
Sinan Kalkan & Emre Akbaş

© AlchemyAPI

CENG 793

Advanced Deep
Learning

Auto-encoders

today
• Manifold Learning

 Principle Component Analysis

 Independent Component Analysis

• Autoencoders

• Sparse autoencoders

• K-sparse autoencoders

• Denoising autoencoders

• Contraction autoencoders

2

Manifold
Learning

3

Manifold Learning
• Discovering the “hidden”

structure in the high-
dimensional space

• Manifold: “hidden” structure.

• Non-linear dimensionality
reduction

4

http://www.convexoptimization.c

om/dattorro/manifold_learning.h

tml

Manifold Learning

• Many approaches:

 Self-Organizing Map (Kohonen map/network)

 Auto-encoders

 Principles curves & manifolds: Extension of PCA

 Kernel PCA, Nonlinear PCA

 Curvilinear Component Analysis

 Isomap: Floyd-Marshall + Multidimensional
scaling

 Data-driven high-dimensional scaling

 Locally-linear embedding

 …

5

Manifold learning
• Autoencoders learn lower-dimensional manifolds

embedded in higher-dimensional manifolds

• Assumption: “Natural data in high dimensional spaces
concentrates close to lower dimensional manifolds”

 Natural images occupy a very small fraction in a space of
possible images

(Pascal Vincent) 6

Manifold Learning
• Many approaches:

 Self-Organizing Map (Kohonen map/network)

7
https://en.wikipedia.org/wiki/Self-organizing_map

(Pascal Vincent) 8

(Pascal Vincent) 9

Principle Component Analysis (PCA)

• Principle Components:
 Orthogonal directions with most variance

 Eigen-vectors of the co-variance matrix

• Mathematical background:
 Orthogonality:

 Two vectors 𝑢 and 𝑣 are orthogonal iff

𝑢 ⋅ 𝑣 = 0

 Variance:

𝜎 𝑋 2 = 𝑉𝑎𝑟 𝑋 = 𝐸 𝑋 − 𝜇 2 =

𝑖

𝑝(𝑥𝑖) 𝑥𝑖 − 𝜇 2

where the (weighted) mean, 𝜇 = 𝐸 𝑋 = 𝑖 𝑝 𝑥𝑖 𝑥𝑖 .

If 𝑝 𝑥𝑖 = 1/𝑁:

𝑉𝑎𝑟(𝑋) =
1

𝑁

𝑖

𝑥𝑖 − 𝜇 2

𝜇 =
1

𝑁

𝑖

𝑥𝑖

10

(Ole Winther)

[Pearson 1901] [Hotelling 1933]

Mathematical background for PCA:
Covariance

• Co-variance:

 Measures how two random variables change wrt
each other:

𝐶𝑜𝑣 𝑋, 𝑌 = 𝐸 𝑋 − 𝐸 𝑋 𝑌 − 𝐸 𝑌

=
1

𝑁

𝑖

(𝑥𝑖 − 𝐸 𝑋)(𝑦𝑖 − 𝐸 𝑌)

 If big values of X & big values of Y “co-occur” and
small values of X & small values of Y “co-occur” 
high co-variance.

 Otherwise, small co-variance.

11

Mathematical background for PCA:
Covariance Matrix

• Co-variance Matrix:

 Denoted usually by Σ

 For an 𝑛-dimensional space:

Σ𝑖𝑗 = 𝐶𝑜𝑣 𝑋𝑖 , 𝑋𝑗 = 𝐸 𝑋𝑖 − 𝜇𝑖 𝑋𝑗 − 𝑚𝑗

12

Mathematical background for PCA:
Covariance Matrix

• Co-variance Matrix:
Σ𝑖𝑗 = 𝐶𝑜𝑣 𝑋𝑖 , 𝑋𝑗

= 𝐸 𝑋𝑖 − 𝜇𝑖 𝑋𝑗 − 𝑚𝑗

• Properties

14(Wikipedia)

(Wikipedia)

Mathematical background
for PCA: Eigenvectors &
Eigenvalues

• Eigenvectors and eigenvalues:

 𝑣 is an eigenvector of a square matrix 𝐴 if

𝐴 𝑣 = 𝜆 𝑣

where 𝜆 is the eigenvalue (scalar) associated with
 𝑣.

• Interpretation:

 “Transformation” 𝐴 does not change the
direction of the vector.

 It changes the vector’s scale, i.e., the eigenvalue.

• Solution:

 𝐴 − 𝜆𝐼 𝑣 = 0 has a solution when the
determinant |𝐴 − 𝜆𝐼| is zero.

 Find the eigenvalues, then plug in those values
to get the eigenvectors.

18

Mathematical background for PCA:
Eigenvectors & Eigenvalues Example

• Setting the determinant |𝐴 − 𝜆𝐼| to zero:

• The roots: 𝜆 = 1 and 𝜆 = 3

• If you plug in those eigenvalues, for 𝜆 = 1:

which gives 𝐯1 = {1, −1}. For 𝜆 = 3:

which gives 𝐯2 = {1,1}.

19Example from Wikipedia.

PCA allows also
dimensionality reduction

• Discard components whose eigenvalue is negligible.

24
See the following tutorial for more on PCA:

http://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition_jp.pdf

Autoencoders

27

Autoencoders

• Universal approximators
 So are Restricted Boltzmann Machines

• Unsupervised learning

• Dimensionality reduction

• 𝐱 ∈ ℝ𝐷 ⇒ 𝐡 ∈ ℝ𝑀 s.t. 𝑀 < 𝐷

28

(Pascal Vincent) 30

(Pascal Vincent) 31

(Pascal Vincent) 32

(Pascal Vincent) 33

(Pascal Vincent) 35

(Pascal Vincent) 36

Stacking autoencoders:
learn the first layer

37http://ufldl.stanford.edu/wiki/index.php/Stacked_Autoencoders

Stacking autoencoders:
learn the second layer

38http://ufldl.stanford.edu/wiki/index.php/Stacked_Autoencoders

Stacking autoencoders:
Add, e.g., a softmax layer for mapping
to output

39http://ufldl.stanford.edu/wiki/index.php/Stacked_Autoencoders

Stacking autoencoders: Overall

40http://ufldl.stanford.edu/wiki/index.php/Stacked_Autoencoders

(Pascal Vincent) 41

(Pascal Vincent) 42

(Pascal Vincent) 43

Making auto-
encoders learn
over-complete
representations
That are not one-to-one mappings

44

Wait, what do we mean by
over-complete?

• Remember distributed representations?

45
Figure Credit: Moontae Lee

DistributedNot distributed

• Four categories could also be represented by two
neurons:

46

Distributed vs. undercomplete vs.
overcomplete representations

Distributed

(Under complete)
Not Distributed

(over complete)
Distributed

(Over complete)

Over-complete = sparse
(in distributed representations)

• Why sparsity?

1. Because our brain relies on sparse coding.
 Why does it do so?

a. Because it is adapted to an environment which is composed of
and can be sensed through the combination of primitive
items/entities.

b. “Sparse coding may be a general strategy of neural systems to
augment memory capacity. To adapt to their environments,
animals must learn which stimuli are associated with rewards
or punishments and distinguish these reinforced stimuli from
similar but irrelevant ones. Such task requires implementing
stimulus-specific associative memories in which only a few
neurons out of a population respond to any given stimulus and
each neuron responds to only a few stimuli out of all possible
stimuli.”

– Wikipedia

c. Theoretically, it has shown that it increases capacity of
memory.

47

Over-complete = sparse
(in distributed representations)

• Why sparsity?

2. Because of information theoretical aspects:

 Sparse codes have lower entropy compared to non-sparse
one.

3. It is easier for the consecutive layers to learn from
sparse codes, compared to non-sparse ones.

48

49

Olshausen & Field,

“Sparse coding with

an overcomplete

basis set: A

strategy employed

by V1?”, 1997

Mechanisms for enforcing
over-completeness

• Use stochastic gradient descent

• Add sparsity constraint

 Into the loss function (sparse autoencoder)

 Or, in a hard manner (k-sparse autoencoder)

• Add stochasticisity / randomness
 Add noise: Denoising Autoencoders, Contraction

Autoencoders

 Restricted Boltzmann Machines

53

Auto-encoders
with SGD

54

Simple neural network

• Input: 𝐱 ∈ 𝑹𝒏

• Hidden layer: 𝐡 ∈ 𝑹𝒎

𝐡 = 𝒇𝟏(𝑾𝟏𝐱)

• Output layer: 𝐲 ∈ 𝑹𝒏

𝐲 = 𝒇𝟐 𝑾𝟐𝒇𝟏 𝑾𝟏𝐱

• Squared-error loss:

𝐿 =
1

2

𝑑∈𝐷

𝐱𝑑 − 𝐲𝒅
𝟐

• For training, use SGD.

• You may try different activation functions for 𝑓1 and 𝑓2.

55

Sparse
Autoencoders

57

Sparse autoencoders
• Input: 𝐱 ∈ 𝑹𝒏

• Hidden layer: 𝐡 ∈ 𝑹𝒎

𝐡 = 𝒇𝟏(𝑾𝟏𝐱)

• Output layer: 𝐲 ∈ 𝑹𝒏

𝐲 = 𝒇𝟐 𝑾𝟐𝒇𝟏 𝑾𝟏𝐱

Over-completeness and sparsity:

• Require
 𝑚 > 𝑛, and

 Hidden neurons to produce only little activation for any input
 i.e., sparsity.

• How to enforce sparsity?

58

Enforcing sparsity: alternatives

• How?

• Solution 1: 𝜆 |𝑤|
 We have seen before that this enforces sparsity.

 However, this is not strong enough.

• Solution 2
 Limit on the amount of average total activation for a

neuron throughout training!

• Solution 3

 Kurtosis:
𝜇4

𝜎4 =
𝐸 𝑋−𝜇 4

𝐸 𝑋−𝜇 2 2

 Calculated over the activations of the whole network.

 High kurtosis  sparse activations.

 “Kurtosis has only been studied for response distributions
of model neurons where negative responses are allowed.
It is unclear whether kurtosis is actually a sensible
measure for realistic, non-negative response
distributions.” -
http://www.scholarpedia.org/article/Sparse_coding

• And many many other ways… 59

http://www.scholarpedia.org/article/Sparse_coding

Enforcing sparsity:
a popular choice

• Limit the amount of total activation for a neuron
throughout training!

• Use 𝜌𝑖 to denote the activation of neuron 𝑥 on input 𝑖.
The average activation of the neuron over the training
set:

 𝜌𝑖 =
1

𝑚

𝑖

𝑚

𝜌𝑖

• Now, to enforce sparsity, we limit to 𝜌𝑖 = 𝜌0.

• 𝜌0: A small value.
 Yet another hyperparameter which may be tuned.

 typical value: 0.05.

• The neuron must be inactive most of the time to keep its
activations under the limit.

60

Enforcing sparsity

 𝜌𝑖 =
1

𝑚

𝑖

𝑚

𝜌𝑖

• How to limit 𝜌𝑖 = 𝜌0? How do we add integrate this as a
penalty term into the loss function?

• Use Kullback-Leibler divergence:

𝑖

𝐾𝐿(𝜌0 | 𝜌𝑖

Or, equivalently as (since this is between two Bernoulli
variables with mean 𝜌0 and 𝜌𝑖):

𝑖

𝜌0 log
𝜌0

 𝜌𝑖
+ (1 − 𝜌0) log

1 − 𝜌0

1 − 𝜌𝑖

61

Backpropagation and training

62

Reminder

-For each hidden unit ℎ,

calculate its error term 𝛿ℎ:

𝛿ℎ = 𝑜ℎ 1 − 𝑜ℎ

𝑘∈𝑜𝑢𝑡𝑝𝑢𝑡𝑠

𝑤𝑘ℎ𝛿𝑘

-Update every weight 𝑤𝑗𝑖

𝑤𝑗𝑖 = 𝑤𝑗𝑖 + 𝜂𝛿𝑗𝑥𝑗𝑖

𝑆 = 𝛽

𝑖

𝜌0 log
𝜌0

 𝜌𝑖
+ (1 − 𝜌0) log

1 − 𝜌0

1 − 𝜌𝑖

𝑑𝑆

𝑑𝜌𝑖
= 𝛽 −𝜌0

1

 𝜌𝑖 ln 10
+ 1 − 𝜌0

1

1 − 𝜌𝑖 ln 10

• If you use ln in KL:

𝑑𝑆

𝑑𝜌𝑖
= 𝛽 −

𝜌0

 𝜌𝑖
+

1 − 𝜌0

1 − 𝜌𝑖

• So, if we integrate into the original error term:

𝛿ℎ = 𝑜ℎ 1 − 𝑜ℎ .

𝑘

𝑤𝑘ℎ𝛿𝑘 + 𝛽 −
𝜌0

 𝜌𝑖
+

1 − 𝜌0

1 − 𝜌𝑖

• Need to change 𝑜ℎ(1 − 𝑜ℎ) if you use a different
activation function.

Backpropagation and training

63

𝑆 = 𝛽

𝑖

𝜌0 log
𝜌0

 𝜌𝑖
+ (1 − 𝜌0) log

1 − 𝜌0

1 − 𝜌𝑖

• Do you see a problem here?

• 𝜌𝑖 should be calculated over the training set.

• In other words, we need to go through the whole dataset
(batch) once to calculate 𝜌𝑖.

Loss & decoders & encoders

• Be careful about the range of your activations and
the range of the output

• Real-valued input:

 Encoder: use sigmoid

 Decoder: no need for non-linearity.

 Loss: Squared-error Loss

 Vincent et al. (2010):

• Binary-valued input:

 Encoder: use sigmoid.

 Decoder: use sigmoid.

 Loss: use cross-entropy loss:

64

Loss & decoders & encoders

• Kullback-Leibler divergence assumes that
the variables are in the range [0,1].
 I.e., you are bound to use sigmoid for the hidden

layer if you use KL to limit the activations of
hidden units.

65

70

k-Sparse
Autoencoder

71

• Note that it doesn’t have an
activation function!

• Non-linearity comes from k-
selection.

72

73http://www.ericlwilkinson.com/blog/2014/11/19/deep-learning-sparse-autoencoders

Denoising
Auto-encoders
(DAE)

74

Denoising Auto-encoders

• Simple idea:

 randomly corrupt some of the inputs (as many as half of
them) – e.g., set them to zero.

 Train the autoencoder to reconstruct the input from a
corrupted version of it.

 The auto-encoder is to predict the corrupted (i.e.
missing) values from the uncorrupted values.

 This requires capturing the joint distribution between a
set of variables

• A stochastic version of the auto-encoder.

75

(Pascal Vincent) 76

(Pascal Vincent) 77

Loss in DAE

• You may give extra emphasis on “corrupted”
dimensions:

78

Or, in cross-entropy-based loss:

Denoising Auto-encoders

• To undo the effect of a corruption induced
by the noise, the network needs to capture
the statistical dependencies between the
inputs.

• This can be interpreted from many
perspectives (see Vincent et al., 2008):
 the manifold learning perspective,

 stochastic operator perspective.

79

(Pascal Vincent) 81

(Pascal Vincent) 82

Types of corruption

• Gaussian Noise (additive, isotropic)

• Masking Noise

 Set a randomly selected subset of input to
zero for each sample (the fraction ratio is
constant, a parameter)

• Salt-and-pepper Noise:

 Set a randomly selected subset of input to
maximum or minimum for each sample (the
fraction ratio is constant, a parameter)

83

84(Vincent et al., 2010)Weight decay: L2 regularization.

85(Vincent et al., 2010)

Training DAE
• Training algorithm does not change

 However, you may give different emphasis on the error of
reconstruction of the corrupted input.

• SGD is a popular choice

• Sigmoid is a suitable choice unless you know what you
are doing.

• Using “better” activation functions like ReLU is
problematic.

86

Contractive
Auto-encoder

87

(Pascal Vincent) 88

(Pascal Vincent) 90

(Pascal Vincent) 91

(Pascal Vincent) 92

(Pascal Vincent) 95

Principles other
than ‘sparsity’?

98

Slowness

99http://www.scholarpedia.org/article/Slow_feature_analysis

Slow Feature Analysis (SFA)
from Wiskott et al.

100http://www.scholarpedia.org/article/Slow_feature_analysis

Slow Feature Analysis (SFA)

101
http://www.scholarpedia.org/article/Slow_feature_analysis

Optimal stimuli for the slowest components

extracted from natural image sequences.

Visualizing the
layers

102

Visualizing the layers

• Question: What is the input that activates a hidden unit
ℎ𝑖 most?

 i.e., we are after 𝐱∗:

𝐱∗ = arg max
𝐱 𝑠.𝑡. 𝐱 =𝜌

ℎ𝑖(𝑊, 𝐱)

• For the first layer:

𝑥𝑗 =
𝑤𝑖𝑗

 𝑘 𝑤𝑖𝑘
2

where we assume that 𝑖 𝑥𝑖
2 ≤ 1, and hence normalize

the weights to match the range of the input values.

• How about the following layers?
 Gradient ascent (not descent): find the gradient of ℎ𝑖(𝑊, 𝐱)

w.r.t 𝐱 and move 𝐱 in the direction of the gradient since we
want to maximize ℎ𝑖 𝑊, 𝐱 .

103

Visualizing the layers
• Activation maximization:

 Gradient ascent to maximize ℎ𝑖 𝑊,𝐱 .

 Start with randomly generated input and move towards the
gradient.

 Luckily, different random initializations yield very similar
filter-like responses.

• Applicable to any network for which we can calculate the
gradient 𝜕ℎ𝑖 𝑊, 𝐱 /𝜕𝐱

• Need to tune parameters:

 Learning rate

 Stopping criteria

• Have the same problems of gradient descent

 The space is non-convex

 Local maxima etc.

104

Activation Maximization
results

105Erhan et al., “Understanding Representations Learned in

Deep Architectures”, 2010.

Autoencoders
with the tools

107

The tools

• You can use “regular” network training
functions/modules available in the libraries for learning
the input.

• Some has nice tutorials:

 Theano: http://deeplearning.net/tutorial/dA.html

108

