
RNNs: Recurrent Neural Networks

RNNs

● So far, we have seen MLPs and CNNS
● CNNs are suitable for grid data
● RNNs are suitable for processing sequential data
● Central idea: parameter sharing

– If separate parameters for different time indices:
● Cannot generalize to sequence lengths not seen during training

– So, parameters are shared across several time steps

● Major difference from MLP and CNNs: RNNs have
cycles

h: hidden state t: time
theta: (shared) parameters x: input

h(3)
=f (f (f (h(0) , x(1);θ) , x(2);θ) , x(3);θ)

The network maps the whole input

to h(t). e.g.,

x(1) , x(2) , ... , x(t)

h: hidden state t: time
theta: (shared) parameters x: input

h(3)
= f (f (f (h(0) , x(1);θ) , x(2);θ) , x(3);θ)

The network maps the whole input

to h(t). e.g.,

x(1) , x(2) , ... , x(t)

The whole input, x(1) to x(t), is of arbitrary length but h(t) is fixed
length. So, h(t) is a lossy summary of the task-relevant aspects
of x(1) to x(t).

Folded representation and unfolding

[Fig. 10.2 from Goodfellow et al. (2016)]

Two different ways of drawing above equation:

This means a
single time-step

A variety of architectures are possible

[Figure from A. Karpathy's blog post]

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

A variety of architectures are possible

[Figure from A. Karpathy's blog post]

Traditional machine learning: fixed sized input vector in,
fixed sized prediction vector out.

e.g. image classification

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

A variety of architectures are possible

[Figure from A. Karpathy's blog post]

Sequence output

e.g. image captioning (image in, a descriptive sentence out)

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

A variety of architectures are possible

[Figure from A. Karpathy's blog post]

Sequence input

e.g. sentiment analysis (sentence in, sentiment label out)

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

A variety of architectures are possible

[Figure from A. Karpathy's blog post]

Sequence input, sequence output

e.g. machine translation (Turkish sentence in, English
sentence out)

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

A variety of architectures are possible

[Figure from A. Karpathy's blog post]

Sequence input, sequence output (there is an output per
input)

e.g. video frame classification

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

A recurrent network that maps input sequence x to output
sequence o, using a loss function L and label sequence y.

[Fig. 10.3 from Goodfellow et al. (2016)]

A recurrent network that maps input sequence x to output
sequence o, using a loss function L and label sequence y.

[Fig. 10.3 from Goodfellow et al. (2016)]

Update equations:

Note: tanh(), softmax() are just example choices.

A recurrent network that maps input sequence x to output
sequence o, using a loss function L and label sequence y.

[Fig. 10.3 from Goodfellow et al. (2016)]

Total loss:

Negative log-likelihood loss, just as an example

Back-propagation in RNNs:

Back-propagation through time (BPTH)

(Nothing new or special but a good exercise)

[Derivation on board]

Bi-directional RNNs

So far, we have considered causal RNNs, i.e.

state at time t captures information from the past,
i.e. from x(k) where k<t

What if we want o(t) to depend on the whole input
sequence?

Bi-directional
RNNs

Bi-directional
RNNs

Hidden states

Bi-directional
RNNs

Hidden states

Output at t depends on
both the past and the
future

Encoder-decoder sequence-to-sequence architectures

[Fig. 10.12 from Goodfellow et al. (2016)]

Composed of two
RNNs

Can map an arbitrary
length input sequence
to an arbitrary length
output sequence
(notice n

x
 and n

y
). e.g.

machine translation,
speech recognition.

[Cho et al. (2014)]
[Sutskever et al. (2014)]

Encoder-decoder sequence-to-sequence architectures

[Fig. 10.12 from Goodfellow et al. (2016)]

Steps
1) Encoder or reader

RNN reads processes
the input sequence

2) Encoder emits the
learned context C (a
simple function of its
learned hidden states)

3) Decoder or writer RNN
 which is conditioned on
C, produces the output
sequence.

Encoder-decoder sequence-to-sequence architectures

[Fig. 10.12 from Goodfellow et al. (2016)]

The two RNNs are trained
jointly to maximize the
average

over all (x,y) pairs in the
training set.

Typically, C=hn
x

How to make RNNs deeper?

[Fig. 10.3 from Goodfellow et al. (2016)]

There are three
processing blocks:

1) hidden to hidden
2) hidden to output
3) input to hidden

How to make RNNs deeper

[Fig. 10.3 from Goodfellow et al. (2016)]

There are three
processing blocks:

1) hidden to hidden
2) hidden to output
3) input to hidden

How to make RNNs deeper

[Fig. 10.3 from Goodfellow et al. (2016)]

Shallow
transformations

Experimental
evidence suggest that
depth helps improve
the performance.
[Graves et al. (2013)]

Three ways of adding depth

Ways of adding depth

Adding depth to hidden states

Ways of adding depth

Making each processing block a
MLP

Increased capacity

But training becomes harder
(optimization is more difficult)

Ways of adding depth

To mitigate the difficult

optimization problem, skip

connections can be added.
[Pascanu et al. (2014)]

The challenge of long-term dependencies

● More depth → more “vanishing or exploding
gradient” problem

● Why?

The challenge of long-term dependencies

● More depth → more “vanishing or exploding
gradient” problem

● Why?
● Consider repeated matrix multiplication:

→

Values here will
either vanish or
explode!

Solution to exploding gradients: gradient clipping

Clip the magnitude. by Pascanu et al. (2013)

Error surface for a single
hidden unit RNN. Solid
lines depict trajectories of
the regular gradient,
dashed lines clipped
gradient.
[From Figure 6 in Pascanu et al.
(2013)]

Solution to vanishing gradients: regularize the gradient

The regularizer prefers solutions for which the error
preserves norm as it travels back in time.

[Pascanu et al. (2013)]

Another solution to vanishing gradients is LSTM.

LSTM (Long short-term memory)

[Hochreiter & Schmidhuber (1997)]

Long short-term memory (LSTM)
[Hochreiter & Schmidhuber (1997)]

[Figures from C. Olah’s blog post.]

A repeating module in a LSTM:

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long short-term memory (LSTM)
[Hochreiter & Schmidhuber (1997)]

[Figure from C. Olah’s blog post.]

A repeating module in a LSTM:

[Explanation of these equations on
board]

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long short-term memory (LSTM)
[Hochreiter & Schmidhuber (1997)]

[Figure from C. Olah’s blog post.]

Summary

Output gate Input gate

Forget gate
The key idea behind LSTM: cells can implement the identity
transform. i.e. C

t
 = C

t-1
 is possible with appropriate gate values.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

There are many variants of LSTM
Gated Recurrent Unit (GRU) Cho et al. (2014)

[Figure from C. Olah’s blog post.]

Combines the forget and input gates into a single “update
gate.” Merges the cell state and hidden state (no C

t
), and

makes some other changes. The resulting model is simpler
than standard LSTM.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

An example application of
CNN and RNN being used together:

Image captioning

Image
captioning

Images from
NeuralTalk Demo

Demo video

[Karpathy and Fei-Fei (2015)]
[Vinyals et al. (2015)]

http://cs.stanford.edu/people/karpathy/neuraltalk2/demo.html
https://vimeo.com/146492001

Image captioning

Slide by A. Karpathy http://cs231n.stanford.edu/slides/winter1516_lecture10.pdf

Image captioning

Slide by A. Karpathy http://cs231n.stanford.edu/slides/winter1516_lecture10.pdf

Image captioning

Slide by A. Karpathy http://cs231n.stanford.edu/slides/winter1516_lecture10.pdf

Image captioning

Slide by A. Karpathy http://cs231n.stanford.edu/slides/winter1516_lecture10.pdf

References

● Cho, K., van Merriënboer, B., Gulcehre, C., Bougares, F., Schwenk, H., and Bengio, Y.
(2014). Learning phrase representations using RNN encoder-decoder for statistical
machine translation. In Proceedings of the Empiricial Methods in Natural Language
Processing (EMNLP 2014).

● Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
● Graves, A. (2013). Generating sequences with recurrent neural networks. Technical

report, arXiv:1308.0850.
● Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural

Computation,9(8), 1735–1780.
● Pascanu, R., Gülçehre, Ç., Cho, K., and Bengio, Y. (2014). How to construct

deeprecurrent neural networks. In ICLR’2014 .
● Sussillo, D. (2014). Random walks: Training very deep nonlinear feed-forward

networkswith smart initialization.
● Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning

withneural networks. In NIPS’2014, arXiv:1409.3215

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

