, and the410

segmentation maps computed for the Tsukuba image. Figure 11 on the other

29



1,10

1,20

1,30

1,40

1,50

1,60

1,70

1 2 3 4 5 6 7 8 9 10

R
M

S
 

Iterations 

Tsukuba - RMS (all)  

WTA WTA of Agg. Plane Fitting

(a)

4,5%

5,0%

5,5%

6,0%

6,5%

7,0%

7,5%

8,0%

1 2 3 4 5 6 7 8 9 10

%
 B

ad
 (

al
l)

 

Iterations 

Tsukuba - Bad (all)  

WTA WTA of Agg. Plane Fitting

(b)

0,80

1,00

1,20

1,40

1,60

1,80

2,00

1 2 3 4 5 6 7 8 9 10

R
M

S
 

Iterations 

Venus - RMS (all) 

WTA WTA of Agg. Plane Fitting

(c)

2,0%

3,0%

4,0%

5,0%

6,0%

7,0%

8,0%

9,0%

10,0%

1 2 3 4 5 6 7 8 9 10

%
 B

ad
 (

al
l)

 

Iterations 

Venus - Bad (all) 

WTA WTA of Agg. Plane Fitting

(d)

Figure 9: Effect of iterations on RMS and the percentage of bad pixels for “all” regions.

(a-b) Tsukuba pair. (c-d) Venus pair.

hand presents the 2nd iteration (since it was concluded that two iterations

are sufficient) results regarding WTA of aggregated costs and plane-fitted

disparities for the Venus, Teddy, and Cones images.
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Figure 10: Effect of iterations on RMS and the percentage of bad pixels for “all” regions.

(a-b) Teddy pair. (c-d) Cones pairs.

3.2. Dataset #2 - The Kinect Dataset415

The Kinect dataset contains IR (left) and RGB (right) images captured

from a Kinect device. The cameras are first calibrated (using RGBDemo

software with OpenNI backend [58] with a set of 50 checkerboard images

with different poses to find the extrinsic and intrinsic parameters for both

31



(a) (b) (c)

(d) (e) (f)

Figure 11: The Venus, Teddy and Cones stereo pair iteration-2 results. (a-c) WTA of

aggregated costs. (d-f) Plane fitted disparities.

the IR and RGB cameras). The image pairs are stereo-rectified so that the420

Epipolar constraint is satisfied. Table 4 describes the images used in this

part of the article, and Figure 12 shows the images along with the depth

images generated by Kinect.

We compare our results against the depth that Kinect estimates. We

look at two criteria for comparison: (i) “Percentage Good Depth” (PGD):425

Percentage of computed depth values zc that are close to the Kinect’s native

depth zk for different thresholds δz (namely, 10, 20 or 30 cm) where zk is

valid. Note that Kinect’s depth is limited to (0., 5.0] meters which comprises

the valid zk values. (ii) “Percentage Total Coverage” (PTC): The percentage
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Table 4: The Kinect dataset.

Dataset Image Image Resolution Max.

No Name Disparity

Dataset #2 1 Kinect01 640×480 36

Dataset #2 2 Kinect02 640×480 21

Dataset #2 3 Kinect03 640×480 30

Table 5: Parameter Settings Used in Dataset #2 (Kinect) Experiments.

Segmentation
hs hr M n aij te

7 4 300 2 0.3 0.4

Adaptive Windowing
δy λ ω Size(hw) k

18 0.4 2 40 5

Adaptive Cost Aggregation
ρ λSD λDD Size(w(p, q))

0.25 1 1 37x37

Iterative Plane Fitting & Segment Splitting
τic τir τod τos τoc

0.0015 0.25 2.0 200 0.004

Segment Merging & Finalizing
τα (o) τpd γ

0.1 0.15 0.25

of pixels where Kinect does not provide an estimation (zk /∈ (0.m, 5.0m]),430

but our method provides an estimation in the valid range (zc ∈ (0.m, 5.0m]).

Note that, since there is no ground truth available, it is not possible to

provide a quantitative evaluation of which estimation is better, except for

these two criteria.

Table 5 provides the empirically determined parameter settings used in435

these experiments. Figure 13 shows the performance of our method for two

iterations compared to Kinect and respective to each of the method steps.

The graph and the performance figures are generated regarding the mean of

the results achieved for each of the image pair in Dataset#2. The stacked
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Figure 12: Kinect Dataset Images: Left column: Left (IR) camera images. Middle column:

Right (RGB) camera images. Right column: Kinect’s native depth computations

bar representation corresponds to additional pixels covered by the increased440

threshold from 10 cm to 30 cm.

For visual inspection, Figure 14 includes the results using 1st & 2nd

iterations for the WTA of aggregated costs and plane fitting results and

Figure 15 shows 3D views of the Kinect’s native depth, and our computed

depth for all Kinect image pairs.445

From both the statistical and visual evaluation, we observe that the depth

map generated by our method is comparable to Kinect native depth. Further-

more, our method can compute depth information on edges and non-fronto-
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10 cm 42.8%54.8% 44.8%56.4% 44.3%56.0% 46.8%57.9% 46.3%57.7% 50.2%60.2%

20 cm 17.9%14.2% 18.1%14.3% 18.7%14.8% 18.5%14.7% 18.3%14.5% 19.1%15.2%

30 cm 8.3% 6.6% 8.3% 6.6% 8.5% 6.7% 8.2% 6.6% 8.5% 6.8% 8.4% 6.8%

AVERAGE PGD & PTC RESULTS ON DATASET#2 

10 cm 20 cm 30 cm

Figure 13: Average Percentage of Good Depth (PGD) and Percentage Total Coverage

(PTC) results of the proposed method for the image pairs in Dataset#2 for WTA of

Adaptive Windowing Costs (Adap.W.), WTA of Adaptively Aggregated Costs (Agg.),

and Plane Fitting (Plane-fit) for 2 iterations (i). Note that on each line, the above bars

represent PTC results and the bars beneath represent PGD results, and also the stacked

bar representation shows additional depth data covered by the designated threshold [Best

Viewed in Color]

planar surfaces where Kinect depth generation may fail. This suggests that

our method can also be used in combination with Kinect to get better cover-450

age of the scene. Figure 16 shows a merged 3D rendered view of the Kinect

native depth map and the proposed method final depth map for the Kinect01

image in Dataset#2. As the figure suggests, the computed depth data from
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the proposed method can also be used to fill up empty depth information in

the acquired scene.455

(a) Kinect depth (b) WTA of Agg.

(i = 1)

(c) Plane fitting

(i = 1)

(d) WTA of Agg.

(i = 2)

(e) Plane fitting

(i = 2)

(f) Kinect depth (g) WTA of Agg.

(i = 1)

(h) Plane fitting

(i = 1)

(i) WTA of Agg.

(i = 2)

(j) Plane fitting

(i = 2)

(k) Kinect depth (l) WTA of Agg.

(i = 1)

(m) Plane fitting

(i = 1)

(n) WTA of Agg.

(i = 2)

(o) Plane fitting

(i = 2)

Figure 14: Our disparity estimation on the Kinect Dataset compared to native depth of

Kinect: Left column: Kinect’s native depth image (brighter pixels are farther). Second

column: WTA disparity of aggregation results- 1st iteration. Third column: Plane fitting

disparity results - 1st iteration. Fourth column: WTA disparity of aggregation results -

2nd iteration. Last column: Plane fitting disparity results - 2nd iteration.
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(a) Kinect depth (b) WTA of Agg. (i = 2) (c) Plane fittting (i = 2)

(d) Kinect depth (e) WTA of Agg. (i = 2) (f) Plane fitting (i = 2)

(g) Kinect depth (h) WTA of Agg. (i = 2) (i) Plane fitting (i = 2)

Figure 15: The Kinect results compared to native depth as 3D views: Left column: Kinect’s

native depths in 3D views. Middle column: Depth computed from WTA disparity of cost

aggregation results - 2nd iteration. Right column: Depth computed from Plane fitting

disparity results - 2nd iteration.
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(a) Kinect depth (b) Merged depth

Figure 16: Merging Kinect’s depth data with the results of the proposed method. (a)

Kinect depth. (b) Merged depth. Note that invalid depth values in Kinect’s data are

filled with the estimated depth values. [Best Viewed in Color ]

3.3. Comparison with Other Methods

In this section, we compare the performance of our method with existing

MI-based methods in the literature. These methods are: the Egnal’s method

[22], which uses regular (non-adaptive) windows for the computation of MI

measures (called “MI(woPR)” in the rest of the article) and the Fookes’460

method [35], which uses MI incorporating joint prior probabilities (called

“MI(wPR)” in the rest of the article). Table 6 provides the comparison

results for the WTA performances of MI(woPR) and MI(wPR) and the three

main steps of the proposed method; i.e., the adaptive windowing (WTA of

Adap. Wind.), the cost aggregation (WTA of Agg.) and Plane Fitting for465

the 1st iteration and the 2nd iteration.
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Table 6: Comparison with the state of the art methods on Synt. Altered Middlebury

Images. MI(woPR) is MI without prior probabilities [22], and MI(wPR) is MI with prior

probabilities [35].

Image* Method RMS RMS RMS Bad Bad Bad

(all) (nonocc.) (disc.) (all) (nonocc.) (disc.)

Tsukuba

MI(woPR) 3.701 3.660 3.473 31.15% 29.76% 35.02%

MI(wPR) 2.640 2.552 2.812 20.51% 18.99% 24.94%

WTA of Adap.W. (i = 1) 1.621 1.495 2.419 7.72% 6.64% 16.88%

WTA of Agg. (i = 1) 1.425 1.315 2.433 6.15% 5.43% 17.09%

Plane-fit (i = 1) 1.378 1.269 2.484 6.20% 5.47% 18.32%

Plane-fit (i = 2) 1.233 1.130 2.309 4.90% 4.33% 17.02%

Venus

MI(woPR) 5.593 5.609 5.074 37.82% 37.33% 38.38%

MI(wPR) 4.078 4.079 3.514 28.01% 27.31% 38.67%

WTA of Adap.W. (i = 1) 1.729 1.689 2.464 8.77% 8.09% 25.45%

WTA of Agg. (i = 1) 1.224 1.173 3.259 6.21% 5.54% 27.18%

Plane-fit (i = 1) 1.003 0.939 2.754 3.42% 2.75% 19.18%

Plane-fit (i = 2) 1.034 0.972 2.814 3.55% 2.88% 20.37%

Teddy

MI (woPR) 15.823 15.634 14.312 55.45% 55.01% 58.52%

MI (wPR) 11.161 10.836 10.635 39.34% 40.57% 43.49%

WTA of Adap.W.(i = 1) 8.092 5.420 6.570 24.27% 23.69% 31.61%

WTA of Agg. (i = 1) 7.111 4.100 5.439 19.42% 20.18% 32.24%

Plane-fit (i = 1) 6.721 3.543 4.700 24.28% 24.03% 32.72%

Plane-fit (i = 2) 6.133 3.175 4.817 20.33% 21.17% 32.13%

Cones

MI (woPR) 16.013 16.037 14.835 47.18% 43.75% 53.36%

MI (wPR) 12.524 12.056 11.808 37.30% 34.85% 44.47%

WTA of Adap.W. (i = 1) 10.102 8.384 10.285 27.32% 22.67% 35.24%

WTA of Agg. (i = 1) 7.802 5.715 8.037 19.93% 14.80% 28.25%

Plane-fit (i = 1) 7.240 5.150 7.359 19.48% 14.58% 27.24%

Plane-fit (i = 2) 6.055 3.884 5.582 16.55% 11.18% 22.55%

*MI(woPR), MI(wPR) methods used local window size=9x9, adaptive method vertical

window size=9

39



We see from Table 6 and Figure 17 that the proposed method is already

outperforming the other MI based methods in the literature at the initial

phase of the computation, i.e., computing the cost matrix using the developed

adaptive windowing algorithm for MI computation. The performance figures470

are not only improved for the RMS error, but also the percentage of good

pixels.

(a) (b) (c)

Figure 17: Visual results on synt. altered Middlebury images for WTA disparity selection

of methods. (a) MI(woPR) [22]. (b) MI(wPR) [35] and (c) the proposed method Adaptive

Windowing Step (WTA of Adap. W. iteration #1).

As for comparison on Dataset #2, Figure 18 shows the performance of the

other MI based methods compared to the steps of the proposed method in the

stacked bar graph representation. Again, in conformance with the Dataset475

#1 results, the proposed method outperforms the other methods compared

already in the initial step of computation by the adaptive windowing step

introduced.
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MI (wPR)

WTA of Adap. W.

 (i=1)

WTA of Adap. W.

 (i=2)

WTA of Agg.

 (i=1)

WTA of Agg.

 (i=2)

Plane-fit

 (i=1)

Plane-fit

 (i=2)

MI (woPR) MI (wPR)
WTA of Adap. W.

 (i=1)
WTA of Adap. W.

 (i=2)
WTA of Agg.

 (i=1)
WTA of Agg.

 (i=2)
Plane-fit

 (i=1)
Plane-fit

 (i=2)

10 cm 40.1% 51.7% 40.3% 51.5% 42.8% 54.8% 44.8% 56.4% 44.3% 56.0% 46.8% 57.9% 46.3% 57.7% 50.2% 60.2%

20 cm 14.5% 11.7% 15.2% 12.3% 17.9% 14.2% 18.1% 14.3% 18.7% 14.8% 18.5% 14.7% 18.3% 14.5% 19.1% 15.2%

30 cm 6.9% 5.5% 8.0% 6.5% 8.3% 6.6% 8.3% 6.6% 8.5% 6.7% 8.2% 6.6% 8.5% 6.8% 8.4% 6.8%

AVERAGE PGD & PTC RESULTS ON DATASET#2 
- Comparison to Other Methods

10 cm 20 cm 30 cm

Figure 18: Average Percentage of Good Depth (PGD) and Percentage Total Coverage

(PTC) results of the proposed method for the image pairs in Dataset#2 for WTA Disparity

Selection of Methods MI(woPR) [22], MI(wPR) [35], and the proposed method’s steps.

Note that, on each line, the above bars represent PTC results and the bars beneath

represent PGD results, and also the stacked bar representation shows additional depth

data covered by the designated threshold. [Best Viewed in Color]

Finally, in Figure 19, the visual results are provided for the Kinect02 im-

age pair in Dataset#2. A significant enhancement on the obtained disparity480

map can also be observed when compared to the other methods in Kinect

image pairs.
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(a) (b) (c)

Figure 19: Visual results on Dataset #2 - Kinect01 image for WTA disparity selection of

methods. (a) MI(woPR) [22]. (b) MI(wPR) [35] and (c) the proposed method - Adaptive

Windowing Step (WTA of Adap. W. iteration #1).

4. Conclusion

In this article, we have proposed a multi-modal stereo-vision method

which (i) is iterative, (ii) uses adaptive windowing and (iii) adaptive cost485

aggregation (iv) along with iteratively refined disparity plane fitting. Our

method uses mutual information as the basic similarity measure and we have

tested it on a synthetically modified (multi-modal) version of the Middlebury

Stereo Evaluation Dataset as well as IR-RGB images from a Kinect device.

Our results show that a significant increase is achieved by the adaptive490

windowing method when compared to other alternative MI-based methods

for multi-modal stereo-vision. Moreover, the adaptively aggregated costs

enhance the results while smoothing out the disparity maps, whereas plane

fitting enables us to get more clean disparity maps, although it depends

on the current segmentation. We balance this dependence by performing495

iterative segment splitting/merging over confident disparities and finally the

whole method is re-applied in the next iteration where we now have an initial
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disparity map to incorporate into the joint probability calculation as the prior

probabilities. Our results show that two iterations are sufficient to converge

with reasonable results.500

With respect to the Kinect device experiments; from the quantitative and

visual evaluations, we observe that the depth map generated by our method

is comparable to Kinect native depth and our method can compute depth

information on edges and non-fronto-planar surfaces where Kinect depth esti-

mation fails due to insufficient reflectance of infrared beams on such surfaces.505

This suggests that our method can be used in combination with such RGB-D

sensors especially on scenes including highly reflective surfaces.

Our method is limited only to planar surfaces like existing unimodal

stereo-vision methods, though it provides reasonable estimations on curved

surfaces as well. Moreover, our method does not run in real-time yet (the510

computational complexity is O(Ndw), where N is the number of pixels in the

image, d is maximum designated disparity and w is the maximum segment

size in number of pixels in the image segmentation); our focus, rather, has

been improving the accuracy of the existing methods. Last but not the least,

our method can be integrated very well with other RGB-D sensors that use515

structured infra-red light for stereo, and it should also be compared against

the newer versions of Kinect (the Kinect One - which uses time-of-flight prin-

ciple rather than active stereo) which has not been possible during the course

of this study.
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