

METU - Department of Computer Engineering

CENG 793 –Advanced Deep Learning 2016-2017 Spring

Web: http://user.ceng.metu.edu.tr/~emre/ADL.html

Emailing List: METUClass page of the course

Instructors: Emre Akbaş (B202) & Sinan Kalkan (B-207)

[Office hours: by appointment]

Lectures: Thursday, 13:40-16:30, BMB-4

Credits: METU: 3 Theoretical, 0 Laboratory; ECTS: 8.0

Catalog: Advanced deep learning problems and methods; Working with sequential data using Recurrent Neural Networks; Specialized Recurrent Neural Networks such as Elman, Jordan and Echo State Networks; Long Short Time Memory and its variants; Memory networks; Deep Neural Turing Machines; Deep Reinforcement Learning.

Textbook: We will mainly follow the state of the art with papers. However, the following might be handy at times:

• Y. Bengio, I. Goodfellow and A. Courville, "Deep Learning", MIT Press, 2016.

Grading:

Paper Presentation	15%
Paper Quizzes	25%
Project	30%
Paper Writing	30%

Prerequisite: CENG 783 or consent of the instructor.

Tentative Schedule:

Week & Date Topic		Торіс
		Review of Fundamental Deep Learning Methods
1	23 Feb	[Problem Definition; Overview of Approaches; Autoencoders;
		Convolutional Neural Networks; Deep/Restricted Boltzmann Machines]
2	2 Mar	Review of Fundamental Deep Learning Methods
		[Problem Definition; Overview of Approaches; Autoencoders;
		Convolutional Neural Networks; Deep/Restricted Boltzmann Machines]
3	9 Mar	Review of Fundamental Deep Learning Methods
		[Problem Definition; Overview of Approaches; Autoencoders;
		Convolutional Neural Networks; Deep/Restricted Boltzmann Machines]
	16 Mar	Recurrent Neural Networks
4		[Unfolding; Backpropagation Through Time; Elman & Jordan Networks;
		Echo State Networks; Long Short Time Memory and its variants]
	23 Mar	Recurrent Neural Networks
5		[Unfolding; Backpropagation Through Time; Elman & Jordan Networks;
		Echo State Networks; Long Short Time Memory and its variants]
6	30 Mar	Memory Networks
		[Dynamic Memory Networks; Hierarchical Temporal Memory Networks;
		Sparse Distributed Memory]
	6 April	Memory Networks
7		[Dynamic Memory Networks; Hierarchical Temporal Memory Networks;
		Sparse Distributed Memory]
	13 April	Deep Turing Machines
8		[Turing Machine; Neural Turing Machine; Neural Random Access
		Machine]
_	20 April	Deep Turing Machines
9		[Turing Machine; Neural Turing Machine; Neural Random Access
		Machine]
10	27 April	Deep Reinforcement Learning
		[Reinforcement Learning; Deep Reinforcement Learning]
11	4 May	Deep Reinforcement Learning
		[Reinforcement Learning; Deep Reinforcement Learning]
12	11 May	Why does it work?
		[Different perspectives from biology and physics]
13	18 May	Discussion
		[Deep Learning: Problems, Solutions, Open Issues and Directions]
14	25 May	Project demos