
Carnegie Mellon

Overview
Introduction to Operating Systems

Some of the following slides are adapted from Matt Welsh, Harvard 
Univ.



Carnegie Mellon

In the Beginning…

¢ There was no OS – just libraries
§ Computer only ran one program at a time, so no need for an OS
§ Programming through wiring..

Harvard Mark I, 1944
IBM 360, 
1960's

ENIAC, 1945



Carnegie Mellon

In the Beginning…
l There was no OS – just libraries

§ Computer only ran one program at a time, so no need for an OS

l And then there were batch systems
§ Programs printed on stacks of punchhole cards
§ OS was resident in a portion of machine memory
§ When previous program was finished, OS loaded next program to run



Carnegie Mellon

Punch Card



Carnegie Mellon

In the Beginning…
l There was no OS – just libraries

§ Computer only ran one program at a time, so no need for an OS

l And then there were batch systems
§ Programs printed on stacks of punchhole cards
§ OS was resident in a portion of machine memory
§ When previous program was finished, OS loaded next program to run



Carnegie Mellon

In the Beginning…
l There was no OS – just libraries

§ Computer only ran one program at a time, so no need for an OS

l And then there were batch systems
§ Programs printed on stacks of punchhole cards
§ OS was resident in a portion of machine memory
§ When previous program was finished, OS loaded next program to run

l Disk spooling
§ Disks were much read stack onto disk while previous program is running
§ With multiple programs on disk, need to decide which to run next!
§ But, CPU still idle while program accesses a peripheral (e.g., tape or disk!)



Carnegie Mellon

Multiprogramming
¢ To increase system utilization, 

multiprogramming OS’s were invented
§ keeps multiple runnable jobs loaded in 

memory at once

¢ Overlaps I/O of a job with computing of 
another
§ While one job waits for I/O to compile, CPU 

runs instructions from another job

¢ To benefit, need asynchronous I/O 
devices
§ need some way to know when devices are 

done performing I/O

¢ Goal: optimize system throughput
§ perhaps at the cost of response time…

Dennis Ritchie and Ken 
Thompson at a PDP11, 1971



Carnegie Mellon

Timesharing
¢ To support interactive use, timesharing OS's were created

§ multiple terminals connected to one machine
§ each user has illusion of entire machine to him/herself
§ optimize response time, perhaps at the cost of throughput

¢ Timeslicing
§ divide CPU fairly among the users
§ if job is truly interactive (e.g. editor), then can switch between programs and 

users faster than users can generate load

¢ MIT Multics (mid-1960’s) was the first large timeshared system
§ nearly all modern OS concepts can be traced back to Multics



Carnegie Mellon

Personal Computing
¢ Totally changed the computing industry.
¢ CP/M: First personal computer OS

§ IBM needed OS for their PCs, CP/M behind schedule
§ Bill Gates to the rescue: Bought 86-DOS and made MS-DOS

§ DOS is basically a subroutine library!

¢ Many popular personal computers follow
§ Apple, Commodore, TRS-80, TI 99/4, Atari, etc...

Bill Gates and Paul Allen, c.1975
Commodore VIC-20 

IBM PC, 1981

Apple LISA, 1983

Apple I, 1976



Carnegie Mellon



Carnegie Mellon

Parallel Computing and Clusters
¢ High-end scientific apps want to use many CPUs at once

§ Parallel processing to crunch on enormous data sets
§ Need OS and language primitives for dividing program into parallel activities
§ Need OS primitives for fast communication between processors

§ degree of speedup dictated by communication/computation ratio
¢ Many kinds of parallel machines:

§ SMPs: symmetric multiprocessors – several CPUs accessing the same memory
§ MPPs: massively parallel processors – each CPU may have its own memory
§ Clusters: connect a lot of commodity machines with a fast network



Carnegie Mellon

Distributed OS
¢ Goal – Make use of geographically distributed resources

§ workstations on a LAN
§ servers across the Internet

¢ Supports communication between applications
§ interprocess communication (on a single machine):

§ message passing and shared memory
§ networking procotols (across multiple machines):

§ TCP/IP, Java RMI, .NET SOAP

¢ “The Grid”, .NET, and OGSA
§ Idea: Seamlessly connect vast computational resources across the Internet



Carnegie Mellon

Embedded OS
¢ The rise of tiny computers everywhere – ubiquitous computing

§ Processor cost low enough to embed in many devices
§ Cell phones

§ How many CPUs are in your car? On your body right now?

¢ Gets more interesting with ubiquitous networking!
§ Wireless networks is pervasive
§ Sensor networks are an exciting new direction here

§ Little “motes” with less 4KB of RAM, some sensors, and a radio

¢ Typically very constrained hardware resources
§ slow processors
§ very small amount of memory (e.g. 8 MB)
§ no disk – but maybe quasi-permanent storage such as EEPROM


