
Carnegie Mellon

Exceptional Control Flow:
System Calls, Page Faults etc.

Slides adapted from: Gregory Kesden and Markus Püschel of Carnegie Mellon University

Carnegie Mellon

Control Flow

<startup>
inst1
inst2
inst3
…
instn
<shutdown>

¢ Processors do only one thing:
§ From startup to shutdown, a CPU simply reads and executes

(interprets) a sequence of instructions, one at a time
§ This sequence is the CPU’s control flow (or flow of control)

Physical control flow

Time

Carnegie Mellon

Altering the Control Flow
¢ Up to now: two mechanisms for changing control flow:

§ Jumps and branches
§ Call and return
React to changes in program state

¢ Insufficient for a useful system:
Difficult to react to changes in system state
§ Data arrives from a disk or a network adapter
§ Instruction divides by zero
§ User hits Ctrl-C at the keyboard
§ System timer expires

¢ System needs mechanisms for “exceptional control flow”

Carnegie Mellon

Exceptional Control Flow
¢ Exists at all levels of a computer system
¢ Low level mechanisms

§ 1. Exceptions
§ Change in control flow in response to a system event

(i.e., change in system state)
§ Implemented using combination of hardware and OS software

¢ Higher level mechanisms
§ 2. Process context switch

§ Implemented by OS software and hardware timer
§ 3. Signals

§ Implemented by OS software
§ 4. Nonlocal jumps: setjmp() and longjmp()

§ Implemented by C runtime library

Carnegie Mellon

Exceptions
¢ An exception is a transfer of control to the OS kernel in response

to some event (i.e., change in processor state)
§ Kernel is the memory-resident part of the OS
§ Examples of events: Divide by 0, arithmetic overflow, page fault, I/O

request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler

• Return to I_current
•Return to I_next
•Abort

Event I_current
I_next

Carnegie Mellon

0
1
2 ...

n-1

Exception Tables
(also known as Interrupt Vector)

¢ Each type of event has a
unique exception number k

¢ k = index into exception table
(a.k.a. interrupt vector)

¢ Handler k is called each time
exception k occurs

Exception
Table

Code for
exception handler 0

Code for
exception handler 1

Code for
exception handler 2

Code for
exception handler n-1

...

Exception
numbers

Carnegie Mellon

(partial) Taxonomy

Asynchronous Synchronous

Interrupts Traps Faults Aborts

ECF

Carnegie Mellon

Asynchronous Exceptions (Interrupts)
¢ Caused by events external to the processor

§ Indicated by setting the processor’s interrupt pin
§ Handler returns to “next” instruction

¢ Examples:
§ Timer interrupt

§ Every few ms, an external timer chip triggers an interrupt
§ Used by the kernel to take back control from user programs

§ I/O interrupt from external device
§ Hitting Ctrl-C at the keyboard
§ Arrival of a packet from a network
§ Arrival of data from a disk

Carnegie Mellon

Synchronous Exceptions
¢ Caused by events that occur as a result of executing an

instruction:
§ Traps

§ Intentional
§ Examples: system calls, breakpoint traps, special instructions
§ Returns control to “next” instruction

§ Faults
§ Unintentional but possibly recoverable
§ Examples: page faults (recoverable), protection faults

(unrecoverable), floating point exceptions
§ Either re-executes faulting (“current”) instruction or aborts

§ Aborts
§ Unintentional and unrecoverable
§ Examples: illegal instruction, parity error, machine check
§ Aborts current program

Carnegie Mellon

Fault Example: Page Fault
¢ User writes to memory location
¢ That portion (page) of user’s memory

is currently on disk

int a[1000];
main ()
{

a[500] = 13;
}

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code Kernel code

Exception: page fault
Copy page from
disk to memoryReturn and

reexecute movl

movl

Carnegie Mellon

Fault Example: Invalid Memory Reference

¢ Sends SIGSEGV signal to user process
¢ User process exits with “segmentation fault”

int a[1000];
main ()
{

a[5000] = 13;
}

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code Kernel code

Exception: page fault

Detect invalid address
movl

Signal process

Carnegie Mellon

Traps: System Calls

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

¢ Each x86-64 system call has a unique ID number
¢ Examples:

Carnegie Mellon

System Call Example: Opening File
¢ User calls: open(filename, options)
¢ Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:
...
e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2
e5d7e: 0f 05 syscall # Return value in %rax
e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax
...
e5dfa: c3 retq

User code Kernel code

Exception

Open file
Returns

syscall
cmp

¢ %rax contains syscall number
¢ Other arguments in %rdi,

%rsi, %rdx, %r10, %r8, %r9
¢ Return value in %rax
¢ Negative value is an error

corresponding to negative
errno

Carnegie Mellon

System call
¢ Applications should be prevented to directly access hardware

such as
§ Physical memory,
§ disk,
§ network,
§ halt

¢ But nevertheless, they need to access these resources in a
controlled way:
§ Read/write their own memory
§ Access the files that they have permission
§ Access the network for its own communications
§ Halt

¢ Processors run at different security levels:
§ User level:
§ Kernel-level:

Carnegie Mellon

Privileged instructions

¢ At kernel level, CPU can execute certain instructions (such
as halt) that directly access hardware.

¢ At user-level the use of privileged instructions are not
allowed by hardware.

¢ User applications do not include privileged instructions.
¢ Only System Call code includes privileged instructions.

Carnegie Mellon

System calls

¢ Programming interface to the services provided by the OS
§ A set of functions (“API” (Application Programming Interface))

provided by the OS to the user applications
§ Allow the user applications to access hardware in a controlled way

¢ System calls are functions that can directly access hardware

Carnegie Mellon

Library example

Carnegie Mellon

Carnegie Mellon

System Calls
¢ Process Control

§ Load, execute and, abort
§ create and terminate process

¢ File management
§ create file, delete file
§ open, close, read, write, seek

¢ Device Management
§ request device, release device
§ read, write, reposition

¢ Information Maintenance
§ get/set time or date, get/set system data

¢ Communication
§ create, delete communication connection
§ send, receive messages

Carnegie Mellon

Most common System API

¢ Most common system API
§ POSIX API (most versions of UNIX, Linux, and Mac OS X)
§ Win32 API for Windows

¢ On Unix, Unix-like and other POSIX-compliant operating
systems, popular system calls are open, read,
write, close, wait, exec, fork, exit,
and kill

Carnegie Mellon

Most common System API
¢ Most common system API

§ POSIX API (most versions of UNIX, Linux, and Mac OS X)
§ Win32 API for Windows

¢ POSIX (IEEE 1003.1, ISO/IEC 9945)
§ Very widely used standard based on (and including) C-language
§ Defines both

§ system calls and
§ compulsory system programs together with their functionality and

command-line format
– E.g. ls –w dir prints the list of files in a directory in a ‘wide’ format

§ Complete specification is at
http://www.opengroup.org/onlinepubs/9699919799/nframe.html

¢ Win32 (Microsoft Windows based systems)
§ Specifies system calls together with many Windows GUI routines

§ VERY complex, no really complete specification

http://www.opengroup.org/onlinepubs/9699919799/nframe.html

Carnegie Mellon

System programs
¢ System programs are “utilities” that are commonly bundled with the

Operating System, to facilitate its use by the user.
§ File Management

§ rm
§ Status information

§ ps
§ File modification

§ vi
§ Programming Language support

§ gcc
§ Program loading and execution

§ ld
§ Communication

§ ssh
¢ There is nothing special about a system program. They are merely

user applications, and you can replicate them.
§ E.g. you can write your own “ls”

¢ Don’t ever confuse them with system calls!

