Neural Architecture Search With

Reinforcement Learning

Barret Zoph, Quoc V. Le Google Brain

ERKUT AKDAG
2194538
inlioslzony

O

Middle East Technical University
CENG793 Advanced Deep Learning

OUTLINE

® Introduction

® Related Work

® Methods

® Experiments and Results

® Conclusion

Introduction

® Neural networks are powertul and tlexible models.

® The last few years have been much success of deep neural
networks in many challenging applications but designing
architectures still requires a lot of expert knowledge and

takes ample time.
® Despite their success neural networks are still hard to design.

® In this paper, recurrent network is used in order to generate

the model descriptions of neural networks.

® Train this RNN with reinforcement learning in order to
maximize the expected accuracy of the generated

architectures (on a validation set).

Introduction

Sample architecture A
with probability p

[0

Trains a child network

The controller (RNN) with architecture
A to get accuracy R

Compute gradient of p and

scale it by R to update
the controller

® This paper represents the “Neural Architecture Search”, a

gradient—based method for finding good architectures.

e This work is based on the observation that the structure and
connectivity of neural network can be typically specified by a

Variable—length string.

Introduction

® Jtis possible to use a recurrent network —the controller- to

generate such string,

o Training the network specified by the string- the “child
network”- on the real data will result in an accuracy on a
validation set. Using this accuracy as the reward signal, we

can compute the policy gradient to update the controller.

® Asaresult, in the next iteration, the controller will give
higher probabilities to architectures. In other words, the

controller will learn to improve its search over time.

/

Introduction

® On CIFAR-10

® novel ConvNet model is found.
® Better than previous most human-invented architecture.
® (.09 percent better error rate

® (.05 faster than previous state of art models

® On Penn Treebank
® Novel recurrent cell is found.
® Better than previous RNN&LSTM.
® 3.6 perplexity better than previous state of art models.

Related Work

* Hyperparameter Optimization is an important research
and only search models from a fixed—length space. These
methods often work better if they are supplied with a good

initial model.

®* Modern neuro-evolution algorithms much more flexible
for composing novel models, but they are usually less

practical at a large scale.

® The idea of learning to learn or meta—learning. Neural
network is used to learn the gradient descent updates for
another network and the idea of using reinforcement

learning to find update policies for another network.

(-,

Related Work

® The controller in Neural Architecture Search is auto-
regressive.

® It predicts hyperparameters one a time, conditioned on
previous predictions. This idea is borrowed from the
decoder in end-to-end sequence to sequence
learning.

® Unlike sequence to sequence learning, this model optimizes
the accuracy (non-ditferantiable metric) of the child
network.

® It is similar to the work on BLEU optimization in Neural
Machine Translation. Unlike these approaches, this method
learns directly from the reward signal without any supervised
bootstrapping.

Methods

® Using recurrent network
® To generate convolutional architecture

® How the recurrent network can be trained with a policy
gradient method

® to maximize the expected accuracy of the sampled

architectures.

e Several improvements of core approach
° forrning skip connections to increase model complexity

° using a parameter server approach to speed up training.

° Generating recurrent cell architectures

Methods

¢ Controller Recurrent Neural Network

Softmax classifier
| Controller RNN
Number| Filter Filter Stride Stride | [Number| Flter
. |of Filters \ | Height [\ | Width [, [Height [\ | Width [\ |of Filters|, | Height [\
H N . \ A : 4 v A B Y . 1x .
oy > B > > > i
HR7 Y 7 } A A y \ ' Y B
> > > > > » >
". ‘4 ‘.“ 2 “l: A ‘.‘ A ‘.“ A "‘ ‘4 '._\ P | ‘.“ ‘4"
Layer N-1 T > Layer N ol Layer N+—l
Embedding

® In Neural Architecture Search, controller is used to generate
architectural hyperparameters of neural networks.

* Controller predicts filter height, filter width, stride height, stride
width, and number of filters for one layer and repeats. Every
prediction is carried out by softmax classifier and then fed into the

@ next time step as input.

Methods

¢ Controller Recurrent Neural Network

® In the experiments, the process of generating an architecture
stops if the number of layers exceeds a certain value. This
value follows a schedule where they increase it as training
progresses.

* After the controller RNN finishes generating an architecture,
a neural network with this architecture is built and trained.
At convergence, the accuracy of the network on a held-out
validation set is recorded.

® The parameters of the controller RNN, fc are then
optimized in order to maximize the expected validation
accuracy. Policy gradient method is used to update
parameters (), for the generating better architectures over
time by controller RNN.

Methods

° Training with REINFORCE

® The list of tokens that the controller predicts can be viewed
as a list of actions to design an architecture for a child

network.

® At convergence, this child network will achieve an accuracy
R on a held-out dataset.

e This accuracy R as the reward signal and use reinforcement
learning to train the controller. Maximize the expected

reward in order to find the optimal architecture.

Methods

° Training with REINFORCE

Accuracy of architecture on
Parameters of Controller RNN held-out dataset

J(8.) = Ep(a, :T.:\?),) [R]

Architecture predicted by the controller RNN
viewed as a sequence of actions

T
Vao.J(0:) Z[““Tg [VU log Plag|ag_1y.: Q)R]
t=1

Number of models in minibatch —— m Z Z Vo, log P(a|ag-1):1; 0c) Ri

k=1 t=1

® Policy gradient method is used iteratively update fc (R is

non-differantiable)

® Unbiased estimate for gradient, very high variance.

Methods

° Training with REINFORCE

® |n order to decrease the variance of this estimate baseline

function can be used in equation.
® Baseline function “b” is exponential moving average of the

previous architecture accuracies.

1 m L | | |
—> > Ve log Plarlag_1):1;6c)(Ri — b)
k=1 t=1

Methods

e Accelerate Training with Parallelism and
Asynchronous deates

Accuracy
R

Controller
Replica 1

Child
Replica 1

Child
Replica 2

Parameters

Parameter

Server 1

ol e

Parameter
Server 2

Controller
Replica 2

Child
Replica m

Child
Replica 1

Child
Replica 2

Child
Replica m

Parameter
Server S

Controller
Replica K

i

Child Child Child

Replica 1 Replica 2 Replica m

® As training a child network can take hours, distributed

training and asynchronous parameter updates in order to

speed up the learning process of the controller.

® Parameter-server scheme where we have a parameter server

of S shards, that store the shared parameters for K controller

replicas. Each controller replica samples m different child

architectures that are trained in parallel.

Methods

e Accelerate Training with Parallelism and
Asynchronous deates

® The controller then collects gradients according to the
results of that minibatch of m architectures at convergence
and sends them to the parameter server in order to update

the Weights across all controller replicas.

® In this implementation, convergence of each child network is
reached when its training exceeds a certain number of

epochs.

/

Methods

e Increase Architecture Complexity with skip
connections and other layer types

WeighAt_ Matrices

{ T
/

P(Layer j is an input to layer i) = sigmoid (v tanh(W,en * hi + Wger # b))
prev * 1] 2

N-1 skip connections

g

N i:e;l Filter

. |Number
% |of Filters|, ' {of Filters[' | Height |
LA N
i) o 1
) 3 3 3 3 [3 3 '
: > » »> ' > > > > >
A 3 VA 5 A 3 E LA A LA
Layer N-1 A Layer N S Layer N+1

® Set-selection type attention is used. At layer N, anchor point

is added.

-

Methods

Skip connections can cause ”compilation failures” where one
layer is not compatible with another layer, or one layer may

not have any input or output.

To overcome these issues, three simple techniques are
applied.
First, if a layer is not connected to any input layer then the

image is used as the input layer.

Second, at the final layer they take all layer outputs that have
not been connected and concatenate them before sending this
final hidden state to the classifier.

Lastly, it input layers to be concatenated have different sizes,
we pad the small layers with zeros so that the concatenated

layers have the same sizes.

Methods

e Recurrent Cell Architecture Generate

® Created a search space for search over RNN cells like the
LSTM or GRU

* Based our search space off the LSTM cell in that they have a

recurrent state and cell

hy Ce
7
identitzﬁ //
7 A /
elem_mull‘_, /
P .-Ff\"h /
/

N /
_/
: ' 77__*(? add
|dent|EYLr»

/
sigmoid -
@ ’elem»mult /';\Iidentity
i ¥¢\
/ \ \\
@sigmo-d @ elem _mult
é} sigmoid @~ \
dd add ggadd
S, R Q \
B N \
S SN \
G e

A
Methods

Cell Search Space Controller RNN Created New Cell
he
Tree
Index 2
Tree Tree
Index 0 Index 1 H
ht-l Xt ht-l Xt " Tree Index 0 Tree Index 1 Tree Index 2 Cell Inject Cell Indices

e The controller predicts Add and T'anh for tree index 0, this means we need to compute
ag = tanh(W, * 2, + W5 x hy_q).

e The controller predicts ElemMult and ReLU for tree index 1, this means we need to
compute ay; = ReLU (W3 # 2;) @ (Wy * he_y)).

e The controller predicts O for the second element of the "Cell Index”, Add and ReLU for
elements in "Cell Inject”, which means we need to compute af}“* = ReLU(ag + ¢;—1).
Notice that we don’t have any learnable parameters for the internal nodes of the tree.

e The controller predicts ElemMult and Sigmoid for tree index 2, this means we need to
compute as = sigmoid(af“” © a). Since the maximum index in the tree is 2, h; is set to
as.

e The controller RNN predicts 1 for the first element of the "Cell Index™, this means that we
@ should set ¢; to the output of the tree at index 1 before the activation, i.e., ¢; = (W3 *2,) ®

(W * he_1).

Experiments & Results
* Learning Convolutional Architecture for CIFAR-10

o PI'GPI'OCGSSiIlg and augmentation pI’OCGdUl‘GS

* Search Space
® Convolutional architecture
® Rectified linear units
® Batch normalization

® Skip connection btw layers

[13,57] [1,3,5.7] [1,2,3] [1,23] [24,36,48,64]
: Number_ Filter Filter Stride Stride | Number. Filter
» |of Filters + | Height [Width |, | Height |, | Width [, |of Filters|, | Height [
\ N \ v A NI A i . A .
Y ¥ A 7 } A A X A '
—> > > > > > >
LA LA LA %, LA LA LA %4
Layer N-1 W e Layer N Ll Layer N+l

/

Experiments & Results

* Training Details
® Two-layer LSTM
® 35 hidden units
®* ADAM optimizer
® Learning rate: 0.0006
® The weight init: -0.08 +0.08 uniform
® Server shards(S): 20
® Controller replicas(K): 100
® Child replicas(m): 8
* Totally 800 networks trained over 800 GPU'’s

/

Experiments & Results

® Training Details
® 50 epochs

® The reward used for updating the controller : max validation

accuracy of the last 5 epoch
® Validation set: 5000 examples (randomly chosen)
® Training set: 45000 examples
® Momentum optimizer: 0.1
® Weight decay: le-4
® Momentum: 0.9

® Nesterov Momentum

/

Experiments & Results
Model | Depth Parameters | Error rate (%)

Metwaork in Metwork (Lin et al., 2001 3) - - a8l
All-CNN (Springenberg et al., 20147 - - 725
Deeply Supervised Net (Lee et al., Z015) - - a7
Highway Network (Srivastava et al., 2015) - e 172
Scalahle Bayesian Optimization (Snosk et al,, 20015%) - - 37
FractalMet (Larsson et al.. 20016) 21 3R.6M 522
with Dropout/Drop-path 21 38.6M 4.60
ResMet (He et al., 2006a) [110 1.7M | .61
ResNet (reported by Huang et al. (2016c)) | 110 1LTM | f.41
ResMet with Stochastic Depth (Huang et al., 2006¢) 110 1.7M 323

1202 10.2M 491
Wide ResMet iZagoruyke & Komodakis, 2016) i 11.00 4,81

28 36.5M 417
ResNet (pre-activation) (He et al., 2016b) 164 1.7M 546

101 10.2M 462
DenseNet (L = 40,k = 12) Huang et al. (2016a) 1] 1,00 224
DenseMet{ L = L{K), k = 12) Huang et al. (2016a) 100 7.0M 4.10
DenseMet (L = 100, & = 24) Huang et al. (2016a) 1030 27.2M 374
DenseMet-BC (L = 100, & = 40) Huang et al. (2016b) 10 25.60M 346
Neural Architecture Search v1 no stride or pooling 15 4.2M 3.50 o
Meural Architeeture Search v2 predicting strides 20 25M 6,01 5% faster
Meural Architecture Search v3 max pooling 1 TIM 4.47
Meural Architecture Search v3 max pooling + more filters ! 37.4M 365

Experiments & Results

® Learning Recurrent Cells for Penn Treebank
° Regularization methods are needed to avoid over fitting

° Embedding dropout and recurrent dropout

e Search Space

® Combination method and activation function for each node in

tree
® Combination method [add, elem_mult]
® Activation method[identity, tanh, sigmoid, relu]

® Number of input pairs to RNN cell: base number: 8

/

Experiments & Results

* Training Details
® Learning rate: 0.0005
® Server shards(S): 20
® Controller replicas(K): 400
® Child replicas(m): 1
* Totally 400 networks trained over 400 GPU'’s
® 35 epochs
® Child model has 2 layers

/

Experiments & Results
Maodel | Parameters Test Perplexity
Mikolov & Zweig (2012) - KN-5 IM! 141.2
Mikolov & Zweig (2012) - KN3 + cache 2MF 125.7
Mikolov & Zweig (2012) - RNN 6M! 124.7
Mikolov & Zweig (2012) - RNN-LDA M! 113.7
Mikolov & Zweig (2012) - RNN-LDA + KN-5 + cache oM 02.0
Pascanu et al. (2013) - Deep RNN oM 107.5
Cheng et al. (2014) - Sum-Prod Net SMF 100.0
Zaremba et al. (2014) - LSTM {medium}) 20M 22T
Zaremba et al. (2014) - LSTM (large) 66 M TR.4
Gal (20135) - Variational LSTM (medium, untied) 20M 0.7
Gal (2015) - Variational LSTM (medium, untied, MC) 20M TR.6
Gal (2015) - Variational LSTM (large, untied) 66M 75.2
Gal (2015) - Variational LSTM (large, untied, MC) H6M 73.4
Kim et al. (2015) - CharCNN 19M 78.9
Press & Wolf (2016) - Variational LSTM, shared embeddings 3IM T2
Merity et al. (2016) - Zoneout + Variational LSTM (medium) 20M 80.6
Merity et al. {(2016) - Pointer Sentinel-LSTM (medium) 2IM 70.9
Inan et al. (2016) - VD-LSTM + REAL (large) 5IM 68.5
Zilly et al. (2016) - Variational RHN, shared embeddings 24M 6.0
Neural Architecture Search with base 8 32M 67.9 | 2x as fast
Neural Architecture Search with base 8 and shared embeddings 25M G4.0 ——
Neural Architecture Search with base 8 and shared embeddings 54M 62.4

Experiments & Results

elem_mult

®
add
elem_mult
sigmoid tanh tanh
add (add add
oid tar;?g oid Sigmoid tanh
add ()add @) add R

elem_muit

LSTM Cell Neural Architecture Search (NAS) Cell

/

Experiments & Results

¢ Transfer Learning on Character Level Language
Modeling

RNN Cell Type | Parameters Test Bits Per Character
Ha ct al. (2016) - Layer Norm HyperLSTM 4.92M 1.250
Ha et al. (2016) - Layer Norm HyperLSTM Large Embeddings 5.06M 1253
Ha et al. (2016) - 2-Layer Norm HyperLSTM 14.41M 1.219
Twao layer LSTM 6.57TM 1.243
Two Layer with New Cell 6.57TM 1.228
Two Layer with New Cell 16.28M 1.214

A
Experiments & Results

e Control Experiment 1

o Adding more functions in the search space to test
robustness

hy Ce
M M
R

’; tanh

elem_mult_‘__ identity

~— !

D elem_mult
anmond g

elem_mult "".Singid

sngmmdq

/) identity
add add
.(;) () add 2
) /(identity
/
tanh q} b dd
tanh lden%ty h tanh |c¥ntcty ,l’anm
®

add add aod add add/'ma)’ max ’ma*

L
;.;/-;;'3'__,\.\ \ o |

\ N

J U O
X ht-l Cta

Experiments & Results

e Control Experiment 2

° Comparison against Random Search

® Instead of policy gradient one can use Random Search to find

the best network.

40

e—e Top_1_unique_models
35.| ®—* Top_5 unique_models | ®
e—e Top_15_unique_models
30}
5
£ 25}
]
>
o
Q
E 20}
2
x
°
2 15}
@D
o
10}
5
0) | 4 l 1 1 |
0 5000 10000 15000 20000 25000

Iteration

Conclusion

® Neural Architecture Search, an idea of using a recurrent

neural network to compose neural network architectures.

* By using recurrent network as the controller, our method is
flexible so that it can search variable-length architecture

space }

® This method has strong empirical performance on very
Challenging benchmarks and presents a new research
direction for automatically finding good neural network

architectures.

=« 1 N0lyabonga
banpnanaa da"ke;?jugﬁm lB Bkk”[e B”m“"

cnacmbo (aaletailava

o
=T
aldies
— = liltos daﬂklﬂ.__ vmak nlauuuamm an Je mmmm mainndu | ié xBana
=8 C‘,Eg = [aclaswasanlemana
=SS £ £
wi CO B, 2 new .em~muc hchakkeram 2
le U 8 nmaxalnulmun ravies ¥ SUpYY —

ol Unk,ap__gmal N maith agat
hnga sukna

S s e " tnemi (] 3lll]3|[l < HkU B Vugaez

= (n st hannita E '3hmet 3 dmlch thanyavadagaly Sh“k"Ya ; Mepcy

ETATH NAAT = /1} (1L][}XIBXIB_mB[B|

(-

