
RNNs: Recurrent Neural Networks



RNNs

● So far, we have seen MLPs and CNNS
● CNNs are suitable for grid data 
● RNNs are suitable for processing sequential data 
● Central idea: parameter sharing

– If separate parameters for different time indices:
● Cannot generalize to sequence lengths not seen during training

– So, parameters are shared across several time steps

● Major difference from MLP and CNNs: RNNs have 
cycles



h: hidden state              t: time 
theta: (shared) parameters x: input

h(3)
=f (f ( f (h(0) , x(1);θ) , x(2);θ) , x(3);θ)

The network maps the whole input

to h(t).   e.g.,

x(1) , x(2) , ... , x(t)



h: hidden state              t: time 
theta: (shared) parameters x: input

h(3)
= f (f (f (h(0) , x(1);θ) , x(2);θ) , x(3);θ)

The network maps the whole input

to h(t).   e.g.,

x(1) , x(2) , ... , x(t)

The whole input, x(1) to x(t), is of arbitrary length but h(t) is fixed 
length. So, h(t) is a lossy summary of the task-relevant aspects 
of x(1) to x(t).



Folded representation and unfolding

[Fig. 10.2 from Goodfellow et al. (2016)]

Two different ways of drawing above equation:

This means a 
single time-step



A variety of architectures are possible

[Figure from A. Karpathy's blog post]

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


A variety of architectures are possible

[Figure from A. Karpathy's blog post]

Traditional machine learning: fixed sized input vector in, 
fixed sized prediction vector out. 

e.g. image classification

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


A variety of architectures are possible

[Figure from A. Karpathy's blog post]

Sequence output

e.g. image captioning (image in, a descriptive sentence out)

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


A variety of architectures are possible

[Figure from A. Karpathy's blog post]

Sequence input

e.g. sentiment analysis (sentence in, sentiment label out)

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


A variety of architectures are possible

[Figure from A. Karpathy's blog post]

Sequence input, sequence output

e.g. machine translation (Turkish sentence in, English 
sentence out)

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


A variety of architectures are possible

[Figure from A. Karpathy's blog post]

Sequence input, sequence output (there is an output per 
input)

e.g. video frame  classification

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


A recurrent network that maps input sequence x to output 
sequence o, using a loss function L and label sequence y. 

[Fig. 10.3 from Goodfellow et al. (2016)]



A recurrent network that maps input sequence x to output 
sequence o, using a loss function L and label sequence y. 

[Fig. 10.3 from Goodfellow et al. (2016)]

Update equations: 

Note: tanh( ), softmax( ) are just example choices. 



A recurrent network that maps input sequence x to output 
sequence o, using a loss function L and label sequence y. 

[Fig. 10.3 from Goodfellow et al. (2016)]

Total loss: 

Negative log-likelihood loss, just as an example



Back-propagation in RNNs:

Back-propagation through time (BPTH)

(Nothing new or special but a good exercise)

[Derivation on board]





Bi-directional RNNs

So far, we have considered causal RNNs, i.e. 

state at time t captures information from the past, 
i.e. from x(k) where k<t

What if we want o(t) to depend on the whole input 
sequence? 



Bi-directional 
RNNs



Bi-directional 
RNNs

Hidden states



Bi-directional 
RNNs

Hidden states

Output at t depends on 
both the past and the 
future



Encoder-decoder sequence-to-sequence architectures

[Fig. 10.12 from Goodfellow et al. (2016)]

Composed of two 
RNNs

Can map an arbitrary 
length input sequence 
to an arbitrary length 
output sequence 
(notice n

x
 and n

y
). e.g. 

machine translation, 
speech recognition. 

[Cho et al. (2014)]
[Sutskever et al. (2014)]



Encoder-decoder sequence-to-sequence architectures

[Fig. 10.12 from Goodfellow et al. (2016)]

Steps
1) Encoder or reader 

RNN reads processes 
the input sequence

2) Encoder emits the 
learned context C (a 
simple function of its 
learned hidden states)

3) Decoder or writer RNN 
 which is conditioned on 
C, produces the output 
sequence. 



Encoder-decoder sequence-to-sequence architectures

[Fig. 10.12 from Goodfellow et al. (2016)]

The two RNNs are trained 
jointly to maximize the 
average 

over all (x,y) pairs in the 
training set. 

Typically, C=hn
x



How to make RNNs deeper?

[Fig. 10.3 from Goodfellow et al. (2016)]

There are three 
processing blocks: 

1) hidden to hidden
2) hidden to output
3) input to hidden 
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How to make RNNs deeper

[Fig. 10.3 from Goodfellow et al. (2016)]

Shallow 
transformations

Experimental 
evidence suggest that 
depth helps improve 
the performance.  
[Graves et al. (2013)]



Three ways of adding depth



Ways of adding depth

Adding depth to hidden states



Ways of adding depth

Making each processing block a 
MLP

Increased capacity 

But training becomes harder 
(optimization is more difficult)



Ways of adding depth

To mitigate the difficult 

optimization problem, skip 

connections can be added. 
[Pascanu et al. (2014)]



The challenge of long-term dependencies

● More depth → more “vanishing or exploding 
gradient” problem

● Why? 



The challenge of long-term dependencies

● More depth → more “vanishing or exploding 
gradient” problem

● Why? 
● Consider repeated matrix multiplication: 

→ 

Values here will 
either vanish or 
explode!



Solution to exploding gradients: gradient clipping

Clip the magnitude. by Pascanu et al. (2013)

Error surface for a single 
hidden unit RNN. Solid 
lines depict trajectories of 
the regular gradient, 
dashed lines clipped 
gradient.
[From Figure 6 in Pascanu et al. 
(2013)]



Solution to vanishing gradients: regularize the gradient

The regularizer prefers solutions for which the error 
preserves norm as it travels back in time. 

[Pascanu et al. (2013)]



Another solution to vanishing gradients is LSTM. 

LSTM (Long short-term memory)

[Hochreiter & Schmidhuber (1997)]



Long short-term memory (LSTM)
[Hochreiter & Schmidhuber (1997)]

[Figures from C. Olah’s blog post.]

A repeating module in a LSTM:

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Long short-term memory (LSTM)
[Hochreiter & Schmidhuber (1997)]

[Figure from C. Olah’s blog post.]

A repeating module in a LSTM:

[Explanation of these equations on 
board]

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Long short-term memory (LSTM)
[Hochreiter & Schmidhuber (1997)]

[Figure from C. Olah’s blog post.]

Summary

Output gate Input gate

Forget gate
The key idea behind LSTM: cells can implement the identity 
transform. i.e. C

t
 = C

t-1
 is possible with appropriate gate values. 

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


There are many variants of LSTM
Gated Recurrent Unit (GRU)  Cho et al. (2014)

[Figure from C. Olah’s blog post.]

Combines the forget and input gates into a single “update 
gate.”  Merges the cell state and hidden state (no C

t
), and 

makes some other changes. The resulting model is simpler 
than standard LSTM. 

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


An example application of
CNN and RNN being used together:

Image captioning



Image 
captioning

Images from 
NeuralTalk Demo

Demo video 

[Karpathy and Fei-Fei (2015)]
[Vinyals et al. (2015)]

http://cs.stanford.edu/people/karpathy/neuraltalk2/demo.html
https://vimeo.com/146492001


Image captioning

Slide by A. Karpathy http://cs231n.stanford.edu/slides/winter1516_lecture10.pdf
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Image captioning

Slide by A. Karpathy http://cs231n.stanford.edu/slides/winter1516_lecture10.pdf
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