
Carnegie Mellon

File Abstraction

Most of the following slides are adapted from slides of Randy Bryant of Carnegie
Mellon Univ.

Carnegie Mellon

UNIX File Abstraction

¢ In UNIX, the file is the basic abstraction used for I/O
§ Used to access disks, CDs, DVDs, USB and serial devices, network

sockets, even memory!

Carnegie Mellon

Unix I/O and C Standard I/O
¢ C Standard

§ Most useful for reading/writing files in applications
§ Provides buffering between program and actual files

¢ Unix I/O
§ Lower level
§ Required for system and network programming

Unix I/O functions
(accessed via system calls)

Standard I/O
functions

C application program

fopen fdopen
fread fwrite
fscanf fprintf
sscanf sprintf
fgets fputs
fflush fseek
fclose

open read
write lseek
stat close

Carnegie Mellon

Unix I/O Overview
¢ A Linux file is a sequence of m bytes:

§ B0 , B1 , , Bk , , Bm-1

¢ Cool fact: All I/O devices are represented as files:
§ /dev/sda2 (/usr disk partition)
§ /dev/tty2 (terminal)

¢ Even the kernel is represented as a file:
§ /boot/vmlinuz-3.13.0-55-generic (kernel image)
§ /proc (kernel data structures)

Carnegie Mellon

Unix I/O Overview
¢ Elegant mapping of files to devices allows kernel to export

simple interface called Unix I/O:
§ Opening and closing files

§ open()and close()
§ Reading and writing a file

§ read() and write()
§ Changing the current file position (seek)

§ indicates next offset into file to read or write
§ lseek()

B0 B1 • • • Bk-1 Bk Bk+1 • • •

Current file position = k

Carnegie Mellon

Opening Files
¢ Opening a file informs the kernel that you are getting ready to

access that file

¢ Returns a small identifying integer file descriptor
§ fd == -1 indicates that an error occurred

int fd; /* file descriptor */

if ((fd = open("/etc/hosts", O_RDONLY)) < 0) {
perror("open");
exit(1);

}

Carnegie Mellon

stdin, stdout, stderr

¢ In UNIX, every process has three
“special” files already open:
§ standard input (stdin) – filehandle 0
§ standard output (stdout) – filehandle 1
§ standard error (stderr) – filehandle 2

¢ By default, stdin and stdout are
connected to the terminal device of
the process.
§ Originally, terminals were physically

connected to the computer by a serial
line

§ These days, we use “virtual terminals”
using ssh

VT100 terminal

Carnegie Mellon

How the Unix Kernel Represents Open Files
¢ Two descriptors referencing two distinct open disk files.

Descriptor 1 (stdout) and 2 (stderr) points to terminal, and
descriptor 4 points to file opened on the disk.

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr
stdout
stdin File access

...

File size
File type

File access

...

File size
File type

File A (terminal)

File B (disk)

Info in
stat
struct

KERNEL
SPACE

File pos is maintained per open file

Carnegie Mellon

File Sharing
¢ Two distinct descriptors sharing the same disk file through

two distinct open file table entries
§ E.g., Calling open twice with the same filename argument

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr
stdout
stdin File access

...

File size
File type

File A (terminal)

File B (disk)

KERNEL
SPACE

Different logical but same physical file

Carnegie Mellon

How Processes Share Files: fork()
¢ A child process inherits its parent’s open files

§ Note: situation unchanged by exec() functions

¢ Before fork() call:

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr
stdout
stdin File access

...

File size
File type

File access

...

File size
File type

File A (terminal)

File B (disk)

KERNEL
SPACE

Parent

Carnegie Mellon

How Processes Share Files: fork()
¢ A child process inherits its parent’s open files
¢ After fork():

§ Child’s table same as parents, and +1 to each refcnt

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=2

...

File pos
refcnt=2

...

File access

...

File size
File type

File access

...

File size
File type

File A (terminal)

File B (disk)
fd 0
fd 1
fd 2
fd 3
fd 4

Parent

Child

KERNEL
SPACE

File is shared between processes

stderr
stdout
stdin

stderr
stdout
stdin

Carnegie Mellon

Shell redirection
¢ The shell allows stdin, stdout, and stderr to be

redirected (say, to or from a file).
§ > ./myprogram > somefile.txt

§ Connects stdout of “myprogram” to somefile.txt
§ > ./myprogram < input.txt > somefile.txt

§ Connects stdin to input.txt and stdout to somefile.txt
§ > ./myprogram 2> errors.txt

§ Connects stderr to errors.txt

¢ In this case, the shell simply opens the file, making sure
the file handle is 0, 1, or 2, as appropriate.
§ Problem: open() decides what the file handle number is.
§ How do we coerce the filehandle to be 0, 1, or 2?

Carnegie Mellon

Initially

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
For myprogram

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
Refcnt=1

...

stderr
stdout
stdin File access

...

File size
File type

Display

Info in
stat
struct

¢ stdout prints to the display of the terminal as default.

KERNEL
SPACE

Carnegie Mellon

All we need to do is to point stdout to a file

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
For myprogram

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr
stdout
stdin File access

...

File size
File type

File access

...

File size
File type

Display

foo.txt (disk)

Info in
stat
struct

¢ Question: But the Descriptor table is kernel space, and we
cannot modify it directly.

¢ Need to use system calls!

KERNEL
SPACE

Carnegie Mellon

dup() : before

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
For myprogram

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=1

...

stderr
stdout
stdin File access

...

File size
File type

Display

Info in
stat
struct

KERNEL
SPACE

#include <unistd.h>
int dup(int filedes);
//dup() returns lowest available file descriptor, now
referring to whatever filedes refers to
newfd = dup(1); // newfd will be 3.

Carnegie Mellon

dup() : after

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
For myprogram

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=2

...

stderr
stdout
stdin File access

...

File size
File type

Display

Info in
stat
struct

KERNEL
SPACE

#include <unistd.h>
int dup(int filedes);
//dup() returns lowest available file descriptor, now
referring to whatever filedes refers to
newfd = dup(1); // newfd will be 3.

Carnegie Mellon

dup2() : before

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
For myprogram

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr
stdout
stdin File access

...

File size
File type

File access

...

File size
File type

Display

foo.txt (disk)

Info in
stat
struct

KERNEL
SPACE

#include <unistd.h>
int dup2(int oldfd, int newfd);
//Copies descriptor table entry oldfd to entry newfd
int foofd = open(”foo.txt", O_WRONLY); //foofd becomes 3.
if (dup2(foofd, stdout)>0) printf(“printing to foo.txt\n”);

Carnegie Mellon

dup2() : after

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
For myprogram

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=1

...

File pos
refcnt=2

...

stderr
stdout
stdin File access

...

File size
File type

File access

...

File size
File type

Display

foo.txt (disk)

Info in
stat
struct

KERNEL
SPACE

#include <unistd.h>
int dup2(int oldfd, int newfd);
//Copies descriptor table entry oldfd to entry newfd
int foofd = open(”foo.txt", O_WRONLY); //foofd becomes 3.
if (dup2(foofd, stdout)>0) printf(“printing to foo.txt\n”);

Carnegie Mellon

dup() and dup2()pseudocode

¢ dup(fd) returns
lowest available file
descriptor, now
referring to whatever
oldfd refers to refers
to.

¢ dup2(oldfd,newfd)
copies descriptor table
entry oldfd to entry
newfd.

//Descriptor table
void *DT[maxFd];

int dup(int oldfd){
//get the lowest available
//file descriptor
newfd = lowestFd(DT);
DT(newfd)=DT(oldfd);
return(newfd);

}

//Descriptor table
void *DT[maxFd];

int dup2(int oldfd, int newfd){
DP[newfd]=DP[oldfd];
return(newfd);

}

• If oldfd is not a valid file descriptor, then
the call fails, and newfd is not closed.

• If oldfd is a valid file descriptor,
and newfd has the same value as oldfd,
then dup2() does nothing, and
returns newfd.

Carnegie Mellon

I/O and Redirection Example

¢ What would this program print for file containing “abcde”?

#include "csapp.h"
int main(int argc, char *argv[])
{

int fd1, fd2, fd3;
char c1, c2, c3;
char *fname = argv[1];
fd1 = open(fname, O_RDONLY, 0);
fd2 = open(fname, O_RDONLY, 0);
fd3 = open(fname, O_RDONLY, 0);
dup2(fd2, fd3);
read(fd1, &c1, 1);
read(fd2, &c2, 1);
read(fd3, &c3, 1);
printf("c1 = %c, c2 = %c, c3 = %c\n", c1, c2, c3);
return 0;

} ffiles1.c

Carnegie Mellon

I/O and Redirection Example

¢ What would this program print for file containing “abcde”?

#include "csapp.h"
int main(int argc, char *argv[])
{

int fd1, fd2, fd3;
char c1, c2, c3;
char *fname = argv[1];
fd1 = Open(fname, O_RDONLY, 0);
fd2 = Open(fname, O_RDONLY, 0);
fd3 = Open(fname, O_RDONLY, 0);
Dup2(fd2, fd3);
Read(fd1, &c1, 1);
Read(fd2, &c2, 1);
Read(fd3, &c3, 1);
printf("c1 = %c, c2 = %c, c3 = %c\n", c1, c2, c3);
return 0;

} ffiles1.c

c1 = a, c2 = a, c3 = b

dup2(oldfd, newfd)

Carnegie Mellon

Master Class: Process Control and I/O

¢ What would this program print for file containing “abcde”?

#include "csapp.h"
int main(int argc, char *argv[])
{

int fd1;
int s = getpid() & 0x1;
char c1, c2;
char *fname = argv[1];
fd1 = Open(fname, O_RDONLY, 0);
Read(fd1, &c1, 1);
if (fork()) { /* Parent */

sleep(s);
Read(fd1, &c2, 1);
printf("Parent: c1 = %c, c2 = %c\n", c1, c2);

} else { /* Child */
sleep(1-s);
Read(fd1, &c2, 1);
printf("Child: c1 = %c, c2 = %c\n", c1, c2);

}
return 0;

} ffiles2.c

Carnegie Mellon

Master Class: Process Control and I/O

¢ What would this program print for file containing “abcde”?

#include "csapp.h"
int main(int argc, char *argv[])
{

int fd1;
int s = getpid() & 0x1;
char c1, c2;
char *fname = argv[1];
fd1 = Open(fname, O_RDONLY, 0);
Read(fd1, &c1, 1);
if (fork()) { /* Parent */

sleep(s);
Read(fd1, &c2, 1);
printf("Parent: c1 = %c, c2 = %c\n", c1, c2);

} else { /* Child */
sleep(1-s);
Read(fd1, &c2, 1);
printf("Child: c1 = %c, c2 = %c\n", c1, c2);

}
return 0;

} ffiles2.c

Child: c1 = a, c2 = b
Parent: c1 = a, c2 = c

Parent: c1 = a, c2 = b
Child: c1 = a, c2 = c

Bonus: Which way does it go?

Carnegie Mellon

For Further Information
¢ The Unix bible:

§ W. Richard Stevens & Stephen A. Rago, Advanced Programming in
the Unix Environment, 2nd Edition, Addison Wesley, 2005
§ Updated from Stevens’ 1993 book

¢ Stevens is arguably the best technical writer ever.
§ Produced authoritative works in:

§ Unix programming
§ TCP/IP (the protocol that makes the Internet work)
§ Unix network programming
§ Unix IPC programming

https://github.com/shihyu/Linux_Programming/tree/master/books

https://github.com/shihyu/Linux_Programming/tree/master/books

Carnegie Mellon

Bonus material

¢ The following slides are provided as extra and is not part
of the course coverage.

¢ Enjoy!

Carnegie Mellon

System Call Error Handling
¢ On error, Linux system-level functions typically return -1 and

set global variable errno to indicate cause.
¢ Hard and fast rule:

§ You must check the return status of every system-level function
§ Only exception is the handful of functions that return void

¢ Example:

if ((pid = fork()) < 0) {
fprintf(stderr, "fork error: %s\n", strerror(errno));
exit(-1);

}

Carnegie Mellon

Error-reporting functions

¢ Can simplify somewhat using an error-reporting function:

void unix_error(char *msg) /* Unix-style error */
{

fprintf(stderr, "%s: %s\n", msg, strerror(errno));
exit(-1);

}

if ((pid = fork()) < 0)
unix_error("fork error");

Note: csapp.c exits with 0.

Carnegie Mellon

Error-handling Wrappers

¢ We simplify the code we present to you even further by
using Stevens-style error-handling wrappers:

¢ NOT what you generally want to do in a real application

pid_t Fork(void)
{

pid_t pid;

if ((pid = fork()) < 0)
unix_error("Fork error");

return pid;
}

pid = Fork();

Carnegie Mellon

Standard I/O Streams
¢ Standard I/O models open files as streams

§ Abstraction for a file descriptor and a buffer in memory.
§ Similar to buffered RIO (later)

¢ C programs begin life with three open streams
(defined in stdio.h)
§ stdin (standard input)
§ stdout (standard output)
§ stderr (standard error)

#include <stdio.h>
extern FILE *stdin; /* standard input (descriptor 0) */
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */

int main() {
fprintf(stdout, "Hello, world\n");

}

Carnegie Mellon

Buffering in Standard I/O

¢ Standard I/O functions use buffered I/O

¢ Buffer flushed to output fd on “\n” or fflush() call

printf("h");

h e l l o \n . .

printf("e");
printf("l");

printf("l");
printf("o");

printf("\n");

fflush(stdout);

buf

write(1, buf, 6);

Carnegie Mellon

Standard I/O Buffering in Action
¢ You can see this buffering in action for yourself, using the

always fascinating Unix strace program:

linux> strace ./hello
execve("./hello", ["hello"], [/* ... */]).
...
write(1, "hello\n", 6...) = 6
...
_exit(0) = ?

#include <stdio.h>

int main()
{

printf("h");
printf("e");
printf("l");
printf("l");
printf("o");
printf("\n");
fflush(stdout);
exit(0);

}

strace: a debugging tool in Linux.
When you start a program using strace, it prints
a list of system calls made by the program.

Carnegie Mellon

Fork Example #2 (Earlier Lecture)

void fork2()
{

printf("L0\n");
fork();
printf("L1\n");
fork();
printf("Bye\n");

}

¢ Key Points
§ Both parent and child can continue forking

L0 L1

L1

Bye

Bye

Bye

Bye

Carnegie Mellon

Fork Example #2 (modified)

void fork2a()
{

printf("L0");
fork();
printf("L1\n");
fork();
printf("Bye\n");

}

¢ Removed the “\n” from the first printf
§ As a result, “L0” gets printed twice

L0L1

L0L1

Bye

Bye

Bye

Bye

Carnegie Mellon

Repeated Slide: Reading Files
¢ Reading a file copies bytes from the current file position to

memory, and then updates file position

¢ Returns number of bytes read from file fd into buf
§ Return type ssize_t is signed integer
§ nbytes < 0 indicates that an error occurred
§ short counts (nbytes < sizeof(buf)) are possible and are not

errors!

char buf[512];
int fd; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open file fd ... */
/* Then read up to 512 bytes from file fd */
if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {

perror("read");
exit(1);

}

Carnegie Mellon

Dealing with Short Counts
¢ Short counts can occur in these situations:

§ Encountering (end-of-file) EOF on reads
§ Reading text lines from a terminal
§ Reading and writing network sockets or Unix pipes

¢ Short counts never occur in these situations:
§ Reading from disk files (except for EOF)
§ Writing to disk files

