
Carnegie Mellon

Processes

Slides adapted from: Randy Bryant of Carnegie Mellon University

Carnegie Mellon

Processes
 Definition: A process is an instance of a running program.

 One of the most profound ideas in computer science
 Not the same as “program” or “processor”

 Process provides each program with two key abstractions:
 Logical control flow

 Each program seems to have exclusive use of the CPU
 Private virtual address space

 Each program seems to have exclusive use of main memory

 How are these illusions maintained?
 Process executions interleaved (multitasking)
 Address spaces managed by virtual memory system

A program is the static
executable, and is different from
a process. Do not use “program”
to talk about a “process”!

Carnegie Mellon

What is a process?
 A process is the OS's abstraction for

execution
 A process represents a single running application

on the system
 Process has three main components:

1. Address space
 The memory that the process can access
 Consists of various pieces: the program code,

static variables, heap, stack, etc.
2. Processor state

 The CPU registers associated with the running
process

 Includes general purpose registers, program
counter, stack pointer, etc.

3. OS resources
 Various OS state associated with the process
 Examples: open files, network sockets, etc.

CPU state
• %rax,….
• %rsp, %rip
• CC
Address space
• Code
• Vars
• Heap
• Libraries
• Stack

OS resources
• Open file info
• Network sockets
• ..

Carnegie Mellon

Process Address Space

 Virtual memory of a
process includes
 the code of the

running program
 the data of the

running program
(static variables and
heap)

 the execution stack
storing local variables
and saved registers
for each procedure
call

Address
space

0x00000000

0xFFFFFFFF

Stack
pointer

Program
counter

Stack

Heap

Initialized vars
(data segment)

Code
(text segment)

Uninitialized vars
(BSS segment)

(Reserved for OS)

Carnegie Mellon

Process Address Space

 This is the process's
own view of the
address space
 physical memory

may not be laid out
this way at all.

 The virtual memory
system provides this
illusion to each
process.

Stack

Heap

Initialized vars
(data segment)

Code
(text segment)

Address
space

0x00000000

0xFFFFFFFF

Stack
pointer

Program
counter

Uninitialized vars
(BSS segment)

(Reserved for OS)

Carnegie Mellon

Execution State (context) of a Process
 Each process has an execution state (context)

 Indicates what the process is currently doing
 Running:

 Process is currently using the CPU
 Ready:

 Currently waiting to be assigned to a CPU
 That is, the process could be running, but another process is using the

CPU
 Waiting (or sleeping):

 Process is waiting for an event
 Such as completion of an I/O, a timer to go off, etc.
 Why is this different than “ready” ?

 As the process executes, it moves between these states
 What state is the process in most of the time?

Carnegie Mellon

Process State (Context) Transitions

 What causes schedule and unschedule transitions?

New

Terminated

Ready

Running

Waiting

create

kill or
exit I/O, page fault,

etc.

I/O done

schedule
unschedule

Carnegie Mellon

Process Control Block
 OS maintains a Process Control Block (PCB) for each process
 The PCB is a big data structure with many fields:

 Process ID
 User ID
 Execution state

 ready, running, or waiting
 Saved CPU state

 CPU registers saved the last time the process was suspended.
 OS resources

 Open files, network sockets, etc.
 Memory management info
 Scheduling priority

 Give some processes higher priority than others
 Accounting information

 Total CPU time, memory usage, etc.

Carnegie Mellon

struct task_struct {/* these are hardcoded - don't touch */
volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
long counter;
long priority;
unsigned long signal;
unsigned long blocked; /* bitmap of masked signals */
unsigned long flags; /* per process flags, defined below */
int errno;
long debugreg[8]; /* Hardware debugging registers */
struct exec_domain *exec_domain;
/* various fields */
struct linux_binfmt *binfmt;
struct task_struct *next_task, *prev_task;
struct task_struct *next_run, *prev_run;
unsigned long saved_kernel_stack;
unsigned long kernel_stack_page;
int exit_code, exit_signal;
/*…................ */
int pid;
struct wait_queue *wait_chldexit;
unsigned short uid,euid,suid,fsuid;
unsigned short gid,egid,sgid,fsgid;
unsigned long timeout, policy, rt_priority;
/* file system info */
int link_count;
struct tty_struct *tty; /* NULL if no tty */
/* ipc stuff */
struct sem_undo *semundo;
struct sem_queue *semsleeping;/* ldt for this task - used by Wine. If NULL, default_ldt is used */
/*…................ */
struct desc_struct *ldt;/* tss for this task */
struct thread_struct tss;/* filesystem information */
struct fs_struct *fs;/* open file information */
struct files_struct *files;/* memory management info */
struct mm_struct *mm;/* signal handlers */
struct signal_struct *sig;
/*…................ */
}

 PCB in Linux
 Each task_struct dat

a structure describes
a process or task in
the system.

Carnegie Mellon

Context Switching
 Processes are managed by a shared chunk of OS code

called the kernel
 Important: the kernel is not a separate process, but rather runs as part

of some user process

 Control flow passes from one process to another via a
context switch

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

Carnegie Mellon

Context Switching in Linux

Process A

time

Process A is happily running along...

Carnegie Mellon

Context Switching in Linux

Process A

time

Timer interrupt
handler

1) Timer interrupt fires

2) PC saved on stackUser

Kernel

Carnegie Mellon

Context Switching in Linux

Process A

Timer interrupt
handler

time

1) Timer interrupt fires

2) PC saved on stack

Scheduler

4) Call schedule() routine

3) Rest of CPU state
saved in PCB

User

Kernel

Carnegie Mellon

Context Switching in Linux

Process A

Timer interrupt
handler

time

1) Timer interrupt fires

2) PC saved on stack

Scheduler
5) Decide next
process to run

4) Call schedule() routine

3) Rest of CPU state
saved in PCB

Timer interrupt
handler

6) Resume Process B
(suspended within
timer interrupt handler!)

User

Kernel

Process B

7) Return from interrupt
handler – process CPU
state restored

Carnegie Mellon

Context Switch Overhead

 Context switches are not cheap
 Generally have a lot of CPU state to save and restore
 Also must update various flags in the PCB
 Picking the next process to run – scheduling – is also expensive

 Context switch overhead in Linux
 About 5-7 usec (u: micro)
 This is equivalent to about 10,000 CPU cycles!

Carnegie Mellon

State Queues
 The OS maintains a set of state queues for each process state

 Separate queues for ready and waiting states
 Generally separate queues for each kind of waiting process

 One queue for processes waiting for disk I/O, another for network I/O, etc.

PC

Registers

PID 4277
State: Ready

PC

Registers

PID 4110
State: Waiting

PC

Registers

PID 4002
State: Waiting

PC

Registers

PID 4391
State: Ready

PC

Registers

PID 4923
State: Waiting

Ready queue

Disk I/O queue

Carnegie Mellon

State Queue Transitions

 PCBs move between these queues as their state changes
 When scheduling a process, pop the head off of the ready queue
 When I/O has completed, move PCB from waiting queue to ready

queue

PC

Registers

PID 4277
State: Ready

PC

Registers

PID 4110
State: Waiting

PC

Registers

PID 4002
State: Waiting

PC

Registers

PID 4391
State: Ready

PC

Registers

PID 4923
State: Waiting

Ready queue

Disk I/O queue

PC

Registers

PID 4923
State: Ready

Disk I/O completes

Carnegie Mellon

Concurrent Processes
 Each process is a logical control flow.
 Two processes run concurrently (are concurrent) if their

flows overlap in time
 Otherwise, they are sequential
 Examples (running on single core):

 Concurrent: A & B, A & C
 Sequential: B & C

Process A Process B Process C

Time

Carnegie Mellon

User View of Concurrent Processes
 Control flows for concurrent processes are physically

disjoint in time

 However, we can think of concurrent processes as
running in parallel with each other

Time

Process A Process B Process C

Carnegie Mellon

Creating Processes
 Parent process creates a new running child process by

calling fork

Carnegie Mellon

Creating Processes
 Parent process creates a new running child process by calling

fork

 int fork(void)

 Returns 0 to the child process, child’s PID to parent process
 Child is almost identical to parent:

 Child get an identical (but separate) copy of the parent’s
virtual address space.

 Child gets identical copies of the parent’s open file
descriptors

 Child has a different PID than the parent

 fork is interesting (and often confusing) because
it is called once but returns twice

https://www.cdn.geeksforgeeks.org/fork-system-call/

Carnegie Mellon

fork Example

int main(int argc, char** argv)
{

pid_t pid;
int x = 1;

pid = fork();
if (pid == 0) { /* Child */

printf("child : x=%d\n", ++x);
return 0;

}

/* Parent */
printf("parent: x=%d\n", --x);
return 0;

}

linux> ./fork
parent: x=0
child : x=2

fork.c

 Call once, return twice
 Concurrent execution

 Can’t predict execution
order of parent and child

linux> ./fork
child : x=2
parent: x=0

linux> ./fork
parent: x=0
child : x=2

linux> ./fork
parent: x=0
child : x=2

Carnegie Mellon

fork Example

linux> ./fork
parent: x=0
child : x=2

fork.c

 Call once, return twice
 Concurrent execution

 Can’t predict execution
order of parent and child

 Duplicate but separate
address space
 x has a value of 1 when

fork returns in parent and
child

 Subsequent changes to x
are independent

int main(int argc, char** argv)
{

pid_t pid;
int x = 1;

pid = fork();
if (pid == 0) { /* Child */

printf("child : x=%d\n", ++x);
printf("child : x=%d\n", ++x);
return 0;

}

/* Parent */
printf("parent: x=%d\n", --x);
printf("parent: x=%d\n", --x);
return 0;

}

linux> ./fork
parent: x=0
child : x=2
parent: x=-1
child : x=3

Carnegie Mellon

fork Example

linux> ./fork
parent: x=0
child : x=2

fork.c

 Call once, return twice
 Concurrent execution

 Can’t predict execution
order of parent and child

 Duplicate but separate
address space
 x has a value of 1 when

fork returns in parent and
child

 Subsequent changes to x
are independent

 Shared open files
 stdout is the same in

both parent and child

int main(int argc, char** argv)
{

pid_t pid;
int x = 1;

pid = fork();
if (pid == 0) { /* Child */

printf("child : x=%d\n", ++x);
/* printf("child : x=%d\n", ++x); */

return 0;
}

/* Parent */
printf("parent: x=%d\n", --x);
printf("parent: x=%d\n", --x);
return 0;

}

Carnegie Mellon

Modeling fork with Process Graphs

 A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program:
 Each vertex is the execution of a statement
 a -> b means a happens before b
 Edges can be labeled with current value of variables
 printf vertices can be labeled with output
 Each graph begins with a vertex with no in-edges

 Any topological sort of the graph corresponds to a feasible
total ordering.
 Total ordering of vertices where all edges point from left to right

Carnegie Mellon

Process Graph Example

int main(int argc, char** argv)
{

pid_t pid;
int x = 1;

pid = fork();
if (pid == 0) { /* Child */

printf("child : x=%d\n", ++x);
return 0;

}

/* Parent */
printf("parent: x=%d\n", --x);
return 0;

}

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit
Parent

Child

fork.c

Carnegie Mellon

Interpreting Process Graphs

 Original graph:

 Relabeled graph:

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e

a b e c f d

Feasible total ordering:

a b ecf d

Infeasible total ordering:

Carnegie Mellon

fork Example: Two consecutive forks

void fork2()
{

printf("L0\n");
fork();
printf("L1\n");
fork();
printf("Bye\n");

} printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

Feasible output:
L0
L1
Bye
Bye
L1
Bye
Bye

Infeasible output:
L0
Bye
L1
Bye
L1
Bye
Bye

forks.c

Carnegie Mellon

fork Example: Nested forks in parent

void fork4()
{

printf("L0\n");
if (fork() != 0) {

printf("L1\n");
if (fork() != 0) {

printf("L2\n");
}

}
printf("Bye\n");

}

printf printf fork

printf

printffork

printf

L0

Bye

L1

Bye

L2

printf

Bye

Feasible output:
L0
L1
Bye
Bye
L2
Bye

Infeasible output:
L0
Bye
L1
Bye
Bye
L2

forks.c

Carnegie Mellon

fork Example: Nested forks in children

void fork5()
{

printf("L0\n");
if (fork() == 0) {

printf("L1\n");
if (fork() == 0) {

printf("L2\n");
}

}
printf("Bye\n");

}

printf printf

fork

printf

printf

fork

printf

L0

L2

Bye

L1 Bye

printf

Bye

Feasible output:
L0
Bye
L1
L2
Bye
Bye

Infeasible output:
L0
Bye
L1
Bye
Bye
L2

forks.c

Carnegie Mellon

Why have fork() at all?

 Why make a copy of the parent process?
 Don't you usually want to start a new program instead?
 Where might “cloning” the parent be useful?

 Web server – make a copy for each incoming connection
 Parallel processing – set up initial state, fork off multiple copies to

do work

 UNIX philosophy: System calls should be minimal.
 Don't overload system calls with extra functionality if it is not

always needed.
 Better to provide a flexible set of simple primitives and let

programmers combine them in useful ways.

Carnegie Mellon

What if fork’ing gets out of control?

void forkbomb() {
while (1)

fork();
}

Carnegie Mellon

Memory concerns

 OS aggressively tries to share memory between
processes.
 Especially processes that are fork()'d copies of each other

 Copies of a parent process do not actually get a private
copy of the address space...
 ... though that is the illusion that each process gets.
 Instead, they share the same physical memory, until one of them

makes a change.

 The virtual memory system is behind these tricks.
 We will discuss this in much detail later in the course

Carnegie Mellon

Terminating Processes

 Process becomes terminated for one of three reasons:
 Receiving a signal whose default action is to terminate (more later)
 Returning from the main routine
 Calling the exit function

void cleanup(void) {
printf("cleaning up\n");

}

void fork() {
atexit(cleanup);
fork();
exit(0);

}

 void exit(int status)
 Terminates with an exit status of
status

 Convention: normal return status is 0,
nonzero on error

 Another way to explicitly set the exit
status is to return an integer value
from the main routine

 exit is called once but never
returns.

atexit() registers functions
to be executed upon exit

Carnegie Mellon

Reaping Child Processes
 Idea

 When process terminates, it still consumes system resources
 Examples: Exit status, various OS tables

 Called a “zombie”
 Living corpse, half alive and half dead

 Reaping
 Performed by parent on terminated child (using wait or waitpid)
 Parent is given exit status information
 Kernel then deletes zombie child process

 What if parent doesn’t reap?
 If any parent terminates without reaping a child, then the orphaned

child will be reaped by init process (pid == 1)
 So, only need explicit reaping in long-running processes

 e.g., shells and servers

Carnegie Mellon

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6639 ttyp9 00:00:03 forks
6640 ttyp9 00:00:00 forks <defunct>
6641 ttyp9 00:00:00 ps

Zombie
Example

forks.c
linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6639 ttyp9 00:00:03 forks
6640 ttyp9 00:00:00 forks <defunct>
6641 ttyp9 00:00:00 ps

linux> kill 6639
[1] Terminated
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6642 ttyp9 00:00:00 ps

 ps shows child process as
“defunct” (i.e., a zombie)

 Killing parent allows child to
be reaped by init

void fork7() {
if (fork() == 0) {

/* Child */
printf("Terminating Child, PID = %d\n", getpid());
exit(0);

} else {
printf("Running Parent, PID = %d\n", getpid());
while (1)

; /* Infinite loop */
}

}

Carnegie Mellon

linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676

Non-
terminating
Child Example

 Child process still active even
though parent has terminated

 Must kill child explicitly, or else will
keep running indefinitely

forks.clinux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6676 ttyp9 00:00:06 forks
6677 ttyp9 00:00:00 ps

linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6676 ttyp9 00:00:06 forks
6677 ttyp9 00:00:00 ps

linux> kill 6676
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6678 ttyp9 00:00:00 ps

void fork8()
{

if (fork() == 0) {
/* Child */
printf("Running Child, PID = %d\n",

getpid());
while (1)

; /* Infinite loop */
} else {

printf("Terminating Parent, PID = %d\n",
getpid());

exit(0);
}

}

Carnegie Mellon

wait: Synchronizing with Children

 Parent reaps a child by calling the wait function

 int wait(int *child_status)
 Suspends current process until one of its children terminates

Parent Process Kernel code

Exception

Returns

syscall
…

And, potentially other user
processes, including a child
of parent

Carnegie Mellon

wait: Synchronizing with Children

 Parent reaps a child by calling the wait function

 int wait(int *child_status)
 Suspends current process until one of its children terminates
 Return value is the pid of the child process that terminated
 If child_status != NULL, then the integer it points to will be set

to a value that indicates reason the child terminated and the exit
status:
 Checked using macros defined in wait.h

– WIFEXITED, WEXITSTATUS, WIFSIGNALED,
WTERMSIG, WIFSTOPPED, WSTOPSIG,
WIFCONTINUED

– See man pages for details

Carnegie Mellon

Process completion status
 int WIFEXITED (int status)

 returns a nonzero value if the child process terminated normally with exit or _exit.
 int WEXITSTATUS (int status)

 If WIFEXITED is true of status, this macro returns the low-order 8 bits of the exit
status value from the child process.

 int WIFSIGNALED (int status)
 returns a nonzero value if the child process terminated because it received a signal

that was not handled
 int WTERMSIG (int status)

 If WIFSIGNALED is true of status, this macro returns the signal number of the signal
that terminated the child process.

 int WCOREDUMP (int status)
 Returns a nonzero value if the child process terminated and produced a core dump.

 int WIFSTOPPED (int status)
 returns a nonzero value if the child process is stopped.

 int WSTOPSIG (int status)
 If WIFSTOPPED is true of status, this macro returns the signal number of the signal

that caused the child process to stop.

http://www.gnu.org/software/libc/manual/html_node/Process-Completion-Status.html

Carnegie Mellon

wait: Synchronizing with Children

void fork9() {
int child_status;

if (fork() == 0) {
printf("HC: hello from child\n");
exit(0);

} else {
printf("HP: hello from parent\n");
wait(&child_status);
printf("CT: child has terminated\n");

}
printf("Bye\n");

}

printf wait printffork

printf

exit

HP

HC

CT
Bye

forks.c

Feasible output:
HC
HP
CT
Bye

Infeasible output:
HP
CT
Bye
HC

Feasible output(s):
HC HP
HP HC
CT CT
Bye Bye

Carnegie Mellon

Another wait Example
 If multiple children completed, will take in arbitrary order
 Can use macros WIFEXITED and WEXITSTATUS to get information about

exit status

void fork10() {
pid_t pid[N];
int i, child_status;

for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0) {

exit(100+i); /* Child */
}

for (i = 0; i < N; i++) { /* Parent */
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminate abnormally\n", wpid);

}
} forks.c

Carnegie Mellon

waitpid: Waiting for a Specific Process
 pid_t waitpid(pid_t pid, int *status, int options)

 Suspends current process until specific process terminates
 Various options (see man page)

void fork11() {
pid_t pid[N];
int i;
int child_status;

for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0)

exit(100+i); /* Child */
for (i = N-1; i >= 0; i--) {

pid_t wpid = waitpid(pid[i], &child_status, 0);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminate abnormally\n", wpid);

}
} forks.c

Carnegie Mellon

execve: Loading and Running Programs

 int execve(char *filename, char *argv[], char *envp[])

 Loads and runs in the current process:
 Executable file filename

 Can be object file or script file beginning with #!interpreter
(e.g., #!/bin/bash)

 …with argument list argv
 By convention argv[0]==filename

 …and environment variable list envp

 “name=value” strings (e.g., USER=droh)
 getenv, putenv, printenv

 Overwrites code, data, and stack
 Retains PID, open files and signal context

 Called once and never returns
 …except if there is an error

Carnegie Mellon

fork() and execve()

 execve() does not fork a new process!
 Rather, it replaces the address space and CPU state of the current

process
 Loads the new address space from the executable file and starts it

from main()

 So, to start a new program, use fork() followed by execve()

Carnegie Mellon

execl and exec Family
 int execl(char *path, char *arg0, char *arg1, …, 0)

 Loads and runs executable at path with args arg0, arg1, …
 path is the complete path of an executable object file
 By convention, arg0 is the name of the executable object file
 “Real” arguments to the program start with arg1, etc.
 List of args is terminated by a (char *)0 argument
 Environment taken from char **environ, which points to an array

of “name=value” strings:
 USER=ganger

 LOGNAME=ganger

 HOME=/afs/cs.cmu.edu/user/ganger

 Returns -1 if error, otherwise doesn’t return!
 Family of functions includes execv, execve (base

function), execvp, execl, execle, and execlp

Carnegie Mellon

exec: Using fork followed by exec

int main(int argc, char **argv) {
int rv;
if (fork()) { /* Parent process */

wait(&rv);
} else { /* Child process */

char *newargs[3];
printf(“Hello, I am the child process.\n”);
newargs[0] = “/bin/echo”; /* Convention! Not required!! */
newargs[1] = “some random string”;
newargs[2] = NULL; /* Indicate end of args array */
if (execv(“/bin/echo”, newargs)) {

printf(“warning: execve returned an error.\n”); exit(-1);
}
printf(“Child process should never get here\n”);
exit(42);

}
}

Carnegie Mellon

exec() function family
 The suffix’s determine the arguments

 l : arguments are passed as a list of strings to the main()
 v : arguments are passed as an array of strings to the main()
 p : path/s to search for the new running program
 e : the environment can be specified by the caller

 One can mix them with different combinations
 int execl(const char *path, const char *arg, ...);
 int execlp(const char *file, const char *arg, ...);
 int execle(const char *path, const char *arg, ..., char * const

envp[]);
 int execv(const char *path, char *const argv[]);
 int execve(const char *path, char *const argv[], char

*const envp[]);
 int execvp(const char *file, char *const argv[]);
 int execvpe(const char *file, char *const argv[], char *const

envp[]);

 The initial argument is always the name of a file to be executed.

Carnegie Mellon

Environment variables

 An environment variable is a dynamic-named value that
can affect the way running processes will behave on a
computer.

 They are part of the environment in which a process runs.
For example,
 a running process can query the value of the TEMP environment

variable to discover a suitable location to store temporary files,
 or the HOME or USERPROFILE variable to find the directory

structure owned by the user running the process

 In Unix, use printenv in your shell to get the full list.

https://en.wikipedia.org/wiki/Environment_variable

Carnegie Mellon

Linux Process Hierarchy

Login shell

ChildChild

GrandchildGrandchild

[0]

Daemon
e.g. httpd

init [1]

Login shell

Child

…

Note: you can view the
hierarchy using the Linux
pstree command

Carnegie Mellon

Summary
 Process

 is an instance of program in execution
 At any given time, a system has multiple active processes
 Only one can execute at a time, though
 Each process appears to have total control of

processor + private memory space

 Spawning processes
 Call to fork
 One call, two returns

 Process completion
 Call exit
 One call, no return

 Reaping and waiting for Processes
 Call wait or waitpid

 Loading and running Programs
 Call execl (or variant)
 One call, (normally) no return

