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Regular ANN vs CNN? 

● ANN → fully connected. 
– Uses matrix multiplication to compute the next layer. 

● CNN → sparse connections.
– Uses convolution to compute the next layer. 

● Everything else stays almost the same
– Activation functions

– Cost functions

– Training (back-propagation)

– …

● CNNs are more suitable for data with grid topology.
– e.g. images (2-D grid), videos (3-D grid), time series data (1-D 

grid).



CNNs learn both: 
● Hierarchical representations of the data, and
● Supervised decision boundary on these 
representations

at the same time.



[Slide by Yann LeCun http://www.cs.nyu.edu/~yann/talks/lecun-ranzato-icml2013.pdf]



Convolution



We use it to extract information from a signal.

s [t ]=(x ⭑w)[t ]= ∑
a=−∞

a=∞

x [a ]w [a+t ]

Input kernelFeature map

Computes similarity of two signals. Can be used to find patterns 
(template matching with normalized cross-correlation).

Naming 
convention in 
computer vision 
and DL.
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Convolution or cross-correlation ? 

Both are linear, shift-invariant operations. 

s [t ]=(x ⭑w)[t ]= ∑
a=−∞

a=∞

x [a ]w [a+t ]

s [t ]=(x∗w)[t ]= ∑
a=−∞

a=∞

x [a ]w [ t−a ]

Cross-correlation:

Convolution:

Identical operations except that the kernel is flipped in convolution. 
If the kernel is symmetric, then they are identical. 



Convolution or cross-correlation ? 

This is the formula for cross-correlation in 2D: 

Many machine learning libraries implement cross-
correlation but call it convolution. 



Convolution example

Figure 9.1 from Goodfellow et al. (2016).

Strictly speaking, this is a 
cross-correlation, not 
convolution. 



Motivation behind ConvNets 



1) Sparse interactions

2) Parameter sharing 

3) Equivariant 
representations 

4) Ability to process inputs 
of variable sizes



Localized neurons

Using the same 
localized neuron at 
different locations

If the input moves, the 
output representation 
moves equivalently. 

1) Sparse interactions

2) Parameter sharing 

3) Equivariant 
representations 

4) Ability to process inputs 
of variable sizes

By using scalable 
pooling regions



1) Sparse interactions
In a regular ANN (i.e. MLP), nodes are fully-connected

In CNN, sparse connections: 

Figure 9.2 from Goodfellow et al. (2016).



Sparse interactions

1st (input) layer: 4x4 image

2x2 filter

2nd  layer



Sparse interactions

1st (input) layer: 4x4 image
2nd  layer

Node in the 2nd layer is not fully-connected to the 
nodes in the 1st layer.
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: computed
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But why do we need this sparsity?



But why do we need this sparsity?

● Sparse connections reduce complexity. 



[Slide by Marc’Aurelio Ranzato from his Deep Learning Tutorial at CVPR 2014 link]

https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxsc3ZydHV0b3JpYWxjdnByMTR8Z3g6Njg5MmZkZTM1MDhhZWNmZA


[Slide by Marc’Aurelio Ranzato from his Deep Learning Tutorial at CVPR 2014 link]

https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxsc3ZydHV0b3JpYWxjdnByMTR8Z3g6Njg5MmZkZTM1MDhhZWNmZA


Sparse interactions

Complexity of fully-connected vs sparse:

m: # of nodes in the 1st layer
n: # of nodes in the 2nd layer
k: # of elements in the filter

Fully-connected: O(mn)
Sparse:               O(nk)       where, typically, k<<m



2) Parameter Sharing

1st (input) layer: 4x4 image
2nd  layer

Same neuron or kernel or filter (the red window) is applied at all 
locations of the input layer. 

# of total parameters to be learned and storage requirements 
dramatically reduced.

Note m and n are roughly the same, but k is much less than m.  



[Slide by Marc’Aurelio Ranzato from his Deep Learning Tutorial at CVPR 2014 link]

These six circles 
are actually the 
same neuron. 

https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxsc3ZydHV0b3JpYWxjdnByMTR8Z3g6Njg5MmZkZTM1MDhhZWNmZA


3) Equivariance

General definition: If

representation(transform(x)) = transform(representation(x))

then representation is equivariant to the transform. 



3) Equivariance

General definition: If

representation(transform(x)) = transform(representation(x))

then representation is equivariant to the transform.

Convolution is equivariant to translation. This is a direct 
consequence of parameter sharing. 

Useful when detecting structures that are common in the input. 
E.g. edges in an image. Equivariance in early layers is good. 

We are able to achieve translation-invariance (via max-pooling) 
due to this property. 



4) Ability to process arbitrary sized 
inputs

Fully-connected networks accept fixed-size input vector. 

In ConvNets, we can use “pooling” to summarize the input 
into a fixed-size vector/matrix. 

Scale the pooling region with respect to the input size.



After convolution...



After convolution...



After convolution...
the next operations: nonlinearity and pooling.

We have already seen 
many non-linear 
activation functions.

ReLU is the most 
widely used one. 



Pooling

A pooling function takes the output of the previous 
layer at a certain location L and computes a 
“summary” of the neighborhood around L.

E.g. max-pooling [Zhou and Chellappa (1988)]



Max-pooling

Figure 9.8 from Goodfellow et al. (2016).

Max-pooling introduces 
invariance. 

Input layer has shifted to 
the right 1-pixel.

But only half of the 
values in the output layer 
have changed.



[Slide by Marc’Aurelio Ranzato from his Deep Learning Tutorial at CVPR 2014 link]

https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxsc3ZydHV0b3JpYWxjdnByMTR8Z3g6Njg5MmZkZTM1MDhhZWNmZA


[Slide by Marc’Aurelio Ranzato from his Deep Learning Tutorial at CVPR 2014 link]

https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxsc3ZydHV0b3JpYWxjdnByMTR8Z3g6Njg5MmZkZTM1MDhhZWNmZA


Spatial pooling produces invariance to translation. Pooling 
over channels produces other invariances. E.g. Maxout 
networks by Goodfellow et al. (2013). 

Figure 9.9 from Goodfellow et al. (2016).



Pooling summarizes. 

We can make a sparse summary by using a stride larger than 1. 

This reduces the computational complexity and memory 
requirements. 

Figure 9.10 from Goodfellow et al. (2016).

Pooling width: 3

Stride: 2

Stride: distance between 
neighboring neurons



Putting everything together

Input x

ŷ

CNN

...

y

True label y

Loss( ŷ , y) Cross-entropy
Hinge loss

Softmax
Gradient of loss 
w.r.t. parameters are 
computed using 
backpropagation.

Then, use a 
stochastic gradient 
descent method to 
minimize loss. 



Cross-entropy

What does softmax do? 
● Normalizes the raw output 

scores by the neural network
● Emphasizes the max score

L(θ)=−∑
i=1

N

∑
c=1

C

y ic log qic

y
i
 is a C-dimensional one-hot vector

q
i
 is the softmax of f(x)

q ic=
e f c(x i)

∑
k

e f k (xi)
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i=1

N

∑
c=1

C
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q ic=
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Where does 
this expression 
come from? 



Modular Backpropagation



A computing block:

Function f()

Params w
Input x Output o

Forward pass: o=f (x ;w )

Derivative of output w.r.t. input:

Derivative of output w.r.t. parameters:

∂o
∂ x

=
∂ f (x ;w)

∂ x

∂o
∂w

=
∂ f (x ;w)

∂w



A computing block:

Function f()

Params w
Input x Output o

Forward pass: o=f (x ;w )

Derivative of output w.r.t. input:

Derivative of output w.r.t. parameters:

∂o
∂ x

=
∂ f (x ;w)

∂ x

∂o
∂w

=
∂ f (x ;w)

∂w

Typically, X, o 
and w are 
vectors or 
matrices. Care 
has to be 
taken in 
computing the 
derivatives.



X*W where 
W is D-by-K

N-by-D N-by-K

Derivative of output w.r.t. input:

Derivative of output w.r.t. parameters:

∂o
∂ X

=W

∂o
∂W

=X

E.g. a fully connected layer with D input nodes and K output 
nodes, receiving N examples. 



E.g. do the same for a ReLU layer receiving N-by-K input

Max(0,x)X: N-by-K o: N-by-K

Derivative of output w.r.t. input:

Derivative of output w.r.t. parameters:

∂o
∂ xij

={1 if  x ij>0
0 otherwise

No parameters, 
nothing to learn



Multiple blocks

x
o1 o2

f 1(x ;w1) f 2(o1 ;w2)

To update w
2

To update w
1

∂o2

∂w2

∂o2

∂w1

=
∂o2

∂o1

∂o1

∂w1

Each block has its own: 
● Derivative w.r.t. input
● Derivative w.r.t. parameters.

When you are back-
propagating, be careful which 
one to use. 



Multiple blocks

x
o1

o2f 1(x ;w1) f 2(o1 ;w2)

∂o3

∂w1

=
∂o3

∂o2

∂o2

∂o1

∂o1

∂w1

o3f 3(o2 ;w3)



Multiple blocks

x
o1

o2f 1(x ;w1) f 2(o1 ;w2)

∂o3

∂w1

=
∂o3

∂o2

∂o2

∂o1

∂o1

∂w1

o3f 3(o2 ;w3)

Chain the “derivatives w.r.t. to input”

Last step: multiply with derivative 
w.r.t. parameters
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