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 Neural networks are powerful and flexible models. 

 The last few years have been much success of deep neural 

networks in many challenging applications but designing 

architectures still requires a lot of expert knowledge and 

takes ample time. 

 Despite their success neural networks are still hard to design. 

 In this paper, recurrent network is used in order to generate 

the model descriptions of neural networks. 

 Train this RNN with reinforcement learning in order to 

maximize the expected accuracy of the generated 

architectures (on  a validation set). 
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 This paper represents the “Neural Architecture Search”, a 

gradient-based method for finding good architectures.   

 This work is based on the observation that the structure and 

connectivity of neural network can be typically specified by a 

variable-length string.   
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 It is possible to use a recurrent network –the controller- to 

generate such string. 

 Training the network specified by the string- the “child 

network”- on the real data will result in an accuracy on a 

validation set. Using this accuracy as the reward signal, we 

can compute the policy gradient to update the controller. 

 As a result, in the next iteration, the controller will give 

higher probabilities to architectures. In other words, the 

controller will learn to improve its search over time.  
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 On CIFAR-10  

 novel ConvNet model is found. 

 Better than previous most human-invented architecture. 

 0.09 percent better error rate 

 0.05 faster than previous state of art models 

 On Penn Treebank 

 Novel recurrent cell is found. 

 Better than previous RNN&LSTM. 

 3.6 perplexity better than previous state of art models. 
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 Hyperparameter optimization is an important research 

and only search models from a fixed-length space. These 

methods often work better if they are supplied with a good 

initial model.  

 Modern neuro-evolution algorithms much more flexible 

for composing novel models, but they are usually less 

practical at a large scale. 

 The idea of learning to learn or meta-learning. Neural 

network is used to learn the gradient descent updates for 

another network and the idea of using reinforcement 

learning to find update policies for another network.   
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 The controller in Neural Architecture Search is auto-
regressive.  

 It predicts hyperparameters one a time, conditioned on 
previous predictions. This idea is borrowed from the 
decoder in end-to-end sequence to sequence 
learning.  

 Unlike sequence to sequence learning, this model optimizes 
the accuracy (non-differantiable metric) of the child 
network. 

 It is similar to the work on BLEU optimization in Neural 
Machine Translation. Unlike these approaches, this method 
learns directly from the reward signal without any supervised 
bootstrapping.  
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 Using recurrent network  

 To generate convolutional architecture 

 How the recurrent network can be trained with a policy 

gradient method  

 to maximize the expected accuracy of the sampled 

architectures.  

 Several improvements of core approach  

 forming skip connections to increase model complexity  

 using a parameter server approach to speed up training. 

 Generating recurrent cell architectures 
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 Controller Recurrent Neural Network  

 

 

 

 

 

 

 

 

 In Neural Architecture Search, controller is used to generate 
architectural hyperparameters of neural networks.  

 Controller predicts filter height, filter width, stride height, stride 
width, and number of filters for one layer and repeats. Every 
prediction is carried out by softmax classifier and then fed into the 
next time step as input. 
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 Controller Recurrent Neural Network  

 In the experiments, the process of generating an architecture 
stops if the number of layers exceeds a certain value. This 
value follows a schedule where they increase it as training 
progresses.  

 After the controller RNN finishes generating an architecture, 
a neural network with this architecture is built and trained. 
At convergence, the accuracy of the network on a held-out 
validation set is recorded. 

 The parameters of the controller RNN,     ,are then 
optimized in order to maximize the expected validation 
accuracy. Policy gradient method is used to update 
parameters      for the generating better architectures over 
time by controller RNN. 
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 Training with REINFORCE 

 The list of tokens that the controller predicts can be viewed 

as a list of actions to design an architecture for a child 

network.  

 At convergence, this child network will achieve an accuracy 

R on a held-out dataset. 

 This accuracy R as the reward signal and use reinforcement 

learning to train the controller. Maximize the expected 

reward in order to find the optimal architecture.  
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 Training with REINFORCE 

 

 

 

 

 

 

 

 Policy gradient method is used iteratively update      (R is 

non-differantiable)  

 Unbiased estimate for gradient, very high variance. 
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 Training with REINFORCE 

 In order to decrease the variance of this estimate baseline 

function can be used in equation. 

 Baseline function “b” is exponential moving average of the 

previous architecture accuracies.   
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 Accelerate Training with Parallelism and 
Asynchronous Updates 

 

 

 

 

 

 As training a child network can take hours, distributed 
training and asynchronous parameter updates in order to 
speed up the learning process of the controller.  

 Parameter-server scheme where we have a parameter server 
of S shards, that store the shared parameters for K controller 
replicas. Each controller replica samples m different child 
architectures that are trained in parallel. 
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 Accelerate Training with Parallelism and 

Asynchronous Updates 

 The controller then collects gradients according to the 

results of that minibatch of m architectures at convergence 

and sends them to the parameter server in order to update 

the weights across all controller replicas.  

 In this implementation, convergence of each child network is 

reached when its training exceeds a certain number of 

epochs. 
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 Increase Architecture Complexity with skip 

connections and other layer types 

 

 

 

 

 

 

 

 

 Set-selection type attention is used. At layer N, anchor point 

is added.  
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 Skip connections can cause ”compilation failures” where one 

layer is not compatible with another layer, or one layer may 

not have any input or output.  

 To overcome these issues, three simple techniques are 

applied.  

 First, if a layer is not connected to any input layer then the 

image is used as the input layer.  

 Second, at the final layer they take all layer outputs that have 

not been connected and concatenate them before sending this 

final hidden state to the classifier.  

 Lastly, if input layers to be concatenated have different sizes, 

we pad the small layers with zeros so that the concatenated 

layers have the same sizes. 
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 Recurrent Cell Architecture Generate 

 Created a search space for search over RNN cells like the 

LSTM or GRU 

 Based our search space off the LSTM cell in that they have a 

recurrent state and cell 
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 Learning Convolutional Architecture for CIFAR-10 

 Preprocessing and augmentation procedures 

 Search Space 

 Convolutional architecture 

 Rectified linear units 

 Batch normalization 

 Skip connection btw layers 
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 Training Details 

 Two-layer LSTM 

 35 hidden units 

 ADAM optimizer 

 Learning rate: 0.0006 

 The weight init: -0.08 +0.08 uniform 

 Server shards(S): 20 

 Controller replicas(K): 100 

 Child replicas(m): 8 

 Totally 800 networks trained over 800 GPU’s 
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 Training Details 

 50 epochs 

 The reward used for updating the controller : max validation 

accuracy of the last 5 epoch 

 Validation set: 5000 examples (randomly chosen) 

 Training set: 45000 examples 

 Momentum optimizer: 0.1 

 Weight decay: 1e-4 

 Momentum: 0.9 

 Nesterov Momentum 
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 Learning Recurrent Cells for Penn Treebank 

 Regularization methods are needed to avoid over fitting 

 Embedding dropout and recurrent dropout  

 

 

 Search Space 

 Combination method and activation function for each node in 

tree 

 Combination method [add, elem_mult] 

 Activation method[identity, tanh, sigmoid, relu] 

 Number of input pairs to RNN cell: base number: 8 



Experiments & Results 

26 

 Training Details 

 Learning rate: 0.0005 

 Server shards(S): 20 

 Controller replicas(K): 400 

 Child replicas(m): 1 

 Totally 400 networks trained over 400 GPU’s 

 35 epochs 

 Child model has 2 layers 
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 Transfer Learning on Character Level Language 

Modeling 
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 Control Experiment 1 

 Adding more functions in the search space to test 

robustness 
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 Control Experiment 2 

 Comparison against Random Search 

 Instead of policy gradient one can use Random Search to find 

the best network. 
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 Neural Architecture Search, an idea of using a recurrent 

neural network to compose neural network architectures.  

 By using recurrent network as the controller, our method is 

flexible so that it can search variable-length architecture 

space.  

 This method has strong empirical performance on very 

challenging benchmarks and presents a new research 

direction for automatically finding good neural network 

architectures. 
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