
Ceng 793 – Advanced Deep Learning

Week 3 – Overview:
Convolutional Neural Networks &

Recurrent Neural Networks

Spring 2017

Emre Akbas & Sinan Kalkan

Regular ANN vs CNN?

● ANN → fully connected.
– Uses matrix multiplication to compute the next layer.

● CNN → sparse connections.
– Uses convolution to compute the next layer.

● Everything else stays almost the same
– Activation functions

– Cost functions

– Training (back-propagation)

– …

● CNNs are more suitable for data with grid topology.
– e.g. images (2-D grid), videos (3-D grid), time series data (1-D

grid).

CNNs learn both:
● Hierarchical representations of the data, and
● Supervised decision boundary on these
representations

at the same time.

[Slide by Yann LeCun http://www.cs.nyu.edu/~yann/talks/lecun-ranzato-icml2013.pdf]

Convolution

We use it to extract information from a signal.

s [t]=(x ⭑w)[t]= ∑
a=−∞

a=∞

x [a]w [a+t]

Input kernelFeature map

Computes similarity of two signals. Can be used to find patterns
(template matching with normalized cross-correlation).

Naming
convention in
computer vision
and DL.

We use it to extract information from a signal.

s [t]=(x ⭑w)[t]= ∑
a=−∞

a=∞

x [a]w [a+t]

Input kernelFeature map

Computes similarity of two signals. Can be used to find patterns
(template matching with normalized cross-correlation).

Naming
convention in
computer vision
and DL.

Sliding dot-product

Convolution or cross-correlation ?

Both are linear, shift-invariant operations.

s [t]=(x ⭑w)[t]= ∑
a=−∞

a=∞

x [a]w [a+t]

s [t]=(x∗w)[t]= ∑
a=−∞

a=∞

x [a]w [t−a]

Cross-correlation:

Convolution:

Identical operations except that the kernel is flipped in convolution.
If the kernel is symmetric, then they are identical.

Convolution or cross-correlation ?

This is the formula for cross-correlation in 2D:

Many machine learning libraries implement cross-
correlation but call it convolution.

Convolution example

Figure 9.1 from Goodfellow et al. (2016).

Strictly speaking, this is a
cross-correlation, not
convolution.

Motivation behind ConvNets

1) Sparse interactions

2) Parameter sharing

3) Equivariant
representations

4) Ability to process inputs
of variable sizes

Localized neurons

Using the same
localized neuron at
different locations

If the input moves, the
output representation
moves equivalently.

1) Sparse interactions

2) Parameter sharing

3) Equivariant
representations

4) Ability to process inputs
of variable sizes

By using scalable
pooling regions

1) Sparse interactions
In a regular ANN (i.e. MLP), nodes are fully-connected

In CNN, sparse connections:

Figure 9.2 from Goodfellow et al. (2016).

Sparse interactions

1st (input) layer: 4x4 image

2x2 filter

2nd layer

Sparse interactions

1st (input) layer: 4x4 image
2nd layer

Node in the 2nd layer is not fully-connected to the
nodes in the 1st layer.

Sparse interactions

1st (input) layer: 4x4 image
2nd layer

: computed

Sparse interactions

1st (input) layer: 4x4 image
2nd layer

: computed

Sparse interactions

1st (input) layer: 4x4 image
2nd layer

: computed

Sparse interactions

1st (input) layer: 4x4 image
2nd layer

: computed

Sparse interactions

1st (input) layer: 4x4 image
2nd layer

: computed

But why do we need this sparsity?

But why do we need this sparsity?

● Sparse connections reduce complexity.

[Slide by Marc’Aurelio Ranzato from his Deep Learning Tutorial at CVPR 2014 link]

https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxsc3ZydHV0b3JpYWxjdnByMTR8Z3g6Njg5MmZkZTM1MDhhZWNmZA

[Slide by Marc’Aurelio Ranzato from his Deep Learning Tutorial at CVPR 2014 link]

https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxsc3ZydHV0b3JpYWxjdnByMTR8Z3g6Njg5MmZkZTM1MDhhZWNmZA

Sparse interactions

Complexity of fully-connected vs sparse:

m: # of nodes in the 1st layer
n: # of nodes in the 2nd layer
k: # of elements in the filter

Fully-connected: O(mn)
Sparse: O(nk) where, typically, k<<m

2) Parameter Sharing

1st (input) layer: 4x4 image
2nd layer

Same neuron or kernel or filter (the red window) is applied at all
locations of the input layer.

of total parameters to be learned and storage requirements
dramatically reduced.

Note m and n are roughly the same, but k is much less than m.

[Slide by Marc’Aurelio Ranzato from his Deep Learning Tutorial at CVPR 2014 link]

These six circles
are actually the
same neuron.

https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxsc3ZydHV0b3JpYWxjdnByMTR8Z3g6Njg5MmZkZTM1MDhhZWNmZA

3) Equivariance

General definition: If

representation(transform(x)) = transform(representation(x))

then representation is equivariant to the transform.

3) Equivariance

General definition: If

representation(transform(x)) = transform(representation(x))

then representation is equivariant to the transform.

Convolution is equivariant to translation. This is a direct
consequence of parameter sharing.

Useful when detecting structures that are common in the input.
E.g. edges in an image. Equivariance in early layers is good.

We are able to achieve translation-invariance (via max-pooling)
due to this property.

4) Ability to process arbitrary sized
inputs

Fully-connected networks accept fixed-size input vector.

In ConvNets, we can use “pooling” to summarize the input
into a fixed-size vector/matrix.

Scale the pooling region with respect to the input size.

After convolution...

After convolution...

After convolution...
the next operations: nonlinearity and pooling.

We have already seen
many non-linear
activation functions.

ReLU is the most
widely used one.

Pooling

A pooling function takes the output of the previous
layer at a certain location L and computes a
“summary” of the neighborhood around L.

E.g. max-pooling [Zhou and Chellappa (1988)]

Max-pooling

Figure 9.8 from Goodfellow et al. (2016).

Max-pooling introduces
invariance.

Input layer has shifted to
the right 1-pixel.

But only half of the
values in the output layer
have changed.

[Slide by Marc’Aurelio Ranzato from his Deep Learning Tutorial at CVPR 2014 link]

https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxsc3ZydHV0b3JpYWxjdnByMTR8Z3g6Njg5MmZkZTM1MDhhZWNmZA

[Slide by Marc’Aurelio Ranzato from his Deep Learning Tutorial at CVPR 2014 link]

https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxsc3ZydHV0b3JpYWxjdnByMTR8Z3g6Njg5MmZkZTM1MDhhZWNmZA

Spatial pooling produces invariance to translation. Pooling
over channels produces other invariances. E.g. Maxout
networks by Goodfellow et al. (2013).

Figure 9.9 from Goodfellow et al. (2016).

Pooling summarizes.

We can make a sparse summary by using a stride larger than 1.

This reduces the computational complexity and memory
requirements.

Figure 9.10 from Goodfellow et al. (2016).

Pooling width: 3

Stride: 2

Stride: distance between
neighboring neurons

Putting everything together

Input x

ŷ

CNN

...

y

True label y

Loss(ŷ , y) Cross-entropy
Hinge loss

Softmax
Gradient of loss
w.r.t. parameters are
computed using
backpropagation.

Then, use a
stochastic gradient
descent method to
minimize loss.

Cross-entropy

What does softmax do?
● Normalizes the raw output

scores by the neural network
● Emphasizes the max score

L(θ)=−∑
i=1

N

∑
c=1

C

y ic log qic

y
i
 is a C-dimensional one-hot vector

q
i
 is the softmax of f(x)

q ic=
e f c(x i)

∑
k

e f k (xi)

Cross-entropy

What does softmax do?
● Normalizes the raw output

scores by the neural network
● Emphasizes the max score

L(θ)=−∑
i=1

N

∑
c=1

C

y ic log qic

y
i
 is a C-dimensional one-hot vector

q
i
 is the softmax of f(x)

q ic=
e f c(x i)

∑
k

e f k (xi)

Where does
this expression
come from?

Modular Backpropagation

A computing block:

Function f()

Params w
Input x Output o

Forward pass: o=f (x ;w)

Derivative of output w.r.t. input:

Derivative of output w.r.t. parameters:

∂o
∂ x

=
∂ f (x ;w)

∂ x

∂o
∂w

=
∂ f (x ;w)

∂w

A computing block:

Function f()

Params w
Input x Output o

Forward pass: o=f (x ;w)

Derivative of output w.r.t. input:

Derivative of output w.r.t. parameters:

∂o
∂ x

=
∂ f (x ;w)

∂ x

∂o
∂w

=
∂ f (x ;w)

∂w

Typically, X, o
and w are
vectors or
matrices. Care
has to be
taken in
computing the
derivatives.

X*W where
W is D-by-K

N-by-D N-by-K

Derivative of output w.r.t. input:

Derivative of output w.r.t. parameters:

∂o
∂ X

=W

∂o
∂W

=X

E.g. a fully connected layer with D input nodes and K output
nodes, receiving N examples.

E.g. do the same for a ReLU layer receiving N-by-K input

Max(0,x)X: N-by-K o: N-by-K

Derivative of output w.r.t. input:

Derivative of output w.r.t. parameters:

∂o
∂ xij

={1 if x ij>0
0 otherwise

No parameters,
nothing to learn

Multiple blocks

x
o1 o2

f 1(x ;w1) f 2(o1 ;w2)

To update w
2

To update w
1

∂o2

∂w2

∂o2

∂w1

=
∂o2

∂o1

∂o1

∂w1

Each block has its own:
● Derivative w.r.t. input
● Derivative w.r.t. parameters.

When you are back-
propagating, be careful which
one to use.

Multiple blocks

x
o1

o2f 1(x ;w1) f 2(o1 ;w2)

∂o3

∂w1

=
∂o3

∂o2

∂o2

∂o1

∂o1

∂w1

o3f 3(o2 ;w3)

Multiple blocks

x
o1

o2f 1(x ;w1) f 2(o1 ;w2)

∂o3

∂w1

=
∂o3

∂o2

∂o2

∂o1

∂o1

∂w1

o3f 3(o2 ;w3)

Chain the “derivatives w.r.t. to input”

Last step: multiply with derivative
w.r.t. parameters

References

● Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y.
(2013a).Maxout networks. In S. Dasgupta and D. McAllester, editors,
ICML’13 , pages 1319–1327

● Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
● Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification

with deep convolutional neural networks. In Advances in neural information
processing systems (pp. 1097-1105).

● LeCun, Y. (1989). Generalization and network design strategies. Technical
Report. CRG-TR-89-4, University of Toronto.

● Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., & Salakhutdinov,
R. (2014). Dropout: a simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15(1), 1929-1958.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

