
ERKUT AKDAĞ

2194538

11.05.2017

Neural Architecture Search With

Reinforcement Learning
Barret Zoph, Quoc V. Le Google Brain

Middle East Technical University

 CENG793 Advanced Deep Learning

1

OUTLINE

 Introduction

 Related Work

 Methods

 Experiments and Results

 Conclusion

2

Introduction

3

 Neural networks are powerful and flexible models.

 The last few years have been much success of deep neural

networks in many challenging applications but designing

architectures still requires a lot of expert knowledge and

takes ample time.

 Despite their success neural networks are still hard to design.

 In this paper, recurrent network is used in order to generate

the model descriptions of neural networks.

 Train this RNN with reinforcement learning in order to

maximize the expected accuracy of the generated

architectures (on a validation set).

Introduction

4

 This paper represents the “Neural Architecture Search”, a

gradient-based method for finding good architectures.

 This work is based on the observation that the structure and

connectivity of neural network can be typically specified by a

variable-length string.

Introduction

5

 It is possible to use a recurrent network –the controller- to

generate such string.

 Training the network specified by the string- the “child

network”- on the real data will result in an accuracy on a

validation set. Using this accuracy as the reward signal, we

can compute the policy gradient to update the controller.

 As a result, in the next iteration, the controller will give

higher probabilities to architectures. In other words, the

controller will learn to improve its search over time.

Introduction

6

 On CIFAR-10

 novel ConvNet model is found.

 Better than previous most human-invented architecture.

 0.09 percent better error rate

 0.05 faster than previous state of art models

 On Penn Treebank

 Novel recurrent cell is found.

 Better than previous RNN&LSTM.

 3.6 perplexity better than previous state of art models.

Related Work

7

 Hyperparameter optimization is an important research

and only search models from a fixed-length space. These

methods often work better if they are supplied with a good

initial model.

 Modern neuro-evolution algorithms much more flexible

for composing novel models, but they are usually less

practical at a large scale.

 The idea of learning to learn or meta-learning. Neural

network is used to learn the gradient descent updates for

another network and the idea of using reinforcement

learning to find update policies for another network.

Related Work

8

 The controller in Neural Architecture Search is auto-
regressive.

 It predicts hyperparameters one a time, conditioned on
previous predictions. This idea is borrowed from the
decoder in end-to-end sequence to sequence
learning.

 Unlike sequence to sequence learning, this model optimizes
the accuracy (non-differantiable metric) of the child
network.

 It is similar to the work on BLEU optimization in Neural
Machine Translation. Unlike these approaches, this method
learns directly from the reward signal without any supervised
bootstrapping.

Methods

9

 Using recurrent network

 To generate convolutional architecture

 How the recurrent network can be trained with a policy

gradient method

 to maximize the expected accuracy of the sampled

architectures.

 Several improvements of core approach

 forming skip connections to increase model complexity

 using a parameter server approach to speed up training.

 Generating recurrent cell architectures

Methods

10

 Controller Recurrent Neural Network

 In Neural Architecture Search, controller is used to generate
architectural hyperparameters of neural networks.

 Controller predicts filter height, filter width, stride height, stride
width, and number of filters for one layer and repeats. Every
prediction is carried out by softmax classifier and then fed into the
next time step as input.

Methods

11

 Controller Recurrent Neural Network

 In the experiments, the process of generating an architecture
stops if the number of layers exceeds a certain value. This
value follows a schedule where they increase it as training
progresses.

 After the controller RNN finishes generating an architecture,
a neural network with this architecture is built and trained.
At convergence, the accuracy of the network on a held-out
validation set is recorded.

 The parameters of the controller RNN, ,are then
optimized in order to maximize the expected validation
accuracy. Policy gradient method is used to update
parameters for the generating better architectures over
time by controller RNN.

Methods

12

 Training with REINFORCE

 The list of tokens that the controller predicts can be viewed

as a list of actions to design an architecture for a child

network.

 At convergence, this child network will achieve an accuracy

R on a held-out dataset.

 This accuracy R as the reward signal and use reinforcement

learning to train the controller. Maximize the expected

reward in order to find the optimal architecture.

Methods

13

 Training with REINFORCE

 Policy gradient method is used iteratively update (R is

non-differantiable)

 Unbiased estimate for gradient, very high variance.

Methods

14

 Training with REINFORCE

 In order to decrease the variance of this estimate baseline

function can be used in equation.

 Baseline function “b” is exponential moving average of the

previous architecture accuracies.

Methods

15

 Accelerate Training with Parallelism and
Asynchronous Updates

 As training a child network can take hours, distributed
training and asynchronous parameter updates in order to
speed up the learning process of the controller.

 Parameter-server scheme where we have a parameter server
of S shards, that store the shared parameters for K controller
replicas. Each controller replica samples m different child
architectures that are trained in parallel.

Methods

16

 Accelerate Training with Parallelism and

Asynchronous Updates

 The controller then collects gradients according to the

results of that minibatch of m architectures at convergence

and sends them to the parameter server in order to update

the weights across all controller replicas.

 In this implementation, convergence of each child network is

reached when its training exceeds a certain number of

epochs.

Methods

17

 Increase Architecture Complexity with skip

connections and other layer types

 Set-selection type attention is used. At layer N, anchor point

is added.

Methods

18

 Skip connections can cause ”compilation failures” where one

layer is not compatible with another layer, or one layer may

not have any input or output.

 To overcome these issues, three simple techniques are

applied.

 First, if a layer is not connected to any input layer then the

image is used as the input layer.

 Second, at the final layer they take all layer outputs that have

not been connected and concatenate them before sending this

final hidden state to the classifier.

 Lastly, if input layers to be concatenated have different sizes,

we pad the small layers with zeros so that the concatenated

layers have the same sizes.

Methods

19

 Recurrent Cell Architecture Generate

 Created a search space for search over RNN cells like the

LSTM or GRU

 Based our search space off the LSTM cell in that they have a

recurrent state and cell

Methods

20

Experiments & Results

21

 Learning Convolutional Architecture for CIFAR-10

 Preprocessing and augmentation procedures

 Search Space

 Convolutional architecture

 Rectified linear units

 Batch normalization

 Skip connection btw layers

Experiments & Results

22

 Training Details

 Two-layer LSTM

 35 hidden units

 ADAM optimizer

 Learning rate: 0.0006

 The weight init: -0.08 +0.08 uniform

 Server shards(S): 20

 Controller replicas(K): 100

 Child replicas(m): 8

 Totally 800 networks trained over 800 GPU’s

Experiments & Results

23

 Training Details

 50 epochs

 The reward used for updating the controller : max validation

accuracy of the last 5 epoch

 Validation set: 5000 examples (randomly chosen)

 Training set: 45000 examples

 Momentum optimizer: 0.1

 Weight decay: 1e-4

 Momentum: 0.9

 Nesterov Momentum

Experiments & Results

24

Experiments & Results

25

 Learning Recurrent Cells for Penn Treebank

 Regularization methods are needed to avoid over fitting

 Embedding dropout and recurrent dropout

 Search Space

 Combination method and activation function for each node in

tree

 Combination method [add, elem_mult]

 Activation method[identity, tanh, sigmoid, relu]

 Number of input pairs to RNN cell: base number: 8

Experiments & Results

26

 Training Details

 Learning rate: 0.0005

 Server shards(S): 20

 Controller replicas(K): 400

 Child replicas(m): 1

 Totally 400 networks trained over 400 GPU’s

 35 epochs

 Child model has 2 layers

Experiments & Results

27

Experiments & Results

28

Experiments & Results

29

 Transfer Learning on Character Level Language

Modeling

Experiments & Results

30

 Control Experiment 1

 Adding more functions in the search space to test

robustness

Experiments & Results

31

 Control Experiment 2

 Comparison against Random Search

 Instead of policy gradient one can use Random Search to find

the best network.

Conclusion

32

 Neural Architecture Search, an idea of using a recurrent

neural network to compose neural network architectures.

 By using recurrent network as the controller, our method is

flexible so that it can search variable-length architecture

space.

 This method has strong empirical performance on very

challenging benchmarks and presents a new research

direction for automatically finding good neural network

architectures.

33

