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Advanced Deep 
Learning

Auto-encoders



today
• Manifold Learning

 Principle Component Analysis

 Independent Component Analysis

• Autoencoders

• Sparse autoencoders

• K-sparse autoencoders

• Denoising autoencoders

• Contraction autoencoders

2



Manifold 
Learning
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Manifold Learning
• Discovering the “hidden” 

structure in the high-
dimensional space

• Manifold: “hidden” structure.

• Non-linear dimensionality 
reduction
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http://www.convexoptimization.c

om/dattorro/manifold_learning.h

tml



Manifold Learning

• Many approaches:

 Self-Organizing Map (Kohonen map/network)

 Auto-encoders

 Principles curves & manifolds: Extension of PCA

 Kernel PCA, Nonlinear PCA

 Curvilinear Component Analysis

 Isomap: Floyd-Marshall + Multidimensional 
scaling

 Data-driven high-dimensional scaling

 Locally-linear embedding

 …
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Manifold learning
• Autoencoders learn lower-dimensional manifolds 

embedded in higher-dimensional manifolds

• Assumption: “Natural data in high dimensional spaces 
concentrates close to lower dimensional manifolds”

 Natural images occupy a very small fraction in a space of 
possible images

(Pascal Vincent) 6



Manifold Learning
• Many approaches:

 Self-Organizing Map (Kohonen map/network)
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https://en.wikipedia.org/wiki/Self-organizing_map



(Pascal Vincent) 8
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Principle Component Analysis (PCA)

• Principle Components: 
 Orthogonal directions with most variance

 Eigen-vectors of the co-variance matrix

• Mathematical background:
 Orthogonality:

 Two vectors 𝑢 and  𝑣 are orthogonal iff

𝑢 ⋅  𝑣 = 0

 Variance:

𝜎 𝑋 2 = 𝑉𝑎𝑟 𝑋 = 𝐸 𝑋 − 𝜇 2 =  

𝑖

𝑝(𝑥𝑖) 𝑥𝑖 − 𝜇 2

where the (weighted) mean, 𝜇 = 𝐸 𝑋 =  𝑖 𝑝 𝑥𝑖 𝑥𝑖 .

If 𝑝 𝑥𝑖 = 1/𝑁:

𝑉𝑎𝑟(𝑋) =
1

𝑁
 

𝑖

𝑥𝑖 − 𝜇 2

𝜇 =
1

𝑁
 

𝑖

𝑥𝑖
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(Ole Winther)

[ Pearson 1901 ] [ Hotelling 1933 ]



Mathematical background for PCA: 
Covariance

• Co-variance: 

 Measures how two random variables change wrt
each other:

𝐶𝑜𝑣 𝑋, 𝑌 = 𝐸 𝑋 − 𝐸 𝑋 𝑌 − 𝐸 𝑌

=
1

𝑁
 

𝑖

(𝑥𝑖 − 𝐸 𝑋 )(𝑦𝑖 − 𝐸 𝑌 )

 If big values of X & big values of Y “co-occur” and 
small values of X & small values of Y “co-occur”   
high co-variance.

 Otherwise, small co-variance.
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Mathematical background for PCA: 
Covariance Matrix

• Co-variance Matrix:

 Denoted usually by Σ

 For an 𝑛-dimensional space:

Σ𝑖𝑗 = 𝐶𝑜𝑣 𝑋𝑖 , 𝑋𝑗 = 𝐸 𝑋𝑖 − 𝜇𝑖 𝑋𝑗 − 𝑚𝑗
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Mathematical background for PCA: 
Covariance Matrix

• Co-variance Matrix:
Σ𝑖𝑗 = 𝐶𝑜𝑣 𝑋𝑖 , 𝑋𝑗

= 𝐸 𝑋𝑖 − 𝜇𝑖 𝑋𝑗 − 𝑚𝑗

• Properties

14(Wikipedia)

(Wikipedia)



Mathematical background 
for PCA: Eigenvectors & 
Eigenvalues

• Eigenvectors and eigenvalues:

  𝑣 is an eigenvector of a square matrix 𝐴 if 

𝐴  𝑣 = 𝜆  𝑣

where 𝜆 is the eigenvalue (scalar) associated with 
 𝑣.

• Interpretation:

 “Transformation” 𝐴 does not change the 
direction of the vector.

 It changes the vector’s scale, i.e., the eigenvalue.

• Solution:

 𝐴 − 𝜆𝐼  𝑣 = 0 has a solution when the 
determinant |𝐴 − 𝜆𝐼| is zero.

 Find the eigenvalues, then plug in those values 
to get the eigenvectors.
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Mathematical background for PCA: 
Eigenvectors & Eigenvalues Example

• Setting the determinant |𝐴 − 𝜆𝐼| to zero:

• The roots: 𝜆 = 1 and 𝜆 = 3

• If you plug in those eigenvalues, for 𝜆 = 1:

which gives 𝐯1 = {1, −1}. For 𝜆 = 3:

which gives 𝐯2 = {1,1}.

19Example from Wikipedia.



PCA allows also 
dimensionality reduction

• Discard components whose eigenvalue is negligible.

24
See the following tutorial for more on PCA:

http://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition_jp.pdf



Autoencoders
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Autoencoders

• Universal approximators
 So are Restricted Boltzmann Machines

• Unsupervised learning

• Dimensionality reduction

• 𝐱 ∈ ℝ𝐷 ⇒ 𝐡 ∈ ℝ𝑀 s.t. 𝑀 < 𝐷
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Stacking autoencoders: 
learn the first layer

37http://ufldl.stanford.edu/wiki/index.php/Stacked_Autoencoders



Stacking autoencoders:
learn the second layer

38http://ufldl.stanford.edu/wiki/index.php/Stacked_Autoencoders



Stacking autoencoders:
Add, e.g., a softmax layer for mapping 
to output

39http://ufldl.stanford.edu/wiki/index.php/Stacked_Autoencoders



Stacking autoencoders: Overall

40http://ufldl.stanford.edu/wiki/index.php/Stacked_Autoencoders
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Making auto-
encoders learn 
over-complete
representations
That are not one-to-one mappings
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Wait, what do we mean by 
over-complete?

• Remember distributed representations?

45
Figure Credit: Moontae Lee 

DistributedNot distributed



• Four categories could also be represented by two 
neurons:
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Distributed vs. undercomplete vs. 
overcomplete representations

Distributed

(Under complete)
Not Distributed

(over complete)
Distributed

(Over complete)



Over-complete = sparse
(in distributed representations)

• Why sparsity?

1. Because our brain relies on sparse coding.
 Why does it do so?

a. Because it is adapted to an environment which is composed of 
and can be sensed through the combination of primitive 
items/entities.

b. “Sparse coding may be a general strategy of neural systems to
augment memory capacity. To adapt to their environments,
animals must learn which stimuli are associated with rewards
or punishments and distinguish these reinforced stimuli from
similar but irrelevant ones. Such task requires implementing
stimulus-specific associative memories in which only a few
neurons out of a population respond to any given stimulus and
each neuron responds to only a few stimuli out of all possible
stimuli.”

– Wikipedia

c. Theoretically, it has shown that it increases capacity of 
memory.
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Over-complete = sparse
(in distributed representations)

• Why sparsity?

2. Because of information theoretical aspects: 

 Sparse codes have lower entropy compared to non-sparse 
one.

3. It is easier for the consecutive layers to learn from 
sparse codes, compared to non-sparse ones.
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Olshausen & Field, 

“Sparse coding with 

an overcomplete

basis set: A 

strategy employed 

by V1?”, 1997



Mechanisms for enforcing 
over-completeness

• Use stochastic gradient descent

• Add sparsity constraint

 Into the loss function (sparse autoencoder)

 Or, in a hard manner (k-sparse autoencoder)

• Add stochasticisity / randomness
 Add noise: Denoising Autoencoders, Contraction 

Autoencoders

 Restricted Boltzmann Machines
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Auto-encoders 
with SGD
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Simple neural network

• Input: 𝐱 ∈ 𝑹𝒏

• Hidden layer: 𝐡 ∈ 𝑹𝒎

𝐡 = 𝒇𝟏(𝑾𝟏𝐱)

• Output layer: 𝐲 ∈ 𝑹𝒏

𝐲 = 𝒇𝟐 𝑾𝟐𝒇𝟏 𝑾𝟏𝐱

• Squared-error loss:

𝐿 =
1

2
 

𝑑∈𝐷

𝐱𝑑 − 𝐲𝒅
𝟐

• For training, use SGD.

• You may try different activation functions for 𝑓1 and 𝑓2.
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Sparse 
Autoencoders
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Sparse autoencoders
• Input: 𝐱 ∈ 𝑹𝒏

• Hidden layer: 𝐡 ∈ 𝑹𝒎

𝐡 = 𝒇𝟏(𝑾𝟏𝐱)

• Output layer: 𝐲 ∈ 𝑹𝒏

𝐲 = 𝒇𝟐 𝑾𝟐𝒇𝟏 𝑾𝟏𝐱

Over-completeness and sparsity:

• Require 
 𝑚 > 𝑛, and

 Hidden neurons to produce only little activation for any input 
 i.e., sparsity.

• How to enforce sparsity?

58



Enforcing sparsity: alternatives

• How?

• Solution 1: 𝜆 |𝑤|
 We have seen before that this enforces sparsity.

 However, this is not strong enough. 

• Solution 2
 Limit on the amount of average total activation for a 

neuron throughout training!

• Solution 3

 Kurtosis: 
𝜇4

𝜎4 =
𝐸 𝑋−𝜇 4

𝐸 𝑋−𝜇 2 2

 Calculated over the activations of the whole network. 

 High kurtosis  sparse activations.

 “Kurtosis has only been studied for response distributions 
of model neurons where negative responses are allowed. 
It is unclear whether kurtosis is actually a sensible 
measure for realistic, non-negative response 
distributions.” -
http://www.scholarpedia.org/article/Sparse_coding

• And many many other ways… 59

http://www.scholarpedia.org/article/Sparse_coding


Enforcing sparsity: 
a popular choice

• Limit the amount of total activation for a neuron 
throughout training!

• Use 𝜌𝑖 to denote the activation of neuron 𝑥 on input 𝑖. 
The average activation of the neuron over the training 
set:

 𝜌𝑖 =
1

𝑚
 

𝑖

𝑚

𝜌𝑖

• Now, to enforce sparsity, we limit to  𝜌𝑖 = 𝜌0.

• 𝜌0: A small value.
 Yet another hyperparameter which may be tuned.

 typical value: 0.05.

• The neuron must be inactive most of the time to keep its 
activations under the limit.
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Enforcing sparsity

 𝜌𝑖 =
1

𝑚
 

𝑖

𝑚

𝜌𝑖

• How to limit  𝜌𝑖 = 𝜌0? How do we add integrate this as a 
penalty term into the loss function?

• Use Kullback-Leibler divergence:

 

𝑖

𝐾𝐿(𝜌0 |  𝜌𝑖

Or, equivalently as (since this is between two Bernoulli 
variables with mean 𝜌0 and  𝜌𝑖):

 

𝑖

𝜌0 log
𝜌0

 𝜌𝑖
+ (1 − 𝜌0) log

1 − 𝜌0

1 −  𝜌𝑖
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Backpropagation and training

62

Reminder

-For each hidden unit ℎ, 

calculate its error term 𝛿ℎ:

𝛿ℎ = 𝑜ℎ 1 − 𝑜ℎ  

𝑘∈𝑜𝑢𝑡𝑝𝑢𝑡𝑠

𝑤𝑘ℎ𝛿𝑘

-Update every weight 𝑤𝑗𝑖

𝑤𝑗𝑖 = 𝑤𝑗𝑖 + 𝜂𝛿𝑗𝑥𝑗𝑖

𝑆 = 𝛽 

𝑖

𝜌0 log
𝜌0

 𝜌𝑖
+ (1 − 𝜌0) log

1 − 𝜌0

1 −  𝜌𝑖

𝑑𝑆

𝑑𝜌𝑖
= 𝛽 −𝜌0

1

 𝜌𝑖 ln 10
+ 1 − 𝜌0

1

1 −  𝜌𝑖 ln 10

• If you use ln in KL:

𝑑𝑆

𝑑𝜌𝑖
= 𝛽 −

𝜌0

 𝜌𝑖
+

1 − 𝜌0

1 −  𝜌𝑖

• So, if we integrate into the original error term:

𝛿ℎ = 𝑜ℎ 1 − 𝑜ℎ .  

𝑘

𝑤𝑘ℎ𝛿𝑘 + 𝛽 −
𝜌0

 𝜌𝑖
+

1 − 𝜌0

1 −  𝜌𝑖

• Need to change 𝑜ℎ(1 − 𝑜ℎ) if you use a different 
activation function.



Backpropagation and training
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𝑆 = 𝛽 

𝑖

𝜌0 log
𝜌0

 𝜌𝑖
+ (1 − 𝜌0) log

1 − 𝜌0

1 −  𝜌𝑖

• Do you see a problem here?

•  𝜌𝑖 should be calculated over the training set.

• In other words, we need to go through the whole dataset 
(batch) once to calculate  𝜌𝑖.



Loss & decoders & encoders

• Be careful about the range of your activations and 
the range of the output

• Real-valued input:

 Encoder: use sigmoid

 Decoder: no need for non-linearity. 

 Loss: Squared-error Loss

 Vincent et al. (2010):

• Binary-valued input:

 Encoder: use sigmoid.

 Decoder: use sigmoid.

 Loss: use cross-entropy loss:

64



Loss & decoders & encoders

• Kullback-Leibler divergence assumes that 
the variables are in the range [0,1].
 I.e., you are bound to use sigmoid for the hidden 

layer if you use KL to limit the activations of 
hidden units.
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k-Sparse 
Autoencoder

71



• Note that it doesn’t have an 
activation function!

• Non-linearity comes from k-
selection.
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73http://www.ericlwilkinson.com/blog/2014/11/19/deep-learning-sparse-autoencoders



Denoising
Auto-encoders 
(DAE)
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Denoising Auto-encoders

• Simple idea:

 randomly corrupt some of the inputs (as many as half of 
them) – e.g., set them to zero. 

 Train the autoencoder to reconstruct the input from a 
corrupted version of it.

 The auto-encoder is to predict the corrupted (i.e. 
missing) values from the uncorrupted values.

 This requires capturing the joint distribution between a 
set of variables

• A stochastic version of the auto-encoder. 

75



(Pascal Vincent) 76



(Pascal Vincent) 77



Loss in DAE

• You may give extra emphasis on “corrupted” 
dimensions:

78

Or, in cross-entropy-based loss:



Denoising Auto-encoders

• To undo the effect of a corruption induced 
by the noise, the network needs to capture 
the statistical dependencies between the 
inputs. 

• This can be interpreted from many 
perspectives (see Vincent et al., 2008): 
 the manifold learning perspective, 

 stochastic operator perspective.
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Types of corruption

• Gaussian Noise (additive, isotropic)

• Masking Noise

 Set a randomly selected subset of input to 
zero for each sample (the fraction ratio is 
constant, a parameter)

• Salt-and-pepper Noise:

 Set a randomly selected subset of input to 
maximum or minimum for each sample (the 
fraction ratio is constant, a parameter)
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84(Vincent et al., 2010)Weight decay: L2 regularization.



85(Vincent et al., 2010)



Training DAE
• Training algorithm does not change

 However, you may give different emphasis on the error of 
reconstruction of the corrupted input.

• SGD is a popular choice

• Sigmoid is a suitable choice unless you know what you 
are doing.

• Using “better” activation functions like ReLU is 
problematic.
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Contractive 
Auto-encoder
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Principles other 
than ‘sparsity’?

98



Slowness

99http://www.scholarpedia.org/article/Slow_feature_analysis



Slow Feature Analysis (SFA)
from Wiskott et al.

100http://www.scholarpedia.org/article/Slow_feature_analysis



Slow Feature Analysis (SFA)

101
http://www.scholarpedia.org/article/Slow_feature_analysis

Optimal stimuli for the slowest components 

extracted from natural image sequences.



Visualizing the 
layers
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Visualizing the layers

• Question: What is the input that activates a hidden unit 
ℎ𝑖 most?

 i.e., we are after 𝐱∗:

𝐱∗ = arg max
𝐱 𝑠.𝑡. 𝐱 =𝜌

ℎ𝑖(𝑊, 𝐱)

• For the first layer:

𝑥𝑗 =
𝑤𝑖𝑗

 𝑘 𝑤𝑖𝑘
2

where we assume that  𝑖 𝑥𝑖
2 ≤ 1, and hence normalize 

the weights to match the range of the input values.

• How about the following layers?
 Gradient ascent (not descent): find the gradient of ℎ𝑖(𝑊, 𝐱)

w.r.t 𝐱 and move 𝐱 in the direction of the gradient since we 
want to maximize ℎ𝑖 𝑊, 𝐱 .
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Visualizing the layers
• Activation maximization: 

 Gradient ascent to maximize ℎ𝑖 𝑊,𝐱 .

 Start with randomly generated input and move towards the 
gradient.

 Luckily, different random initializations yield very similar 
filter-like responses.

• Applicable to any network for which we can calculate the 
gradient 𝜕ℎ𝑖 𝑊, 𝐱 /𝜕𝐱

• Need to tune parameters: 

 Learning rate

 Stopping criteria

• Have the same problems of gradient descent

 The space is non-convex

 Local maxima etc.
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Activation Maximization 
results

105Erhan et al., “Understanding Representations Learned in 

Deep Architectures”, 2010.



Autoencoders
with the tools

107



The tools

• You can use “regular” network training
functions/modules available in the libraries for learning 
the input.

• Some has nice tutorials:

 Theano: http://deeplearning.net/tutorial/dA.html
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