CENG 793

Advanced Deep
Learning

© AlchemyAPI

Auto-encoders

Sinan Kalkan & Emre Akbas

today

Manifold Learning

* Principle Component Analysis

* Independent Component Analysis

Autoencoders

Sparse autoencoders

K-sparse autoencoders

Denoising autoencoders

Contraction autoencoders

Manitold

Learning =~

Manifold Learning

- Discovering the “hidden”
structure in the high-
dimensional space

- Manifold: “hidden” structure.

- Non-linear dimensionality
reduction

@ “variance
é,qﬁumnw unexplaine
&° PCA 2323%

e Som 6.86%

o

* L4 o
.. ;
S e # e
B T R
T TR B EE
H e P R i+
PR e
e T
b o
f *‘tﬁ;‘ iy : PR
e Ta %
P ’fg; Rl ‘;ﬂt ¥ *yr
g 4 kg + i
T e PR

-15
-10

http://www.convexoptimization.c
om/dattorro/manifold_learning.h
tml

Manifold Learning

- Many approaches:
+ Self-Organizing Map (Kohonen map/network)
+ Auto-encoders
+ Principles curves & manifolds: Extension of PCA
+ Kernel PCA, Nonlinear PCA
« Curvilinear Component Analysis

« Isomap: Floyd-Marshall + Multidimensional
scaling

+ Data-driven high-dimensional scaling
* Locally-linear embedding

Manifold learning

- Autoencoders learn lower-dimensional manifolds
embedded in higher-dimensional manifolds

- Assumption: “Natural data in high dimensional spaces
concentrates close to lower dimensional manifolds”

- Natural images occupy a very small fraction in a space of
possible images

The curse of

dimensionality

There are 10%32° possible
200x200 RGB images.

(Pascal Vincent)

Manifold Learning

- Many approaches:
+ Self-Organizing Map (Kohonen map/network)

M Varlance
@iMethad unexplaing]
PCA 23.23%

S0M B35 %

Algorithm [edit]
1. Randomize the map's nodes' weight vectors

2. Grab an input vector D(t)
3. Traverse each node in the map

1. Use the Euclidean distance formula to find the similarity between the input vector and the map's node's weight vector
2. Track the node that produces the smallest distance (this node is the best matching unit, BMU)
4. Update the nodes in the neighborhood of the BMU (including the BMU itself) by pulling them closer to the input vector
1. Wy(s + 1) = Wy(s) + ©(u, v, 5) a(s)(D(f) - Wy(s))
5. Increase s and repeat from step 2 while g <2 A
A variant algorithm:
1. Randomize the map's nodes' weight vectors
2. Traverse each input vector in the input data set
1. Traverse each node in the map
1. Use the Euclidean distance formula to find the similarity between the input vector and the map's node's weight vector
2. Track the node that produces the smallest distance (this node is the best matching unit, BMU)
2. Update the nodes in the neighborhood of the BMU (including the BMU itself) by pulling them closer to the input vector
T Wy(s + 1) = Wy(s) + ©(u, v, 5) a(s){D(t) - Wy(s))
3. Increase s and repeat from step 2 while g <«)

https://en.wikipedia.org/wiki/Self-organizing map

W L S R AT

S AN
= i

k J

Classical Parzen Windows
density estimator

F 3
* o o
L]
.
.
]
® - Archetypal «non-parametric»
s kernel density estimator
. - Isotropic Gaussian centered on
each training point
.
. - No sense of manifold direction
- Probability mass allocated away
trom manifold

- 1 -
p(z) =~ N(z:2:,C))

i=1

Manifold Parzen Windows
density estimator
» (Vincent and Bengio, NIPS 2003)

"

.
L
¢ - Oriented Gaussian «pancake» centered
° on each training point
. - Uses low-rank parametrization of C;,
learned from nearest neighbors (local PC4)
.

- «Parametric» cousins:
Mixtures of Gaussian pancakes (Hinton et al 95)
Mixtures of Factor Analysers (Gharamani + Hinton 96)
Muixtures of Probabilistic PCA (Tipping + Bishop 99)

.4‘-—"-

» 1

mearcradi 5 aodt 2015

(Pascal Vincent)

(Bengio, Larochelle, Vincent, NIPS 2006)

. 1 —
Isotropic Parzen: ﬁ(r) — E N(I: T, gQI)
n- =

1=1

1sotropic

1 T
Manifold Parzen: p(l‘) = — E N(i'-Q Ij, Cz‘)
(Vincent and Bengio, NIPS 2003) n 1 g

dy high variance directions from PCA on k nearest neighbors

) 1 «
Non-local manifold Parzen: P(i’-) — — ZN(J Ju'(i"i)v G(Ii))
(Bengio, Larochelle, Vincent, NIPS 2006) i —

dy high variance directions output by neural network
trained to maximize likelihood of k nearest neighbors

mercredi 5 aodt 2015

(Pascal Vincent)

[Pearson 1901] [Hotelling 1933]

Principle Component Analysis (PCA)

- Principle Components:
* Orthogonal directions with most variance

2
- EKigen-vectors of the co-variance matrix e
1+
- Mathematical background: 05l | I,
* Orthogonality:) . e .:_’..‘.. . N 4o
+ Two vectors # and ¥ are orthogonal iff . _ et g
u-v=20 -05p. T
+ Variance: b
(0 = Var(0) = E[(X = 0?1 =) p)(x—w? 15
i
_2 I L L
where the (weighted) mean, u = E[X] =)}, p(x;)x;. =2 -1 0 1 2

(Ole Winther)
If p(x;) = 1/N:

1
Var(x) == > (= w?

1l
H:NZ'XL'
L

Mathematical background for PCA:
Covariance

- Co-variance:

- Measures how two random variables change wrt
each other:

Cov(X,Y) = E[(X — E[XD(Y — E[Y])]
1
— NZ(’“ — E[XD(y; — E[Y])

- If big values of X & big values of Y “co-occur” and
small values of X & small values of Y “co-occur” =»
high co-variance.

* Otherwise, small co-variance.

Mathematical background for PCA:
Covariance Matrix

- Co-variance Matrix:
- Denoted usually by X

* For an n-dimensional space:

B[(Xy — p1)(Xy —)]

B[(Xz — po) (X1 —)]

E[(X — p)(Xo — p2)] -+

E[(X; — po)(Xo — p2)] -+~

E[(Xn — pn) (X1 — p1)] E[(Xy —) (Xp —)] -+

E[(Xy = p1)(Xn — p)]

E[(Xz — p2)(Xy —)]

E[(Xﬂ - P'*ﬂ)(Xﬂ - F’n)]_

- Co-variance Matrix:

Mathematical background for PCA:
Covariance Matrix

Zij = COU(XL',X]')
= E[(X; — u) (X; —my)]

- Properties

1% = E(XX") - pp”
2. E is positive-semidefinite and symmetric.
3 cov(AX +a) = A cov(X) AT
4 cov(X,Y) = cov(Y,X)"
5 cov(Xy + X5, Y) =cov(X,Y) +cov(Xs, Y)
6 Ifp=gq.then var(X + Y) = var(X) + cov(X,Y) + cov(Y, X) + var(Y)
7cov(AX +a,B'Y +b) = A cov(X,Y)B
8. If X and Y are independent or uncorrelated, then cmr(:}(!Y} =0
(Wikipedia)

M is called positive-semidefinite (or sometimes nonnegative-definite) i
"Mz >0
for all x in €” (or, all x in R” for the real matrix). (Wikipedia)

Mathematical background
for PCA: Eigenvectors &
Eigenvalues

- Eigenvectors and eigenvalues:
- ¥ 1s an eigenvector of a square matrix A if

AV = v

where A 1s the eigenvalue (scalar) associated with
V.

- Interpretation:

« “Transformation” A does not change the
direction of the vector.

- It changes the vector’s scale, 1.e., the eigenvalue.

- Solution:

* (A— ANV = 0 = has a solution when the
determinant |A — Al| is zero.

* Find the eigenvalues, then plug in those values
to get the eigenvectors.

"l|l" i
Ay
AX = A
_"|,.l' ..
X
9] x Aix X

Matrix :1 acts by stretching the vectar 1, =
not changing its direction, so 2" is an
eigenvector of 4.

e

,,,,,,,,,,

nnnnnnnnnn ¥

21
12

direction of vectors parallel to v ={1,-1)T (in purple)
andw = (1.‘1}T (in blue). The vectars in red are not
parallel to either eigenvector, 50, their directions are
changed by the transformation. See also: An extended

The transformation matrix A =[J presenves the

Mathematical background for PCA:
Eigenvectors & Eigenvalues Example

2 1
AP
- Setting the determinant |A — AI| to zero:

p(AN) =|A=XN|=3—4Xx+ A =0,
- Theroots:A=1and A1=3

- If you plug in those eigenvalues, for 4 = 1:

a-nv=[1 J{uh={0}

which gives v; = {1,—1}. For A = 3:

e[2]{2))

which gives v, = {1,1}.

Example from Wikipedia.

PCA allows also
dimensionality reduction

- Discard components whose eigenvalue is negligible.

original data space

PCA component space
_P
I D s
[« []
1 =
© by T i 5
P Q H %fﬂ
@ o i S
3 =
=8
SO
=T

PC1

See the following tutorial for more on PCA:
http://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition_jp.pdf

Autoencoders

Autoencoders

- Universal approximators
* So are Restricted Boltzmann Machines

- Unsupervised learning
- Dimensionality reduction

-XERP=heRMst. M<D

Autoencoders: ML.Ps used for
amsupervised» representation learning

* Make output layer

_ _ Autoencoders are also called
same size as input layer

_ ® Autoencoders
* Have target = mput e Auto-associators

* Loss encourages output

(reonstruction) to be close to Sandsl habed
input. L(x.r) e Sandglass-shaped net

® Diabolo networks

p
reconstruction I O
k.,

lower-dimensional JEESSESSEtEE

hidden /1) bottleneck
encoding

mue x (OO O

The Diabolo

marcredi 5 aodt 2015

(Pascal Vincent)

hidden representation h —

EJCWM

Decoder:

r
O

OOOOO}-.. KXXXI}

input = € R? . 1emnst1uctmn r=g(h(a

Enm}ier:
!

reconstruction error L(-f'* f'}

Minimaize

Jae =) L(z.g(h(x))

=g, 19

mercredi 5 aodt 2015

(Pascal Vincent)

Typical form

hidden representation h =/(x) = s(Wax + b)

O _O=x:

Decoder:

Enm}ier:
!

i
Oy

COOOO}-. . KXXXI}

input = € R? ... 1emnst1uctmn r=g(h(a

= sd(ﬁ h + bg)

reconstruction error L(-f'* f']

9 Mimimize

Squared error. HI - 'T“

or Bernoulli cross-entropy JAE = Z L(x, g(h(x))
=g, 10

mercredi 5 aodt 2015

(Pascal Vincent)

dy<d (bottleneck, undercomplete representation):

® W/ith linear neurons and squared loss
= autoencoder learns same suspace as PCA

® Also true with a single sigmoidal hidden layer,

if using linear output neurons with squared loss
[Baldi& Hornik 89] and untied weights.

e Won't learn the exact same basis as PCA,
but W will span the same subspace.

marcredi 5 aodt 2015

(Pascal Vincent)

Consider an auto-encoder MLP

® with a single hidden layer with sigmoid non-linearity
® and sigmoid output non-linerity.

® Tie encoder and decoder weights: W= W7,

hi = s(Wix +b;) P(hi=1 | v) = s(Wiv+ci)
r; = s(WTh+bg) P(vi=1 | h) = s(W;Th+b))
Differences: deterministic mapping stochastic mapping
h is a function of x. h is a random variable

mercredi 5 aodt 2015

(Pascal Vincent)

Stacking basic Auto-Encoders [Bengio et al. 2007]

hOOC00
A

W

nOO00000)

ole)

F3

Wi W' W,

x COO00 00000 » QOO0

oy
e

y (O
(A?J

u

W

hr@OOffOQ@@OODO@@’i Nelelelelelel®)
A

mearcradi 5 aodt 2015

(Pascal Vincent)

Stacking autoencoders:
learn the first layer

Input Features | Output

http://[ufldl.stanford.edu/wiki/index.php/Stacked_Autoencoders

Stacking autoencoders:
learn the second layer

+1

Input Figgutes | Ebatures Output
(Features I)

http://[ufldl.stanford.edu/wiki/index.php/Stacked_Autoencoders

Stacking autoencoders:

Add, e.g., a softmax layer for mapping
to output

—>
—> P(y=0| x)

Xy ' '_ kT é—} P[\,l" — 1 | }{]

Xg Nt —> ~
— Ply=2| x)
}(5 + - —
Input Softmax
+1 (Features Il) classifier
Input Features | Cutipues | Jutpi

http://[ufldl.stanferd.edu/wiki/index. php/Stacked Autoencoders

Stacking autoencoders: Overall

—> Ply=0x)

—>Ply=1[x

—> Ply=2]x

Input Features | Features || Softmax
classifier

http://[ufldl.stanford.edu/wiki/index.php/Stacked_Autoencoders

supervised cost

' ™
. . . o A |
o Initial deep mapping was learnt in .
an unsupervised way:. 3" '
@ — initialization for a supervised "1“ -.
task. . ',

@ Qutput layer gets added.

@ Global fine tuning by gradient R |
descent on supervised criterion. (YY)

mercredi 5 aodt 2015

(Pascal Vincent)

0.10
— Mo A8, hidden supervised fine-tuning
u Gr‘eed}; |a).rer'-w|'se unsuperuiged No AA, no hidden supervised fine-tuning
. . | -« AA hidden supervised fine-tuning
pre-tralnlng Phase W|th RBMS "I - - A4, no hidden supervised fine-tuning

or auto-encoders on MNIST

® Supervised phase with or

. h) d d 0.05}
without unsupervised updates, —~_
with or without fine-tuning of e
hidden layers N
D{IEU 50 100 150 200

Classiffication performance on benchmarks:
* Pre-training basic auto-encoder stack than no pre-training

* Basic auto-encoder stack almost matched RBM stack...

mearcredi & aodt 2015 .
(Pascal Vincent)

hot as good

What'’s the problem?

+ Traditional autoencoders were for dimensionality
reduction (d,<d,)

_ N reconstruction
* Deep learning success seems to depend on ability to

learn overcomplete representations (d,> d,)

* Overcomplete basic autoencoder
yields trivial useless solutions: identity mapping!

* Need for alternative regularization/
constraining

26

mercredi 5 aodt 2015

(Pascal Vincent)

Making auto-
encoders learn
over-complete
representations

That are not one-to-one mappings

Wait, what do we mean by

over-complete?
- Remember distributed representations?
Not distributed Distributed
(@) (®) y § & o
Fie¥
no pattern O O O O no pattern O O O O

| eooo |
— O@00
) coceo (] eocoe
S 0000 O

Distributed vs. undercomplete vs.
overcomplete representations

- Four categories could also be represented by two
neurons:

| @000 || 0O [e0c @O
— O @ O O — O @ — O @ @ O

) coeo () eO0 () ecO @
o 0000 © 00 —S Oee O e

Not Distributed Distributed

Distributed
(over complete) (Under complete)

(Over complete)

46

Over-complete = sparse
(In distributed representations)

- Why sparsity?

1. Because our brain relies on sparse coding.
- Why does it do so?

a.

Because it 1s adapted to an environment which is composed of
and can be sensed through the combination of primitive
1tems/entities.

“Sparse coding may be a general strategy of neural systems to
augment memory capacity. To adapt to their environments,
animals must learn which stimuli are associated with rewards
or punishments and distinguish these reinforced stimuli from
similar but irrelevant ones. Such task requires implementing
stimulus-specific associative memories in which only a few
neurons out of a population respond to any given stimulus and
each neuron responds to only a few stimuli out of all possible
stimuli.”
— Wikipedia

Theoretically, it has shown that it increases capacity of
memory.

Over-complete = sparse
(In distributed representations)

- Why sparsity?

2. Because of information theoretical aspects:

- Sparse codes have lower entropy compared to non-sparse
one.

3. It 1s easier for the consecutive layers to learn from
sparse codes, compared to non-sparse ones.

Olshausen & Field,
“Sparse coding with
an overcomplete

basis set: A FIGURE 7. The set of 144 basis functions learned by the sparse coding algorithm. The basis functions are totally overlapping
) (i.e., the entire set codes for the same image patch). All have been normalized to fill the grey scale, but with zero always
strategy employed represented by the same grey level.

by V1?7, 1997

Mechanisms for enforcing
over-completeness

- Use stochastic gradient descent

- Add sparsity constraint
- Into the loss function (sparse autoencoder)
* Or, 1in a hard manner (k-sparse autoencoder)

- Add stochasticisity / randomness

- Add noise: Denoising Autoencoders, Contraction
Autoencoders

- Restricted Boltzmann Machines

Auto-encoders
with SGD

Simple neural network

- Input: x € R"

- Hidden layer: h € R™
h=f1(W;x)

- Output layer: y € R"
y = f2(W2f1(W1x))

- Squared-error loss:

1
L =§z||xd —Yd||2

deD

- For training, use SGD.

- You may try different activation functions for f; and f,.

Sparse
Autoencoders

Sparse autoencoders

- Input: x € R"

- Hidden layer: h € R™
h=f1(W;x)

- Output layer: y € R"
y = f2(W2f1(W1x))

Over-completeness and sparsity:

- Require
- m>n, and

- Hidden neurons to produce only little activation for any input
=> l.e., sparsity.

- How to enforce sparsity?

- And many many other ways...

How?

Solution 1: 1 |w|
- We have seen before that this enforces sparsity.
- However, this is not strong enough.

Solution 2
- Limit on the amount of average total activation for a

Solution 3
- Kurtosis: —

+ Calculated over the activations of the whole network.
- High kurtosis = sparse activations.
« “Kurtosis has only been studied for response distributions

Enforcing sparsity: alternatives

neuron throughout training!

s E[X-w?

ot (E[(X—w)?])?

A

of model neurons where negative responses are allowed. c

It is unclear whether kurtosis is actually a sensible _/\ s

measure for realistic, non-negative response

distributions.” - Mhiarmal) Leptokurtic Platykurtic
K= K>0 K=o

http://www.scholarpedia.org/article/Sparse_coding

Enforcing sparsity:
a popular choice

- Limit the amount of total activation for a neuron
throughout training!

- Use p; to denote the activation of neuron x on input i.
The average activation of the neuron over the training

set:
m
R 1
Pi = EZ Pi
l

- Now, to enforce sparsity, we limit to p; = py.

- po: A small value.
* Yet another hyperparameter which may be tuned.
* typical value: 0.05.

- The neuron must be 1nactive most of the time to keep its
activations under the limit.

Enforcing sparsity

m
_1 z
“mZ Pi
l
- How to limit p; = p,? How do we add integrate this as a

penalty term into the loss function?

- Use Kullback-Leibler divergence:
> KL(po 11 5
i

Or, equivalently as (since this is between two Bernoulli
variables with mean po and p;):

z Po log = + (1 - po)log

1-p;

) B

Dx1(P||Q) = Z P(3) lﬂg

Backpropagation and training

1—Po
S = ﬁzpolog +(1_Po)1081

s L o) 1
i, - P\=Pos 10 Po) T = 5)In 10
- If you use In 1in KL:

dS 1-—
65 _p(tr, Lome)
dp; pi 1-p;

- So, if we integrate into the original error term:
Po 1 —po

6y, = 0, (1 — 0yp). ZW ok +,8< + A>
h = On h (kh) 5. " 1= p

- Need to change 0, (1 — 05,) if you use a different
activation function.

-For each hidden unit h,
calculate its error term &y;:

On = op(1 —op) z Wikh Ok

keoutputs
-Update every weight wj;
wji = wj; + 16;xj;

Backpropagation and training

Po
S=F) pologt® + (1 py)logT—5
- °C by ° 1-p;
- Do you see a problem here?
- p; should be calculated over the training set.

- In other words, we need to go through the whole dataset
(batch) once to calculate p;.

Loss & decoders & encoders

- Be careful about the range of your activations and
the range of the output

- Real-valued input:
- Encoder: use sigmoid
* Decoder: no need for non-linearity.
+ Loss: Squared-error Loss

* Vincent et al. (2010):

For real-valued x, that is, x € RY: X|z ~ \((z,6°I), that is, X;|z ~ A((z;,07).
This yields L(x,z) = L;(x,z) = C(0?)||x — z||* where C(6?) denotes a constant that depends

only on 62 and that can be ignored for the optimization.

- Binary-valued input:
* Encoder: use sigmoid.
* Decoder: use sigmoid.
* Loss: use cross-entropy loss:

— Zj[Xj logz;+ (1 —x;)log(1—z;)]:

Loss & decoders & encoders

- Kullback-Leibler divergence assumes that
the variables are in the range [0,1].

- I.e., you are bound to use sigmoid for the hidden
layer if you use KL to limit the activations of
hidden units.

Why Regularized Auto-Encoders learn
Sparse Representation?

Devansh Arpit DEVANSHARBUFFALO.EDU
Yingbo Zhou YINGEOZHREUFFALO.EDU
Hung Q. Ngo HUNGNGOBEBUFFALO.EDU

Venu Govindaraiu GOVINDRBUFFALO.EDU

k-Sparse
Autoencoder

k-Sparse Autoencoders:
Training:
1) Perform the feedforward phase and compute
z=WTx +b
2) Find the £ largest activations of z and set
the rest to zero.
- Note that it doesn’t have an zZrye =0 where I'=supp,(z)
activation function! 3) Compute the output and the error using the
sparsified z.

r=Wz+b

E=|z-z|3
3) Backpropagate the error through the & largest
activations defined by I' and iterate.

Sparse Encoding:
Compute the features h = WTax + b. Find its ak
largest activations and set the rest to zero.
h(rye =0 where I'=supp_,;(h)

- Non-linearity comes from k-
selection.

k-Sparse Autoencoders

Alireza Makhzani MAKHZANIQPSI.UTORONTO.CA
Brendan Frey FREYQPSI.UTORONTO.CA

University of Toronto, 10 King’s College Rd. Toronto, Ontario M5S 3G4, Canada

http://[www.ericlwilkinson.com/blog/2014/11/19/deep-learning-sparse-autoencoders

Denoising

Auto-encoders

(DAE)

TJournal of Machine Learning Research 11 (2010) 3371-3408

Submitted 5/10; Published 12/10

Stacked Denoising Autoencoders: Learning Useful Representations in
a Deep Network with a Local Denoising Criterion

Pascal Vincent

Deépartement d’informatique et de recherche opérationnelle
Université de Monfréal

2920, chemin de la Tour

Montréal, Québec, H3T 1J8, Canada

Hugo Larochelle

Department of Compuiter Science
University of Toronto

10 King's College Road

Toronto, Ontario, M3S 3G4, Canada

Isabelle Lajoie
Yoshua Bengio

PASCAL.VINCENT(@UMONTREAL.CA

LAROCHEH@CS.TORONTO.EDU

ISABELLE.LAJOIE.1[@UMONTREAL.CA
YOSHUA.BENGIO@UMONTREAL.CA

Pierre-Antoine Manzagol PIERRE-ANTOINE.MANZAGOL@UMONTREAL.CA

Département d 'informatique et de vecherche opérationnelle
Université de Montreéal

2920, chemin de la Tour

Montreal, Québec, H3T 1J8, Canada

Denoising Auto-encoders

- Simple 1dea:

- randomly corrupt some of the inputs (as many as half of
them) — e.g., set them to zero.

+ Train the autoencoder to reconstruct the input from a
corrupted version of it.

» The auto-encoder 1s to predict the corrupted (i.e.
missing) values from the uncorrupted values.

* This requires capturing the joint distribution between a
set of variables

- A stochastic version of the auto-encoder.

features: h = li(x)
(hidden representation)

00000006

Decoder:
o

Encoder:

reconstruction

ceocoolE

4 _.-;% ALz, 7))k
00000 e S22

input
learns robust & usetul features e
easier to train than RBM features .
Toae(0) = Y Eqae) [L(z, g(h(E))]

yield similar or better classification

- - D
pertormance (as deep net pre-training) re

mercredi 5 aodt 2015

(Pascal Vincent)

* Autoencoder training minimizes:

Jae(0) =Y L(x,g(h(z))
relD
* Denoising autoencoder training minimizes

Jpae(0) = Y B [L(z. g(h(2))

reD . .
Possible corruptions q:
. . 0} nxels at r)
Cannot compute expectation exactly zeroing pixels at random
= use stochastic gradient descent, (now called)

salnpling f(}[l'upted inputg Tl ® additive Gaussian noise

® salt-and-pepper noise
... 29

mearcradi 5 aodt 2015

(Pascal Vincent)

Loss 1n DAE

- You may give extra emphasis on “corrupted”

dimensions:
Lz.a(X-Z)OL(Y, (x;))+B(Y (x; Z;)Z)-
j€I(x) j€J(x)

where 7(X) denotes the indexes of the components of x that were corrupted.

Or, 1n cross-entropy-based loss:

Lyg(x,z) = Dt(z [leogszr(lxj)log(lzj)})

jeI(x)

(Y [x;logz;+ l—xjjlogl—zj}])
J

i J(x)

Denoising Auto-encoders

- To undo the effect of a corruption induced
by the noise, the network needs to capture
the statistical dependencies between the
Inputs.

- This can be interpreted from many
perspectives (see Vincent et al., 2008):
- the manifold learning perspective,
- stochastic operator perspective.

* DAE learns to «project back» corrupted input onto manifold.

* Representation 1 = location on the manifold

Corrupted input /
Iy
s
L~
Corrupted input
- A .
i W ‘\,(™~
\ original ! ~
« input

[Y]
[3

mercredi 5 aodt 2015

(Pascal Vincent)

Advantages over stacking RBMs

= No partition function, can
measure training criterion

= Very flexible: encoder &
decoder can use

any parametrization
(more layers...)

® Performs as well or better
than stacking RBMs for
usupervised pre-training

Online classification error

w |

"

10 F

]
j [

Budget of 10 million iterations

===="1 layer with B pretriining

| 1 1 I I I
1 2 3 4 -] &

=" 1 layar wie pe-training
3 layers wiha pre-Training

3 layers with REM pro-trining
= 1 Inper with densising A pre-trining
I Inyers with denaising Ah pre-trtining

T B] 1

Number of examples seen i
Infinite MNIST

mercradi 5 aodt 2015

(Pascal Vincent)

Types of corruption

- Gaussian Noise (additive, 1sotropic)

- Masking Noise

- Set a randomly selected subset of input to
zero for each sample (the fraction ratio is
constant, a parameter)

- Salt-and-pepper Noise:

- Set a randomly selected subset of input to
maximum or minimum for each sample (the
fraction ratio is constant, a parameter)

10]) 0 o O
HUENEEEEED
P b
il] S I N
EESEPNENER
ERNEGAEERE
HEUERENEEE
FEEENENENE
5 I e O A R
S N 7 I 5 I

ENSEENEERA
) (5 Y Y I

NESEEEERE
aREENEEEES
EEHNESEEZN
AOESTLTAEN
EShMEESNE
NEEENEEAS
ASAEENLDS
EEEEENEE
HEESAEEN
EEESNNRNA

Figure 6: Weight decay vs. Gaussian noise. We show typical filters learnt from natural image
patches in the over-complete case (200 hidden units). Leff: regular autoencoder with
weight decay. We ftried a wide range of weight-decay values and learning rates: filters
never appeared to capture a more interesting structure than what 1s shown here. Note
that some local blob detectors are recovered compared to using no weight decay at all
(Figure 5 right). Right: a denoising autoencoder with additive Gaussian noise (¢ = 0.5)
learns Gabor-like local oriented edge detectors. Clearly the filters learnt are qualitatively

verv different in the two cases.

Weight decay: L2 regularization.

(Vincent et al., 2010)

ESNENVFNESR BUEZEENES =B
ENEEEEENVES EEENEVERER
AN 4dEASEE N ESERNEEEEHE
HECRSSIEEREE AENSEZFFVSNN
HESTIZSEENE FRANENHOIOZN
EAENFEONEEAA RAESZEGSEEES
HEERNNEISAFN EREESZEEEE N
SEANSESEAN EFESAENESR N
PHASEHENNESS ERNEHEEYNSENRE
EREEERNEN=EDS EfFEEEEENON

Figure 7: Filters obtained on natural image patches by denoising autoencoders using other noise
types. Left: with 10% salt-and-pepper noise, we obtain oriented Gabor-like filters. They
appear slightly less localized than when using Gaussian noise (contrast with Figure 6
right). Right: with 55% zero-masking noise we obtain filters that look like oriented
gratings. For the three considered noise types, denoising tramning appears to learn filters
that capture meaningful natural image statistics structure.

(Vincent et al., 2010)

Training DAE

- Training algorithm does not change

- However, you may give different emphasis on the error of
reconstruction of the corrupted input.

- SGD 1s a popular choice

- Sigmoid 1s a suitable choice unless you know what you
are doing.

- Using “better” activation functions like ReLLU is
problematic.

Contractive
Auto-encoder

* DAE encourages reconstruction to be insensitive to input corruption

* Alternative: encourage representation fo be insensitive

Tsca(f) =)

el
Reconstruction error stochastic reqularization term

ad

merciad 5 200t 2015 (Pascal Vincent)

sl

SCAE stochastic regularization term: E; 3|z ||A(z) — h’(f)uz}

o=

For small additive noise z|r =z +¢€, e~ N(0. o%1)

Oh
+ Taylor series expansion yields h(x +¢€) = h(x) + € + ...
+ It can be showed that
Oh °
12 2 ¥
Eqzz) [|P(z) = h(2)|)*] = 0% || =—(z)
da
' F
N, _— . >
— "
stochastic analytic
(SCAE) (CAE)

mercredi 5 aodt 2015

(Pascal Vincent)

(Rifai, Vincent, Muller, Glorot, Bengio, ICML 2011)

T R
* Minimize JcaAgR = Z L(x,g(h

relD

Reconstruetion error analytic contractive term

* For training examples, encourages both:
=small reconstruction error
= representation insensitive to small variations around example

mercradi 5 aodt 2015

(Pascal Vincent)

We defined h="h(x) = s(Wx +b)
N

(e
Further suppose: s is an elementwise non-linearity

s’ its tirst derivative.
oh
Let J(x)=—(x)

5;}.’ '

J: = S; b + Ll‘.T W)W where J; and W; represent | row
] 7 7 j iT€p]

dp
CAE penalt}' ige “}H?‘? _ Z Sf(aj)2 H”J |2 53111e5?;?5}exit3-':
«?:l dh |
Compare to L2 weight decay: || ||% = Z | W ° G:;?;:;;E‘;p

j=1 O(dy d)

37

mercredi 5 aodt 2015

(Pascal Vincent)

| .earned filters

CIFAR-10

MNIST

mercredi 5 aodt 2015

(Pascal Vincent)

Principles other
than ‘sparsity’”

Slowness

X(1)

S

WAL/

t

http://www.scholarpedia.org/article/Slow_feature_analysis

Slow Feature Analysis (SFA)

from Wiskott et al.

v
x’-‘x § = Ran :;:
B | 5%
T
. . -

®."

T &
7 -

L]
. . high level representation
primary sensory signal object identity

X4(t)
monkey

—

—
= »
NWW .
>

object location

?
}ﬂ

time t time t
® L]
* L]
* L]

http://www.scholarpedia.org/article/Slow_feature_analysis

Slow Feature Analysis (SFA)

S + t t+dt t t+dt t t+dt t t+dt t t+dt t t+dt

' R R 8 ==
7 NN UL
< HE N HES EE SN
w22 == BNES
25 NN EE EE ln 5=
s EE S On
I B3

Optimal stimuli for the slowest components
extracted from natural image sequences.

http://www.scholarpedia.org/article/Slow_feature_analysis

Visualizing the
layers

Visualizing the layers

- Question: What is the input that activates a hidden unit
hi most?
* l.e., we are after x*:

x*=arg max h;(W,x)
x s.t.|lxl|=p

- For the first layer:
Wij
Xj =
\/ Zk(wik)z
where we assume that Y, x? < 1, and hence normalize
the weights to match the range of the input values.

- How about the following layers?

+ Gradient ascent (not descent): find the gradient of h; (W, x)
w.r.t X and move x in the direction of the gradient since we
want to maximize h;(W, x).

Visualizing the layers

- Activation maximization;
+ Gradient ascent to maximize h;(W,x).

- Start with randomly generated input and move towards the
gradient.

 Luckily, different random initializations yield very similar
filter-like responses.

- Applicable to any network for which we can calculate the
gradient dh;(IW,x)/0x

- Need to tune parameters:
- Learning rate

* Stopping criteria

- Have the same problems of gradient descent
+ The space 1s non-convex

- Local maxima etc.

Activation Maximization
results

DBN

SDAE

4 units with 9 solutions per unit for the optimization problem

Erhan et al., “Understanding Representations Learned i
Deep Architectures”, 2010.

Autoencoders
with the tools

The tools

- You can use “regular” network training

functions/modules available in the libraries for learning
the input.

- Some has nice tutorials:
* Theano: http://deeplearning.net/tutorial/dA.html

