© AlchemyAPI

CENG 501
Deep Learning:

A GAME OF NEURDONS

Sinan Kalkan

Today

- Overview of the course

- A review of deep learning fundamentals

—
)
Yol
@)
Z
=
@)

About the course

Sy11abu S http://ceng.metu.edu.tr/~skalkan/DL/syllabus.pdf

Catalog: Introduction to Machine Learning; Deep hierarchies and learning
mechanisms in humans; Artificial neural networks; Deep vs. shallow
architectures; Representation in terms of basis functions; Representation
learning; Independent component analysis; Sparse representations;
Convolutional neural networks; Restricted Boltzmann Machines; Deep Belief
networks; Applications to pattern recognition, speech recognition and natural
language processing.

Textbook: We will mainly follow the state of the art with papers. However, the

following might be handy:

e Y.Bengio, |. Goodfellow and A. Courville, “Deep Learning”, MIT Press, 2016.

e A. Geron, "Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts,
Tools, and Techniqgues to Build Intelligent Systems", O'Reilly, 2017.

e Murphy, Kevin P. Machine learning: a probabilistic perspective. MIT press, 2012.

—
)
Yol
@)
Z
=
@)

Syllabus

Web: https://user.ceng.metu.edu.tr/~skalkan/DL/

Emailing List: METU Class page of the course.

Instructor: Sinan Kalkan, skalkan@metu.edu.tr (Office hours: by appointment)
Lectures: Wednesdays, 9:40-11:30, BMB2

Credits: METU: 3 Theoretical, 0 Laboratory; ECTS: 8.0

—
)
Yol
@)
Z
=
@)

Syllabus

Grading:
Quizzes (approx. 10) 20%
Final Exam 35%
Project 45%

—
)
Yol
@)
Z
=
@)

Weekly

outline

Week & Date

Topic

Course Overview; A Quick Review of Deep Learning Fundamentals
[History of Artificial Neuron Models, Perceptron Learning, Gradient

1 20ct Descent, Multi-layer Perceptrons, Backpropagation, Convergence,
Overfitting, Capacity]
A Quick Review of Deep Learning Fundamentals
[History of Artificial Neuron Models, Perceptron Learning, Gradient
2 9 Oct . .
Descent, Multi-layer Perceptrons, Backpropagation, Convergence,
Overfitting, Capacity]
3 16 Oct Convolutional Neural Networks
[Operations in CNNs, Types of Convolution, Popular CNN Architectures]
4 |230ct Recurrent Neural Networks
[Vanilla RNNs and Long Short Term Memory Networks]
s |300ct Self-Attention and Transformers
[Types of attention, Self-attention, Encoder and Decoder Transformers]
6 6 Nov Large-Language Models
[Generative Pretraining, BERT, GPT-1, GPT-2, GPT-3, Instruct-GPT]
Large-Language Models
7 13 Nov |[Using Pretrained LLMs, Retrieval Augmented Generation, Efficient
Finetuning]
Vision Models
8 20 Nov
[Vision Transformers, Swin Transformers, Fast/Faster ViTs, Pretraining]
Vision-Language Models
9 |27 Nov [Well-known Models such as CLIP, BLIP, Flamingo]
Generative Models
10 |4 Dec [Autoregressive Models, Variational AEs, Flow Models]
Generative Models
11 |11 Dec [Energy-based Models, Diffusion Models]
12 118 Dec Self—Supe_rvised Le.arnin.g o
[Contrastive Learning, SimCLR, MoCo, BYOL, SimSiam, VICReg]
13 |25 Dec Self—Supe_rvised Le.arnin.g o
[Contrastive Learning, SImCLR, MoCo, BYOL, SimSiam, VICReg]
14 |11an Reinforcement Learning

[Problem Setting, Value Networks, Policy Networks, Actor-Critic Networks]

—
)
Yol
@)
Z
=
@)

Project

- Implement a conference paper without any implementation
- Reproduce their results and provide a critical analysis

* Produce a Github Repo with a detailed Readme file

- Papers can only be from the following top conferences:
- ICLR, AAAI, NeurIPS, ICML, CVPR, ECCV or similar

- You can work in groups of two.

- Deadline for picking papers: 13 October.

—
)
Yol
@)
Z
=
@)

Taking the course

Backpropagation

For each output unit ¢, calculate its grad term §2:
aL; _ 3L, a9
dnetf, 95 dnetf.

o _
I5"1‘(:_

= Fic — Yie)Vie(1 — Fic)

For each hidden unit j, calculate its grad term 6}‘:

ho_ 8L _ AL 9hy

_ aL; dnet],
U A dhij ﬂnctﬂ - (ECEC dnetf, dhj hU (1 hU)

onet;;

= (Beec6ixwej)hij(1— hyj)

Update weight wﬁ(in the output layer:

o e} o
Wi = Wji, — 18jhix

Update weight w}}‘ in the hidden layer:
R

— h h
Wik = W) — N8

The Model

Hidden activations: hy; = a(w}*-x;)= o(netl Triplet Loss: Schroff et al. [17] proposed Triplet loss
as an augmentation over Contrastive loss [3]. Triplet loss
jointly minimizes the distances between the feature embed-
dings of a given sample (anchor) and another sample of the
same class (positive) while maximizing the distance of the
embeddings of a suitable sample of a different class (nega-
tive) to the anchor. The loss 15 defined as below:

h L= Y (M= flP=lf =l +a]

a,prC W

Output layer: §;, = o(w? - h;) = a(netf.

The loss function:

L) = %i D O —wiel?

i=1 ceC
- For one sample:

b = a(Whx,) F, = a(Wh,)

The terms f.. fp, fn correspond to feature embeddings
for the anchor, positive and negative samples, where a, p. n
are sampled from the training dataset V. a defines the mar-
gin enforced between the anchor-negative embedding dis-

dout row = dout[index].reshape(C, outH*outW)
neuron = 0
for i in range(0, H-PH+1l, stride):
for j in range(0, W-PW+l, stride):
pool region = x[index,:,i:i+PH, j:j+PW].reshape(C,PH*PW)
max_pool indices = pool region.argmax(axis=1)
dout cur = dout row[:,neuron]
neuron += 1
pass gradient only through indices of max pool
dmax pool = np.zeros(pool region.shape)
dmax pool[np.arange(C),max pool indices] = dout cur
dx[index,:,i:i+PH,j:j+PW] += dmax pool.reshape(C,PH,PW)

similarities amongst the positive samples and the negative
samples in conjunction with the self-similarity measure to
handle all three forms of similarities available. The loss is
derived from the binomial deviance loss and is formulated

1 m 1)
L==3% ¢—log |1+ Y e oY
m 4 P * ¢ +
i=1 pEP,

)

nEA;

(3

1
3 log

The first log term deals with the similarity scores S, for
the positive samples p £ P; which comprises the set of posi-

—
)
Yol
@)
Z
=
@)

Basic DL Concepts

Ensure that you know the following:

- Why does DL work now?
- End-to-end learning
- Distributed representations

- Advantages and disadvantages of DL

—
)
Yol
@)
Z
=
@)

Basic ML Concepts

Ensure that you know the following:

- Supervised vs. unsupervised learning
- Discriminative vs. generative learning
- Model selection, cross validation

- Overfitting, memorization, bias-variance trade-off

—
)
Yol
@)
Z
=
@)

Taking the course

- Background
* Programming, Python

+ Data structures and algorithms

- Linear algebra, Calculus, Statistics
* Fundamental deep learning models: MLP, CNN, RNN

- Fill out the following form until October 3 (Wednesday), midnight:
https://forms.gle/zyu7TwUAFabVbxSGR6

—
)
Yol
@)
Z
=
@)

Andriy Burkov's

THE HUNDRED-PAGE
MACHINE LEARNING
. l];{()e:ﬁl CH1-7 (pages 4-96) of the BOOK

- Quiz next week

- Alternative:

- Machine Learning - A First Course
for Engineers and Scientists

—
)
Yol
@)
Z
=
@)

https://smlbook.org/

BEFORE
Deep Learning

History of deep learning
Biological neuron
Artificial neuron

Perceptron learning

Neuron

A neuron

- recelves 1nput signals generated
by other neurons through its
dendrites,

HL‘:' Dendrites

- Integrates these signals in its

body,

Myeln
Axon sheath

Termiral I:luit-:wnﬁaﬁ

- then generates its own signal (a
series of electric pulses) that
travel along the axon which in
turn makes contacts with
dendrites of other neurons.

- The points of contact between
neurons are called synapses.

http//animatlab.com/Help/Documentation/Neural-Network-Editor/Neural-Simulation-Plug-ins/Firing-Rate-Neural-Plug-in/Neuron-Basics

Neuron

ACTON
POTENTIAL

- The pulses generated by the
neuron travels along the axon
as an electrical wave.

- Once these pulses reach the
synapses at the end of the
axon open up chemical
vesicles exciting the other
neuron.

Slide credit: Erol Sahin

Neuron

Na* channels
i:lu.'-'.e
w40 aad} =
ol K* channels
+ +
. open, K K* leaves
+o0 L :
_ begins to cell
ol Action potential _ leave cell
o >
= E
£ o 3
- =
- _ED -
% 55- or
30 2
§ —of g
g E |'{-1-\‘]
50 | B '
$ -E =1 NE+ -
60| Depolarization g % E channels
ol t @ m | open, Na™
sl et E’ g | enters cell K* channels
Hyperpolarization Ll close
-80 v
f i 1 i _' _____
1 2 3 |
Stimutus el S
applied Time [msec) | Excess K™ outside

diffuses away

Carlson, 1992
(Carlson) (Carlson, 1992)

http//animatlab.com/Help/Documentation/Neural-Network-Editor/Neural-Simulation-Plug-ins/Firing-Rate-Neural-Plug-in/Neuron-Basics

The biological neuron - 2

Weak stimulus

Action | RIINENTE |
potentials I o T TET TTT o |

n ff
Stimulus | |

Action L L L |
potentials | SRRRRRRARRRERRERREE I

On Off
Stimulus ~ —— !

Timg——»

(Carlson, 1992)

http//animatlab.com/Help/Documentation/Neural-Network-Editor/Neural-Simulation-Plug-ins/Firing-Rate-Neural-Plug-in/Neuron-Basics

Face selec’rivi'ry inIT

: /a\ (a\ /a\ AR .. ‘h
L'N- .? .:, 4& ~§ m 1

Mm m mm aiiblhla, .mMm
R AN *3 "

‘..'.' \

~
BRUSH
- =

http://www.billconnelly.net/?p=291

=)

Artificial neuron

McCulloch-Pitts Neuron Perceptron Learning

XANDY XORY

‘ Frank Rosenblatt
) ' (1928-1971)

Alexander Bain |
X Y l X Y 1 X
(1818 —1903)

http://www.webpages .ttu.edu/dleverin/neural_network/neural_networks.html

net = E w;x; + b
; o
Orriginal Perceptron

net < O (From Perceperons by M. I. Minsky and S. Papert,
1969, Cambridge, MA: MIT Press. Copyright 1969

0,
f(net) — {1 net 2 O by MIT Press.

“Bain on Neural
Networks”, Wilkes &
Wade, 1997.

Sinan Kalkan

1943 1958

Convolutional .
Convolutional Neural

Weights
Networks
(Fukushima’s
Neocognitfon, 19’79) LeCun etfal. (1989)
\ |
\ |
\ !
\ | : o,
\ \ l Object Classification
A Y | Traffic Sign Recogn.
S o \ Y Cancer Detection
I RN ! A
N\ \§ S I |
\ =R N I \
\ NN
McCulloch \ VoA : \
Alexand Dot Perceptro \ WY I \
er Bain SHIUS n V1L | \
I |

Neurons Learning \ | [

%
2012

1873 ‘43 ‘58 ‘79 ‘82 ‘85‘86 ‘89

On the Origin of Deep Learning

Haohan Wang
Bhiksha Raj

Language Technologies Insittute
School of Computer Science
Carnegie Mellon University

HAOHANW LC2 CMU._EDU

BHIKSHALNCS .CMU.EDU

Table 1: Major milestones that will be covered in this paper

Year Contributer Contribution
300 BC Aristotle introduced ﬁﬂﬁﬂﬂiﬂtiﬂlliﬁrl‘l,lStilrtf_‘d the history of human’s
attempt to understand brain.
1873 Alexander Bain introduced I_L‘llrfl] Gj:ﬂupings m-.. the f_‘ﬂl‘!iEHt models of
neural network, inspired Hebbian Learning Rule.
1043 MecCulloch & Pitts introduced MC'-.P1 }-‘Iﬂdﬂl, which is considered as the
ancestor of Artificial Neural Model.
considered as the father of neural networks, introduced
1949 Donald Hebb Hebhian Learning Rule, which lays the foundation of
modern neural network.
1058 Frank Rosenblatt introduced the first perceptron, which highly resembles
modern perceptron.
1974 Paul Werbos introduced Backpropagation
1080 Teuvo Kohonen introduced 5_011' Organizing Map
. . introduced Neocogitron, which inspired Convolutional
Kunihiko Fukushima .
Neural Network
1952 John Hopfield introduced Hopfield Network
1985 Hilton & Sejnowski introduced Boltzmann Machine
introduced Harmonium, which is later known as Restricted
1986 Paul Smolensky Boltzmann Machine
Michael 1. Jordan defined and introduced Recurrent Neural Network
1090 Yann LeCun introduce(.i LeI”N.'et:~ showed the possibility of deep neural
networks in practice
1097 Schuster & Paliwal introduced Bidirectional Recurrent Neural Network
Hochreiter & introduced LSTM, solved the problem of vanishing
Schmidhuber gradient in recurrent neural networks
introduced Deep Belief Networks, also introduced
2006 Geoffrey Hinton layer-wise pretraining technique, opened current deep
learning era.
2009 Sillélkh}ltdmﬂ‘v’ « introduced Deep Boltzmann Machines
Hinton
2012 Geoffrey Hinton introduced Dropout, an efficient way of training neural 2

networks

BRAIN AND COGNITION 33, 295—-305 (1997)
ARTICLE No. BR970869

Bain on Neural Networks

A1 an L. WILKES AND Nicuoras J. WADE

University of Dundee, Dundee, Scotland

In his book Mind and body (1873), Bain set out an account in which he related
the processes of associative memory to the distribution of activity in neural group-
ings—or neural networks as they are now termed. In the course of this account,
Bain anticipated certain aspects of connectionist ideas that are normally attributed
to 20th-century authors—most notably Hebb (1949). In this paper we reproduce
Bain’s arguments relating neural activity to the workings of associative memory . L '
which include an early version of the principles enshrined in Hebb’s neurophysio- Fio. 1. Alexander Bain in 1892 from a photograph in his Autobiography (1904).
logical postulate. Nonetheless, despite their prescience, these specific contributions
to the connectionist case have been almost entirely ignored. Eventually, Bain came
to doubt the practicality of his own arguments and, in so doing, he seems to have
ensured that his ideas concerning neural groupings exerted little or no mfluence on
the subsequent course of theorizing in this area. © 1997 Academic Press

Alexander Bain (1818—1903). see Fig. 1. is best known for his textbooks
The senses and the intellect (1855) and The emotions and the will (1859).
in which he offered an interpretation of mental phenomena within an associa-
tionist framework (for further biographical detail. see Hearnshaw. 1964).
Specifically. he tried to match quantitative estimates of the associations held
in memory to the neural structure of the brain. It was this exercise that first
drew Bain into confronting the potential properties of neural groupings or
networks. In the course of thinking about these issues. he was led to speculate
on how the internal structure of neural groupings could phvsically grow to
reflect the contingencies of experience and how this same internal structure
could come to support the variety of associative links typically found in
memory.

c " / I
X

F1G. 2. Bain's diagram illustrating the way in which the connections in a neural network
can channel activation in different directions:

It requires us to assume, not merely fibres multiplying by ramification through the
cell junctions, but also an extensive arrangement of cross connections. We can typify
it 1n this way. Suppose a enters a cell junction. and 1s replaced by several branches.
a’, a’ etc; b 1n like manner. 1s multiplied into &°, " etc. Let one of the branches of
a or a’, pass into some second cell. and a branch of 5, or »", pass into the same,
and let one of the emerging branches be X, we have then a means of connecting
united @ and b with X and in some other crossing, a branch of 5 may unite with a
branch of ¢, from which crossing ¥ emerges and so on. . . . By this plan we comply
with the primary condition of assigning a separate outcome to every different comba-
nation of sensory impressions.

The diagram shows the arrangement. The fibre a branches into two a’, a”; the
fibre b into b, b"; ¢’. ¢’. One of the branches of a umtes with one of the branches
of b ora’. P’ macell X; &', ¢’ unite in ¥; o', ¢" in Z (1873, pp. 110, 111)

McCulloch-Pitts Neuron
(McCulloch & Pitts, 1943)

- Binary input-output

weights
- Can represent Boolean nputs f’{\
functions. N tvatian
x r";_."“-. \‘KH net input

. . i N.jfffh__""--—--__th_si : net, .
® NO tralnlng. . N ______—--"'__ q) ucti*.rlalti-:un

i
-y /:ranﬁfer
: - function

net = Z.(wy’m’%) T Vo | / i
i X . _I/I:\ |

threshaold

0, net <0
1, net =0

st = {

http://www.tau.ac.il/~tsirel/dump/Static/knowino.org/wiki/Artificial_neural_network.html

McCulloch-Pitts Neuron

- Implement AND(x, y):

- Let w, and w,, to be 1, and w,, to be -2.

When input is 1 & 1; net is 0. XANDY XORY NOT X

- When one input is 0; net 1s -1. é

- When input 1s 0 & 0; net is -2.

+1 +1 -2 +1 +1 -1 -1
0, net <0 / \ / \
f(net) = X Y 41 X Y o+ X

1, net =10

http://www.webpages.ttu.edu/dleverin/neural_network/neural_networks.html

http://www.tau.ac.il/~tsirel/dump/Static/knowino.org/wiki/Artificial_neural_network.html

McCulloch-Pitts Neuron

- Binary input-output 1s a big limitation
- Also called

“[...] caricature models since they are intended to reflect one or more
neurophysiological observations, but without regard to realism [...]”

-- Wikipedia
- No training! No learning!

- They were useful in inspiring research into connectionist models

Psvchologival Review
Vol. 65, No. 6, 1958

THE PERCEPTRON: A PROBABILISTIC MODEL FOR
INFORMATION STORAGE AND ORGANIZATION
IN THE BRAIN'!

F. ROSENBLATT
Cornell Aeronautical Laboratory

Perceptron (1957)

ANDD
SONNICTIONRY

Frank Rosenblatt

RESFONIES (1928-1971)

Original Perceptron Wi

(From Perceptrons by M. L. Minsky and S. Papert,
1969, Cambridge, MA: MIT Press. Copyright 1969
by MIT Press. 7~ W2

F1Gg. 1. Organization of a perceptron.
Simplified model: 3

https://www.youtube.com/watch?v=cNxadbrN_al

Let’s go back to a biological neuron

1

Cell body
- A biological neuron has: Nucleus ﬁ
- Dendrites T
* Soma e
- Axon \ e S8
Dendrites
Input Node Output

- Firing 1s continuous, unlike
most artificial neurons

- Rather than the response -
value, the firing rate is

critical
SUM + squash

- Neurone vs. Node

Cell body
Nucleus ﬁ T
Axon
* Very crude abstraction
\ ‘De}me, * Many details overseen
Input Node Output “Spherical cow” problem!

SUM + squash

Spherical cow

Q: How does a physicist milk a cow?
A: Well, first let us consider a spherical cow...

Or

https://en.wikipedia.org/wiki/Spherical _cow

“Milk production at a dairy farm was low, so the farmer wrote to the local
university, asking for help from academia. A multidisciplinary team of
professors was assembled, headed by a theoretical physicist, and two
weeks of intensive on-site investigation took place. The scholars then
returned to the university, notebooks crammed with data, where the task of
writing the report was left to the team leader. Shortly thereafter the
physicist returned to the farm, saying to the farmer, "l have the solution,
but it only works in the case of spherical cows in a vacuum".”

https://www.washingtonpost.com/news/wonk/wp/2013/09/04/the-coase-theorem-is-widely-cited-in-economics-ronald-coase-hated-it/

More on this

- https://medium.com/intuitionmachine/neurons-are-more-complex-than-what-we-have-
1magined-b3dd00aldcd3

Perceptron Learning

Let us take a closer look at perceptrons

* Initial proposal of connectionist networks
* Rosenblatt, 50’s and 60’s

* Essentially a linear model composed of nodes and weights, followed by a non-linear
thresholding operation

Activation Function

y(x) = sgn(w - x)
1L, wotwixg o wpxy, >0 0 v <0
y(x) = {O, otherwise Sinan Kalkan where sgn(x) = { r =

1, x>0

43

Motivation for perceptron learning

(No gradient descent yet)

* We have estimated an output y = sgn(w - x)
* But the targetwas y

* Error (simply): y — 9
* Let us update each weight such that we “learn” from the
error:
*w; «w; + Aw;
* where Aw; o« (y —7%)
* We somehow need to distribute the error to the weights.
How?

e Distribute the error according to how much they contributed to
the error: Bigger input contributes more to the error.

* Therefore: Aw; o< (y — 9)x;

Sinan Kalkan

49

An example

* Considerx; =08, y=1,y = —1
* Then, (y — 9)x; = 1.6
* Which will increase weight w; by 1.6.
* Which makes sense considering the output and the target

Perceptron training rule

* Update weights
W; < W; + AWl'

* How to determine Aw;?
Aw; < n(y — P)x;
* 1: learning rate — can be slowly
decreased

* y: target/desired output
* y: current output, prediction

Perceptron - intuition

* A perceptron defines a hyperplane in N-1 space: a line in 2-D (two inputs), a
plane in 3-D (three inputs),....

* The perceptron is a linear classifier: It’s output is -1 on one side of the plane, and
1 for the other.

e Given a linearly separable problem, the perceptron learning rule guarantees

convergence.
L2

f(wo + wyixy + wowp) =0

xg = 1 (bias)
T wQ
w1 y = f(ON ywiz;)
——

wo

2

L1
Slide credit: Erol Sahin

Problems with perceptron

* Perceptron unit is non-linear. However, it provides zero gradient (due to
thresholding function), which makes it unsuitable to gradient descent
in multi-layer networks.

Problems with perceptron learning
e Can only learn linearly separable classification.

xo A

+

o8

linearly separable not linearly separable

Towards deep learning

Linear classification/regression
Non-linear classification/regression

Multi-layer perceptrons

55

Linear classification and
regression

Linear Classification

* Goal: Find the following mapping, given the training set {(x;, yl-)}{-vzlz

y=[fX)

[X->Y.

e Linear model: .
y~ fxX)=f(x;W,b) =Wx+b = ZWixl- + b,
i=1
where w; (i = 1, ..., N) and b are parameters to be learned.

Sinan Kalkan

57

Linear Classification with Neurons

X2
t =)wix;+b —‘@

le Wn A

apple

b car

house

person

Sinan Kalkan

58

Linear Classification with Neurons

Xq Wy
X2
t=2wix; +b ’@
Xn Wh y Y
X w b
1 1
*2 75 y y =~ f(x)= f(x;0)
=ZWixl-+b=w-x
x, ~ Wn i

b Sinan Kalkan

Linear classification N
Forclassj: fj=f(xW,b); =w;-x+b; = zwjixi + b
=1

Forall classes: f(x;W,b) = Wx+b

stretch pixels into single column

0.2 | -0.5| 0.1 2.0 56 i % | -96.8 cat score

15 [13 | 21 | 00 | |231| 4| 32 | —» | 437.9 | gog score

—iwa 0 (025]| 0.2 | -0.3 24 -1.2 61.95

input image ship score
/ 4 ‘ b f(xi; w, b)
Xi
One row per class Figure: http://cs231n.github.io/linear-classify/

Sinan Kalkan 60

Linear classification:
One interpretation

!'9\

car classifier

airplane classifie G
~

deer classifier

Figure: http://cs231n.github.io/linea

r-classify/

Sinan Kalkan

f(Xi;W, b) = WXl' + b

Interpretation: Each row of Wand b
describes a line for a class

61

Linear classification:
Another interpretation

 Each row in W can be interpreted as a template of that class.

e f(x;;W,b) = WX; + b calculates the inner product to find which
template best fits x;.

 Effectively, we are doing Nearest Neighbor with the “prototype”
images of each class.

plane car bird cat deer dog frog horse ship WCk

http://cs231n.github.io/linear-classify/

Sinan Kalkan

62

Loss function

* A function which measures how good our parameters (weights) are.
* Other names: cost function, objective function

e Let Sj = f(xl'W)]

Take A

* An example loss function: = -96.8 | cat score
L; = 2 max(0,s; — s, + A) cir | —
J#Yi
. l 61.95 ship score
Or equivalently:
L; = z max(0, w/ x; — wj x; + A) f&x; W, b)
J#Yi

* This forces the distances to other classes to be more than A (the margin)

>

1l L 1L delta
I 1 +

scores for other classes score for correct class

score

Sinan Kalkan

http://cs231n.github.io/linear-classify/

63

Example

* Consider our scores for X; tobe s = [13,—7,11] and assume A as 10.

* Then,
L; = max(0,—7 — 13+ 10) + max(0,11 — 13 + 10)

http://cs231n.github.io/linear-classify/

Regularization

* In practice, there are many possible solutions leading to the same loss
value.
* Based on the requirements of the problem, we might want to penalize certain

solutions.
J

[

*E.g,

* which penalizes large weights.
 Why do we want to do that?

http://cs231n.github.io/linear-classify/

Why penalize large weights?

R(W) = 2 2 W
i

* The solution is not unique: W is a solution, so is &< W'.

e Large W has large variance:
e Large and small weights can lead to abrupt changes in the boundary.
* |.e. overfitting.

* Robustness to small changes in the input.

Combined Loss Function

* The loss function becomes:

ZL + AR(W)

v, regu]anzatmn loss

data loss

* If you expand it:

regularization loss

score function

Yy

[

f(:l?i,W)]

data loss

:L‘

— %Z Z [max(O,f(Xi, W)j — f(x;, W)yi + A)] T AZ Z Wi,zj
L

L J#Yi

http://cs231n.github.io/linear-classify/

Sinan Kalkan

Hyper parameters
(estimated using validation set)

67

Hinge Loss, or Max-Margin Loss

NZE[maX(O f&u,W); — fx, W), +A)]+AZZ

L J#Yi

http://cs231n.github.io/linear-classify/

Sinan Kalkan

68

Regression loss

2 T T T 2 r .
1 2 g=103 g=1
— = 2 . .
L_NE §(Sl] Vij) +’1§ § Wij T I %,
A | A | N N
0 0
-2 -1 0 1 2 -2 -1 0 1 2
In general: y—t y—t
2 2 . '
| |CI | |
Sj — y] || g=10 I|
j ?T l % 1 || ||
= = I| |I
||I j}
* g = 1: Absolute Value Loss 0; — 0 _i\ e
y—t
* q — 2: Square Error LOSS' Figure 1.29 Plots of the quantity L, = |y — t|? for various values of 4. BlShOp

Sinan Kalkan 69

L(x;0) =d(y, f(x;0))

0" = arg mein L(x;0)

nan Kalkan

0" =arg mein L(x;0)

011 < 0, — 1 VpL(x;0)

Gradient
Descent

Sinan Kalkan

Minimum

71

Ot41 < 0;— 7 VoL (x; 0)

U4 AY
l, \\
Learning Rate ," \\
(Step Size) === \\
7oL (x;) JdL(x;0)
X; =
OF 90

X1 Wy
X2

Sinan Kalkan

72

Gradient Descent

 True Gradient Descent

* Calculate the loss & the gradient on the
whole dataset

 Then make the update

e Stochastic Gradient Descent

* Calculate the loss & the gradient on
examples one at a time

* Update the weights after each example

e Batch Gradient Descent

e Calculate the loss & the gradient on a set
of examples (batch)

» Update the weights after each bath

Sinan Kalkan

Stochastic Gradient Descent

Batch Gradient Descent

F. Bach

73

Gradient Descent

Input: Training set: {(x;,y;)},i=1,..,N
The network architecture.
Output: Network parameters, 0

1. 0y < Random initial values

2. Until convergence:
i. Take m samples from the dataset randomly

ii. Calculate predictions, y, on m samples using the current parameters 0,
iii. Calculate loss L() and take the gradient VgL
iv. Update the weights

Ot11 < 0, — L

Sinan Kalkan

74

Gradient descent

https://en.wikipedia.org/wiki/Gradient_descent

Sinan Kalkan

(Goodfellow vd., 2016)

75

Derive the gradients of hinge loss

aLi _ 9
a — O

dL; 0L; 0dey Ospy
9 ~ de,, 0s,, O

1 Xik
1 I(sy — sy, +A>0)
i

p = 1(s,, — Sy, + A > 0)x;x

X

Li=

I

Sinan Kalkan

2 max(0, Sj — Sy, + A)

j'_'tyi ‘ Y ’

€j

This assumed that m # ;.

What happens if that’s not the case?

See the next page.

76

Derive the gradients of hinge loss

X
—
Xi1
aLi _
J Xik Q Sy; = X;
Z dL; Y asyi _ 2 %
— — Ik
J#Yide; 9s,. 0 Xin -
// M L — z maX(O S] Sy + A)
I(s; — sy, + A > 0)(—1) j=yi | !

B Z 1(sj = sy, + 8> 0)(=Dxy,

J#Yi

Sinan Kalkan 77

Non-linear
Classification/Regression

|

X1 Wy /// 74
X2 —ﬂc
= ZWL'XL' —+ b g(t) ’@ o
xn Wn A i
.
]
X w b
NG y = f(X) = f(x;0)
X2

wo y

s =g<2 wl-xi+b> = g(w-x)
l

b Sinan Kalkan

79

A
\
o
«
0;0

K
N
A
‘t
\54
e
7
‘;

=
A\

(J

tput layer
input layer

hidden layer 1 hidden layer 2

Multi-layer Perceptrons

Sinan Kalkan

a; = g(W_4

aj)

d; = 8(W1

")

a; = 8(W0X

> V1

> Y2

— Vm
L(x;0) =d(y,f/(x0)) 01 < 0, —1VpL(x;6)

0L(x;0)

0" = argmin L(x; 0) VoL (x; 8) = ——

> V1
X2

> V2
Xn — }’}m

X;0) OL 09, gk, Oty

OWpi 0P dgl. 0ty OWp;

OL(x;0) 0L 09p 0ghy Ot 0g; "
ow; 0Pndgl Oty dgtt Ot

Sinan Kalkan

83

0L(x; 0) B 0L(x;0) da.

y l .
ow;; da; 0w

e
-
-
-
-
-
s
-
-

0L(x;0) B z dL(x; 0) aa}

l -1
da; da;

Sinan Kalkan 84

Importance of increasing layers

 Continuous functions:

* Every bounded continuous function can be approximated with small error
with two layers

 Arbitrary functions:
* Three layers can approximate any arbitrary function

* Why do we need deep layers then?

* If the problem has a hierarchical nature, more layers yield better
performance

* Lin vd., “Why does deep and cheap learning work so well?”, 2017.

Cybenko, G. (1989) "Approximations by superpositions of sigmoidal functions”, Mathematics of Control, Signals, and Systems, 2 (4), 303-314
Kurt Hornik (1991) "Approximation Capabilities of Multilayer Feedforward Networks", Neural Networks, 4(2), 251257.
Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. "Multilayer feedforward networks are universal approximators.” Neural networks 2.5 (1989): 359-366.

Sinan Kalkan 85

Importance of increasing layers

Hyppocampus Prefrontal cortex FEF, Frontal Cortex, Occulomotor PMD, PMYV, Prefrontal cortex
Memory (non motor) SC, Brain Stem (Hand control, rule based behaviours)

&
Arm control, PMD 3
TE (AIT) ;s
g
Ventral Dorsal 5
-
pathway —— _ pathway S
y N
U
o §
%, &
""@ Vestibular information about
Q?P arm, eye and head position
% .
I‘;
%
é . .
J Occipital
% | cortex 4
| Vi
VISUAL CORTEX

Krueger, Jannsen, Kalkan, Lappe, .., “Deep Hierarchies in the Primate Visual Cortex: What Can We
Learn For Computer Vision”, IEEE PAMI, 2013.

Sinan Kalkan

86

Multi-layer Perceptrons

* To be able to have solutions for linearly

non-separable cases, we need a non-
linear and differentiable unit, e.g.:
y =0(wW-X)

where
1

1+e*

o(x) =

- Sigmoid (logistic) function

- Output is in range (0,1)

- Since it maps a large domain to (0,1) it is
also called squashing function

- Alternatives: tanh

Graph for 1/(1+exp(-x))

0.8+

0.6+

x: -14.8888889 y: 3.41851x107

Sinan Kalkan

More info

87

Multi-layer Perceptrons

Derivative of the sigmoid:

do(x) _d 1 _ 0-(1+e™)—1-(—e™)
dx dx (1 + e‘x> B (1+e7%)?

e X 1 e X

T +e 2 1+e* 1+e

B 1 . 1
14 ex 1+e™™

= og(x) - (1 — a(x))

Sinan Kalkan

Graph for 1/(1+exp(-x)), 1/(1+exp(-x))*exp(-x)/(1+exp(

/

M 6 8 10 12

y: 1.36740x10° @

A neuron with sigmoid function

— ¥ =o(net) =

Sinan Kalkan

1

1 + e—net

89

Backpropagation

Why do we need to learn backpropagation?

* “Many frameworks implement backpropagation for us, why do we
need to learn?”

* This is not a blackbox. There are many problems/issues involved. You can only
deal with them if you have a good understanding of backpropagation.

https://medium.com/@karpathy/yes-you-should-understand-backprop-
e2f06eab496b#.7zawffou2

ANAND, WANG, LOOG, VAN GEMERT: BLACK MAGIC IN DEEP LEARNING

-

“Black Magic in Deep Learning: How Human
‘Skill Impacts Network Training

=

<Kanav Anand’ ! Delft University of Technology,
(_‘a{nandkanavez@gmail.cnm Delft, The Netherlands

~Zigi Wang' 2 University of Copenhagen
Iﬁ.:urang—El@tudré:rlﬂ.nI Copenhagen, Denmark

arco Loog'?
Loog@tudelft.nl

n van Gemert'
(.x.vangemert@tudelft.nl

Abstract

How does a user’s prior experience with deep learning impact accuracy? We present
an initial study based on 31 participants with different levels of experience. Their task is
to perform hyperparameter optimization for a given deep learning architecture. The re-
sults show a strong positive correlation between the participant’s experience and the final
performance. They additionally indicate that an experienced participant finds better solu-
tions using fewer resources on average. The data suggests furthermore that participants
with no prior experience follow random strategies in their pursuit of optimal hyperpa-
rameters. Our study investigates the subjective human factor in comparisons of state of

the art results and scientific reproducibility in deep learning.
Sinan Kalkan

2008.05981v1 ||

v

92

Backpropagation

The Model

Hidden activations:
hij = a(wjh - xl-) = a(netihj)

Output layer:
Yic = o(wg - hy) = a(nety)

The loss function:

L(8) = %iZ@w - i)’

=1 ceC
- For one sample:

Li(®) =2) Bic —yi0)?

ceC

" Vi1

> Yi2

— Yic

Backpropagation

For each output unit c, calculate its grad term 62:

0 _ aLi _ OL; 0Yic
1€ onet]. 9y dnet;.

= Jic = Yic)Vic(1 = Pic)

For each hidden unit j, calculate its grad term 6]-h:

h _ aLl‘ . aLl’ ahij . aLi anet{)c
St = = | Xcec 7, hij(1 = hij)

I anet{‘j Ohy; anetihj

= (Beec 68w hii(1 — hyj)

(0]
tic ahl‘j

Update weight wj; in the output layer:
Wjo = Wjok - 775iojhik

Update weight Wji,l(in the hidden layer:

h _ h _ _ch
Wik = Wi — N0 Xk

Sinan Kalkan

The Model
Hidden activations: h;; = a(wjh -xl-)= a(netihj)
Output layer: ¥;. = a(w? - h;) = a(net;,)

The loss function:

L(®) = %i Z(f’ic ~ Yic)?

i=1ceC
- For one sample:

L;(8) = %Z(yic — Yid)?

cecC

h; = o(Wh"x;) ¥ = oc(W°h)

Derivation of
backpropagation

Derivation of the output unit weights

dL;
Awg, = —
ck n ow?°
ck
oL, " oL, ionet) ! N
T T i > hie (1
owg, Onetjy Owgy, |
L _ OLii 09ic ! _ Derivative of sigmoid:
0 —>

onet?. 99;c Onet!

7

dL; _ 0 1 o N2 oo N2
aﬁic_ainZZCEC(Yw Yic) _aj;icz(ylc YVie)® =

371'6(1 _yic)

Q
[y

dL;
owJ,

Awgy, = —1

3 @ 1

2

= -7 Vie(1 = Yidhie = —n8izhi

Sinan Kalkan

The Model
Hidden activations: h;; = a(wjh 'xi)= a(netihj)
Output layer: ¥;. = a(w? - h;) = a(net;.)

The loss function:

L(8) = %i Z(yic ~ Yic)?

i=1 ceC
- For one sample:

1
L;(0) = EZ(?U: — Yic)®

cecC

95

Derivation of The Model
b dC k p g0 p d gat | on Hidden activations: h;; = o(w}* - x;)= o(netf})

N : : : Outputlayer: J;. = ¢ -hy) = t;
Derivation of the hidden unit weights S TR Phe = @lf Ly = elwets)

Awl = IL; The loss function:
Wik N3 n
OWjj, 1¢
L(8) = EZ Z(f’ic ~ Yic)?
/ _________ i=1 cecC
oL~ aL; | onet: i - For one sample: :
hT " b > x. A
Owjj Onety Owy | Xik L;(6) = EZ(in — Yic)®
/ __________ | ceEC
oL _ (Z oL; 89;c)
anetlhj €09 Onet?.
= (Zc Sic)
dL;
h _ L 0 _ h
Awjp = —N—F = -1 Oic Xik = —U5ijxik
g oWy, -

Sinan Kalkan

Forward pass

QA
o}c
7
XPA

o’h~

AN

(/
0\&\1
N®
b
®

‘ output layer

hidden layer 1 hidden layer 2

input layer

-

forward-pass of a 3-layer neural network:
f = lambda x: 1.0/(1.0 + np.exp(-x)) a
X = np.random.randn (3, 1) # random input vector of three numbers (3x1)

H=

hl = f(np.dot(Wl, x) + bl) # calculate first hidden layer activations (4x1)
h? = f(np.dot (W2, hl) + b2) # calculate second hidden layer activations (4x1)

out = np.dot (W3, h2) + b3 # ocutput neuron (1x1)
https://cs231n.github.io/

Sinan Kalkan

Backward pass

\7

:
va

J;
0

loss = ©.5*np.sum((out-y)**2) g*:*

dout (Out —y) . I w ‘ output layer
input layer

dWB = np.dot(dout, hZ.T) hidden layer 1 hidden layer 2

V
%3
b
L

f = lambda x: 1.0/(1.0 + np.exp(-x))
¥ = np.random.randn (3, 1)

hl = f(np.dot (W1, x) + bl)

h2 = f(np.dot (W2, hl) + b2)

out = np.dot (W3, h2) + b3

https://cs231n.github.io/

Sinan Kalkan 98

Backpropagation vs. numerical differentiation

What are their complexities?

* Backpropagation:
- 0(]6])

e Numerical differentiation
« 0(161%)

99

Neural Engineering

* Loss functions

* On optimization
 Activation functions

* Capacity, convergence
* Preprocessing

	Slide 1: CENG 501 Deep Learning:
	Slide 2: Today
	Slide 3: About the course
	Slide 4: Syllabus
	Slide 5: Syllabus
	Slide 6: Syllabus
	Slide 7: Weekly outline
	Slide 8: Project
	Slide 10: Taking the course
	Slide 11: Basic DL Concepts
	Slide 12: Basic ML Concepts
	Slide 13: Taking the course
	Slide 14
	Slide 15: BEFORE Deep Learning
	Slide 16: Neuron
	Slide 17: Neuron
	Slide 18: Neuron
	Slide 19: The biological neuron - 2
	Slide 20
	Slide 21: Artificial neuron
	Slide 22
	Slide 23
	Slide 25
	Slide 26
	Slide 27
	Slide 28: McCulloch-Pitts Neuron (McCulloch & Pitts, 1943)
	Slide 30: McCulloch-Pitts Neuron
	Slide 32: McCulloch-Pitts Neuron
	Slide 35
	Slide 36
	Slide 38: Let’s go back to a biological neuron
	Slide 39
	Slide 40: Spherical cow
	Slide 41: More on this
	Slide 42: Perceptron Learning
	Slide 43: Let us take a closer look at perceptrons
	Slide 49: Motivation for perceptron learning
	Slide 50: An example
	Slide 51: Perceptron training rule
	Slide 52: Perceptron - intuition
	Slide 53: Problems with perceptron
	Slide 54: Problems with perceptron learning
	Slide 55: Towards deep learning
	Slide 56: Linear classification and regression
	Slide 57: Linear Classification
	Slide 58: Linear Classification with Neurons
	Slide 59: Linear Classification with Neurons
	Slide 60: Linear classification
	Slide 61: Linear classification: One interpretation
	Slide 62: Linear classification: Another interpretation
	Slide 63: Loss function
	Slide 64: Example
	Slide 65: Regularization
	Slide 66: Why penalize large weights?
	Slide 67: Combined Loss Function
	Slide 68: Hinge Loss, or Max-Margin Loss
	Slide 69: Regression loss
	Slide 70
	Slide 71
	Slide 72
	Slide 73: Gradient Descent
	Slide 74: Gradient Descent
	Slide 75: Gradient descent
	Slide 76: Derive the gradients of hinge loss
	Slide 77: Derive the gradients of hinge loss
	Slide 78: Non-linear Classification/Regression
	Slide 79
	Slide 80: Multi-layer Perceptrons
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85: Importance of increasing layers
	Slide 86: Importance of increasing layers
	Slide 87: Multi-layer Perceptrons
	Slide 88: Multi-layer Perceptrons
	Slide 89: A neuron with sigmoid function
	Slide 90: Backpropagation
	Slide 91: Why do we need to learn backpropagation?
	Slide 92
	Slide 93: Backpropagation
	Slide 94: Backpropagation
	Slide 95: Derivation of backpropagation
	Slide 96: Derivation of backpropagation
	Slide 97: Forward pass
	Slide 98: Backward pass
	Slide 99: Backpropagation vs. numerical differentiation
	Slide 100: Neural Engineering

