Name, SURNAME and ID = KEY

Middle East Technical University CENG 334

Department of Computer Engineering

Section 1 and 2
Spring *2009-2010

Midterm

Duration: 120 minutes.

e Exam:

— This is a closed book, closed notes exam. No attempts of cheating will be tolerated. In
case such attempts are observed, the students who took part in the act will be prosecuted.
The legal code states that students who are found guilty of cheating shall be expelled from
the university for a minimum of one semester!

About the exam questions:

— The points assigned for each question are shown in parenthesis next to the question.

— Whereever available, use the boxes to write down your answers.

This booklet consists of 8 pages including this page. Check that you have them all!
GOOD LUCK'!

Question 1

Question 2

Question 3

Question 4

LLLLL

Total =

(20 pts)

Answer the following questions as (T)rue or (F)alse in the table below. Each correct answer will
be awarded with 2 points and each wrong answer will be punished with -2 points, hence do not
make wild guesses.

Context switch between the threads of a process can be handled at user-level.

The fork system call takes much longer to execute when called from a large program,

Race conditions may happen when multiple threads (or processes) tries to read (but not

In a Mesa-style monitor, the thread that signal()’s to wake up other sleeping threads is

DMA is used to offload from the operating system (processor) the overhead of copying

In a system where some resources have multiple instances (such as two CPU’s) the fol-
lowing is true: Cycle in resource allocation graph <= Deadlock in the system.

Semaphore’s are more powerful than mutexes (meaning that some problems can be only

112134 (5]6|7|8|9]10
T F|F|F|F| T/ F|T|F|T
)
2)
because it must copy the program’s code segments.
(3) Round-robin scheduling policy is non-preemptive.
“
write) a shared variable.
&)
immediately blocked.
(6)
data between I/O devices and main memory.
(N
(8) Peterson’s algorithm uses spinlocking for synchronization.
®
solved using semaphores, but not using mutexes).
(10)

A group of threads or processes can never deadlock if they acquire any needed resources
according to some fixed ordering they all agree on.

(25 pts)

Three processes are at the ready queue of the scheduler in the order A, B and E at time 0. If you
use the FCFS policy the scheduling executed is as follows. In the timing diagram shown below
for 20 time units, A, B, an E represents the CPU use of these processes whereas b and e denote
the I/O’s of processes B and E respectively (A has no I/O). The vertical bars indicate transitions
of a process from running to the I/O wait or ready queue.

In the diagram below fill in the scheduling executed by Round robin (RR) with a timeslice of
1 unit, Shortest-Job-First (SJF), and Shortest-Remaining-Time-First (SRTF). For SRTF, assume
that the scheduler has complete knowledge on the CPU and I/O requirements of the processes.
If at a given time slice the CPU is being used by, say A, whereas the I/O requests of B and E
are active, then fill in that time slice with Abe vertically. Also assume that the I/O device can
concurrently handle multiple I/O requests. In SRTF, if the remaining CPU burst of the running
process equals to the remaining CPU burst of another process in the ready list, no context switch
should occur.

0 1
Time |01 |2[3[4[5][6]7[8]9]0]1[2]3]4][5]6]7 9
FCFS | A B b B b B b |E
RR |A[B|E[A[B|B|b|b|[B|B|[B|b|[b|[B[B|B|b]|b
€

SIJE [E[A[A|B|B|[B|[b|b|B|[B|[B|b|b[B|[B|[B|[b]b|

SRTF |E|A[A|[B|[B|B|b|[b|[B|B|B|[b|b[B|[B|[B|b]|b|]

RR (9 pts), SJIF (8 pts), SRTF (8 pts)
First 6 columns of each policy is 1 point each.
The rest of the row takes the remaining points.

(30 pts)

A particular river crossing is shared by both Linux Hackers and Microsoft employees. A boat
is used to cross the river, but it only seats four people, and must always carry a full load. In
order to guarantee the safety of the hackers, you cannot put three employees and one hacker in
the same boat (because the employees would gang up and convert the hacker). Similarly, you
cannot put three hackers in the same boat as an employee (because the hackers would gang up
and convert the employee). All other combinations are safe.

Two procedures are needed: HackerArrives () and EmployeeArrives (), called by a
hacker or employee when he/she arrives at the river bank. The procedures arrange the arriving
hackers and employees into safe boatloads; once the boat is full, one thread calls Rowboat ()
and only after the call to Rowboat (), the four threads representing the people in the boat can
return (i.e. exit). Note that the Rowboat () function needs to be executed by only ONE thread,
and all the other threads in the boat do not need to make such a call and can just exit after that.

Any order is acceptable and there should be no busy-waiting and no undue waiting - hackers and
employees should not wait if there are enough of them for a safe boatload. Your code should
be clearly commented, in particular, you should comment each semaphore or condition variable
operation to specify how correctness properties are preserved.

e Solve this concurrency problem using semaphores. You can declare and initialize semaphores
as sem = semaphore (1); and usethem by calling two methods as sem.up () ; or
sem.down () ;. Write the code for HackerArrives () function in the skeleton shown
below. Note that although a number of declaration are provided for you, you are free to
declare and use more int’s or semaphores as necessary.

The solution for EmployeeArrives () would be symmetric, and you don’t have to
write that down.

hackers = semaphore (0); // Start with zero hackers

employees = semaphore(0); // Start with zero employees

int hackerCount = 0; // Number of waiting hackers

int employeeCount = 0; // Number of waiting employees

Semaphore Mutex = 1; // Semaphore for critical region (checking counts)
Semaphore Rowing =0; // Semaphore to prevent riders from returning from
// Hacker/Employee Arrival call until Rowboat call

void HackerArrives () {

Mutex.down (); // Acquire lock for rider variables

if (HackerCount == 3) { // Three other waiting hackers
HackerCount —-= 3; // Decrement count of waiters
Mutex.up(); // Release lock
Hackers.up(); // Wake up three other waiting hackers
Hackers.up();

Hackers.up();

} else if ((HackerCount >= 1) && (EmployeeCount >=2)) {
HackerCount —-= 1 // Decrement count of waiters;
EmployeeCount —-= 2;

Mutex.up(); // Release lock

Hackers.up();

Employees.up();
Employees.up () ;

} else {
HackerCount += 1; // New waiting hacker
Mutex.up(); // Release lock
Hackers.down(); // Go to sleep until other riders arrive to

// f£ill boat
Rowing.down (); // Wait for Rowboat, once we get in the boat
return;

}

// Only the rider that fills the boat (didn’t sleep)

// makes it to this point

RowBoat () ;

Rowing.up(); // Wake up waiting boat occupants

Rowing.up () ;

Rowing.up () ;

}

First three hackers (H1, H2, H3 in marking) end up waiting: 5 pts
2 hackers + 2 employees go together: 5 pts

4 hackers : 5 pts

no mutex use: -3 pts

no/wrong RowBoat: -3 pts

wrong syntax: -3 pts

Solve the same problem using Mesa-type monitors and condition variables. Use the fol-
lowing skeleton to write your code. Note that although a number of declaration are pro-
vided for you, you are free to declare and use more int’s or condition variables as neces-
sary. Assume that the functions wait (cv),notify (cv),and notifyAll (cv), are
available where cv is a declared condition variable.

monitor HackerEmployee({
int hackerCount = 0; // Number of waiting hackers
int employeeCount = 0; // Number of waiting employees
condition Hacker; // Used to wait for enough people to cross river
condition Employee; // Same as Hacker
void HackerArrives () {
if (hackerCount == 3) { // three waiting hackers. Lets go!
notify (Hacker); // Wake three hackers (any three)
notify (Hacker);
notify (Hacker);
hackerCount —-= 3; // Decrement state vars (this must be done here,
Rowboat (); // Cross the river
} else if ((hackerCount >= 1) && (employeeCount >= 2) { // 1 other hac
notify (Hacker); // Wake up one hacker, two employees
notify (Employee);
notify (Employee);
hackerCount--; // Decrement state vars

employeeCount -= 2;
Rowboat () ;
} else {
hackerCount++; // Wait for more Hackers to arrive
wait (Hacker (Hacker); // No need to check state vars

}
void EmployeeArrives () {
// The solution would be symmetric. No need to code here..

First three hackers (H1, H2, H3 in marking) end up waiting: 5 pts
2 hackers + 2 employees go together: 5 pts
4 hackers : 5 pts

use of (needless) mutex use: -3 pts
no/wrong RowBoat: -3 pts
wrong syntax: -3 pts

notifyAll (employees): -3 pts

(4] @5pt5)

Consider the following snapshot of a system with five processes (p1, ...p5) and four resources
(r1,...r4). There are no current outstanding queued unsatisfied requests.

Currently available resources
rl |2 |3 |4

21117010
Allocation Maximum Need | May still Need
Process | rl |2 |3 |rd ||rl |2 |13 |rd|rl|12|13 |14
pl ojo|1}(2j0j0]1}{2})0]0]0,0
p2 2101010127510} 0|7]5/0
p3 0|0 |3 |41]6|6|5|6|6|6]|2]|2
p4 213|514 4]3|5|61|2[0]0)2
p5 0313206520320

(5 pts) Compute what each process still might request and fill in the May still Need
columns.

(10 pts) Is this system currently deadlocked, or will any process become deadlocked? Why
or why not? If not, give an execution order.

Answer: Not deadlocked and will not become deadlocked. the process finishing or-
der: p1, p4, p5, p2, p3.

(10 pts) If a request from p3 arrives for (0, 1, 0, 0), can that request be safely granted
immediately? In what state (deadlocked, safe, unsafe) would immediately granting the
whole request leave the system? Which processes, if any, are or may become deadlocked
if this whole request is granted immediately?

Change available to (2, 0, 0, 0) and p3’s row of ’may still needs” to (6, 5, 2, 2). Now
pl, p4, and p5 can finish, but with available now (4, 6, 9, 8) neither p2 nor p3’s “may
still need” can be satisfied. So, it is not safe to grant p3’s request. Correct answer
NO. State is unsafe as the system may or may not deadlock. Processes p2 and p3 may
deadlock .

2010 Darwin Awards
Named in honor of Charles Darwin, the father of evolution, the Darwin Awards commemorate
those who improve our gene pool by removing themselves from it.

In the late fall and early winter months, snow-covered mountains become infested with hunters.
One ambitious pair climbed high up a mountain in search of their quarry. The trail crossed a
small glacier that had crusted over. The lead hunter had to stomp a foot-hold in the snow, one
step at a time, in order to cross the glacier.

Somewhere near the middle of the glacier, his next stomp hit not snow but a rock. The lead
hunter lost his footing and fell. Down the crusty glacier he zipped, off the edge and out of sight.

Unable to help, his companion watched him slide away. After a while, he shouted out, ”Are you
OK?”

”Yes!” came the answer.

Reasoning that it was a quick way off the glacier, the second hunter plopped down and ac-

celerated down the ice, following his friend. There, just over the edge of the glacier, was his
friend...holding onto the top of a tree that barely protruded from the snow.

There were no other treetops nearby, nothing to grab, nothing but a hundred-foot drop onto the
rocks below. As the second hunter shot past the first, he uttered his final epitaph: a single word,
which we may not utter lest our mothers soap our mouths.

