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Today

• Overview of the course

• A review of deep learning fundamentals
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About the course
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Syllabus http://ceng.metu.edu.tr/~skalkan/DL/syllabus.pdf
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Project

• Implement a conference paper without any implementation

 Reproduce their results and provide a critical analysis 

 Produce a Github Repo with a detailed Readme file 

• Papers can only be from the following top conferences:

 ICLR, AAAI, NeurIPS, ICML, CVPR, ECCV or similar

• You can work in groups of two.

• Deadline for picking papers: 13 October.
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Taking the course
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Basic DL Concepts

Ensure that you know the following:

• Why does DL work now?

• End-to-end learning

• Distributed representations

• Advantages and disadvantages of DL
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Basic ML Concepts

Ensure that you know the following:

• Supervised vs. unsupervised learning

• Discriminative vs. generative learning

• Model selection, cross validation

• Overfitting, memorization, bias-variance trade-off
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Taking the course

• Background

 Programming, Python

 Data structures and algorithms

 Linear algebra, Calculus, Statistics

 Fundamental deep learning models: MLP, CNN, RNN

• Fill out the following form until October 3 (Wednesday), midnight:

https://forms.gle/zyu7wUAFabVbxSGR6
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• Read CH1-7 (pages 4-96) of the 
book

• Quiz next week

• Alternative:

 Machine Learning - A First Course 
for Engineers and Scientists

 https://smlbook.org/ 
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BEFORE 
Deep Learning
History of deep learning

Biological neuron

Artificial neuron

Perceptron learning
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Neuron

http://animatlab.com/Help/Documentation/Neural-Network-Editor/Neural-Simulation-Plug-ins/Firing-Rate-Neural-Plug-in/Neuron-Basics

A neuron

• receives input signals generated
by other neurons through its
dendrites,

• integrates these signals in its
body,

• then generates its own signal (a 
series of electric pulses) that
travel along the axon which in 
turn makes contacts with 
dendrites of other neurons.

• The points of contact between
neurons are called synapses. S
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Neuron

• The pulses generated by the 
neuron travels along the axon 
as an electrical wave.

• Once these pulses reach the 
synapses at the end of the 
axon open up chemical 
vesicles exciting the other 
neuron.

Slide credit: Erol Sahin
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Neuron

http://animatlab.com/Help/Documentation/Neural-Network-Editor/Neural-Simulation-Plug-ins/Firing-Rate-Neural-Plug-in/Neuron-Basics

(Carlson, 1992)
(Carlson, 1992) S
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The biological neuron - 2

http://animatlab.com/Help/Documentation/Neural-Network-Editor/Neural-Simulation-Plug-ins/Firing-Rate-Neural-Plug-in/Neuron-Basics

(Carlson, 1992)
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http://www.billconnelly.net/?p=291
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Artificial neuron
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Alexander Bain
(1818 –1903)

1873

“Bain on Neural 

Networks”, Wilkes & 
Wade, 1997.

1943 1958

Perceptron Learning

Frank Rosenblatt

(1928-1971)

http://www.webpages.ttu.edu/dleverin/neural_network/neural_networks.html

McCulloch-Pitts Neuron

𝑛𝑒𝑡 = 

𝑖

𝑤𝑖𝑥𝑖 + 𝑏

𝑓(𝑛𝑒𝑡) = ቊ
0, 𝑛𝑒𝑡 < 0
1, 𝑛𝑒𝑡 ≥ 0
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1873 ‘43 ‘58

Alexand
er Bain

McCulloch
-Pitts 

Neurons

Perceptro
n

Learning

Convolutional 
Weights

(Fukushima’s 

Neocognitron, 1979) 

‘79

(Werbos, 1982)

‘82 ‘86

(Rumelhart vd., 1986)

(Parker, 1985; 
  LeCun, 1985)

‘85

Backpropagation

Convolutional Neural
Networks

LeCun et al. (1989)

‘89 2012

Object Classification
Traffic Sign Recogn.

Cancer Detection
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McCulloch-Pitts Neuron 
(McCulloch & Pitts, 1943)

• Binary input-output

• Can represent Boolean 
functions.

• No training.

http://www.tau.ac.il/~tsirel/dump/Static/knowino.org/wiki/Artificial_neural_network.html
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McCulloch-Pitts Neuron

• Implement AND(𝑥, 𝑦):

 Let 𝑤𝑥 and 𝑤𝑦 to be 1, and 𝑤+1 to be -2.

• When input is 1 & 1; net is 0. 

• When one input is 0; net is -1. 

• When input is 0 & 0; net is -2. 

http://www.tau.ac.il/~tsirel/dump/Static/knowino.org/wiki/Artificial_neural_network.html

http://www.webpages.ttu.edu/dleverin/neural_network/neural_networks.html
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McCulloch-Pitts Neuron

• Binary input-output is a big limitation

• Also called 

“[…] caricature models since they are intended to reflect one or more 
neurophysiological observations, but without regard to realism […]”

                                                 -- Wikipedia

• No training! No learning!

• They were useful in inspiring research into connectionist models
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https://www.youtube.com/watch?v=cNxadbrN_aI
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Let’s go back to a biological neuron

• A biological neuron has:
 Dendrites

 Soma

 Axon

• Firing is continuous, unlike 
most artificial neurons

• Rather than the response 
value, the firing rate is 
critical S
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• Neurone vs. Node

• Very crude abstraction
• Many details overseen

“Spherical cow” problem!
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Spherical cow

https://en.wikipedia.org/wiki/Spherical_cow

Q: How does a physicist milk a cow?

A: Well, first let us consider a spherical cow...

Or

“Milk production at a dairy farm was low, so the farmer wrote to the local 

university, asking for help from academia. A multidisciplinary team of 

professors was assembled, headed by a theoretical physicist, and two 
weeks of intensive on-site investigation took place. The scholars then 

returned to the university, notebooks crammed with data, where the task of 

writing the report was left to the team leader. Shortly thereafter the 

physicist returned to the farm, saying to the farmer, "I have the solution, 

but it only works in the case of spherical cows in a vacuum".”

https://www.washingtonpost.com/news/wonk/wp/2013/09/04/the-coase-theorem-is-widely-cited-in-economics-ronald-coase-hated-it/
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More on this

• https://medium.com/intuitionmachine/neurons-are-more-complex-than-what-we-have-
imagined-b3dd00a1dcd3
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Perceptron Learning

Sinan Kalkan 42



Let us take a closer look at perceptrons
• Initial proposal of connectionist networks

• Rosenblatt, 50’s and 60’s

• Essentially a linear model composed of nodes and weights, followed by a non-linear 
thresholding operation

Sinan Kalkan 43

𝑥1

𝑥2

𝑤1

𝑤2

𝑦

or

Activation Function

𝑤0

𝑦 𝐱 = ቊ
1, 𝑤0 + 𝑤1𝑥1+. . 𝑤𝑛𝑥𝑛 > 0
0,  otherwise 

…

𝑥𝑛

𝑤𝑛

𝑥1

𝑥2

𝑤1

𝑤2

𝑦

𝑤0

…

𝑥𝑛

𝑤𝑛

1

Or, simply

𝑦 𝐱 = sgn(𝐰 ⋅ 𝐱)

where sgn 𝑥 = ቊ
0, 𝑥 ≤ 0
1, 𝑥 > 0



Motivation for perceptron learning

• We have estimated an output ො𝑦 = sgn(𝐰 ⋅ 𝐱)
• But the target was 𝑦

• Error (simply): 𝑦 − ො𝑦

• Let us update each weight such that we “learn” from the 
error:
• 𝑤𝑖 ← 𝑤𝑖  + Δ𝑤𝑖

• where Δ𝑤𝑖  ∝  (𝑦 − ො𝑦)

• We somehow need to distribute the error to the weights. 
How?
• Distribute the error according to how much they contributed to 

the error: Bigger input contributes more to the error.
• Therefore: Δ𝑤𝑖  ∝ 𝑦 − ො𝑦 𝑥𝑖

Sinan Kalkan 49

(No gradient descent yet)



An example

• Consider 𝑥𝑖 = 0.8, 𝑦 = 1, ො𝑦 = −1
• Then, 𝑦 − ො𝑦 𝑥𝑖 = 1.6

• Which will increase weight 𝑤𝑖  by 1.6.

• Which makes sense considering the output and the target

Sinan Kalkan 50



Perceptron training rule

• Update weights
𝑤𝑖 ← 𝑤𝑖 + Δ𝑤𝑖

• How to determine Δ𝑤𝑖?
Δ𝑤𝑖 ← 𝜂 𝑦 − ො𝑦 𝑥𝑖

• 𝜂: learning rate – can be slowly 
decreased

• 𝑦: target/desired output

• ො𝑦: current output, prediction

Sinan Kalkan 51



Perceptron - intuition

• A perceptron defines a hyperplane in N-1 space: a line in 2-D (two inputs), a 
plane in 3-D (three inputs),….

• The perceptron is a linear classifier: It’s output is -1 on one side of the plane, and 
1 for the other.

• Given a linearly separable problem, the perceptron learning rule guarantees 
convergence.

Sinan Kalkan 52
Slide credit: Erol Sahin



Problems with perceptron

• Perceptron unit is non-linear. However, it provides zero gradient (due to 
thresholding function), which makes it unsuitable to gradient descent 
in multi-layer networks.

Sinan Kalkan 53



Problems with perceptron learning

• Can only learn linearly separable classification.

Sinan Kalkan 54

linearly separable not linearly separable 



Towards deep learning
Linear classification/regression

Non-linear classification/regression

Multi-layer perceptrons

Sinan Kalkan 55



Linear classification and 
regression

Sinan Kalkan 56



Linear Classification

• Goal: Find the following mapping, given the training set (𝐱𝑖, 𝐲𝑖) 𝑖=1
𝑁 :

𝐲 = 𝑓 𝐱

𝑓: 𝕏 → 𝕐.

• Linear model:

𝐲 ≈ 𝑓 𝐱 ≡ 𝑓 𝐱; 𝑊, 𝑏 = 𝑊𝐱 + 𝑏 = 

𝑖=1

𝑁

𝑤𝑖𝑥𝑖 + 𝑏,

   where 𝑤𝑖 (𝑖 = 1, … , 𝑁) and 𝑏 are parameters to be learned.

Sinan Kalkan 57



Linear Classification with Neurons

Sinan Kalkan 58

𝑡 = ∑𝑤𝑖𝑥𝑖 + 𝑏

𝑥1

𝑥𝑛

𝑥2

…

𝑤1
𝑤2

𝑤𝑛

𝑦

apple

car

house

person

…

𝑏



Linear Classification with Neurons

Sinan Kalkan 59

𝑡 = ∑𝑤𝑖𝑥𝑖 + 𝑏

𝑥1

𝑥𝑛

𝑥2

…

𝑤1
𝑤2

𝑤𝑛

𝑦

𝒚 ≈ 𝑓 𝐱 ≡ 𝑓 𝐱; 𝛉

= 

𝑖

𝑤𝑖𝑥𝑖 + 𝑏 = 𝐰 ⋅ 𝐱

𝑥1

𝑥𝑛

𝑥2

…

𝑤1

𝑤2

𝑤𝑛

𝑦

𝑏

𝑏



Linear classification

For class 𝑗:

For all classes:   𝑓 𝐱; 𝑊, 𝑏  = 𝑊𝐱 + 𝑏

Sinan Kalkan 60

Figure: http://cs231n.github.io/linear-classify/One row per class
𝐱𝑖

𝑓(𝐱𝑖; 𝑊, 𝑏)

𝑓𝑗 = 𝑓 𝐱; 𝑊, 𝑏 𝒋 = 𝒘𝑗 ⋅ 𝐱 + 𝑏𝑗 = 

𝑖=1

𝑁

𝑤𝑗𝑖𝑥𝑖 + 𝑏𝑗



Linear classification: 
One interpretation

Sinan Kalkan 61

Figure: http://cs231n.github.io/linear-classify/

𝑓 𝐱𝑖; 𝑊, 𝑏 =  𝑊𝐱𝑖 + 𝑏

Interpretation: Each row of W and b 
describes a line for a class



Linear classification:
Another interpretation

• Each row in 𝑊 can be interpreted as a template of that class.
• 𝑓 𝐱𝑖; 𝑊, 𝑏 = 𝑊𝐱𝑖 + 𝑏 calculates the inner product to find which 

template best fits 𝐱𝑖.

• Effectively, we are doing Nearest Neighbor with the “prototype” 
images of each class.

Sinan Kalkan 62
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Loss function
• A function which measures how good our parameters (weights) are.

• Other names: cost function, objective function

• Let 𝑠𝑗 = 𝑓 𝐱𝑖; 𝑊 𝑗

• An example loss function:

𝐿𝑖 = 

𝑗≠𝑦𝑖

max(0, 𝑠𝑗 − 𝑠𝑦𝑖
+ Δ)

Or equivalently:

𝐿𝑖 = 

𝑗≠𝑦𝑖

max(0, 𝐰𝑗
𝑇𝐱𝑖 − 𝐰𝑦𝑖

𝑇 𝐱𝑖 + Δ)

• This forces the distances to other classes to be more than Δ (the margin)

Sinan Kalkan 63

http://cs231n.github.io/linear-classify/

Take Δ 
as 1



Example

• Consider our scores for 𝐱𝑖 to be 𝑠 = [13, −7,11] and assume Δ as 10.

• Then, 
𝐿𝑖 = max 0, −7 − 13 + 10 + max(0, 11 − 13 + 10)

Sinan Kalkan 64

http://cs231n.github.io/linear-classify/



Regularization

• In practice, there are many possible solutions leading to the same loss 
value.
• Based on the requirements of the problem, we might want to penalize certain 

solutions.

• E.g.,

𝑅 𝑊 = 

𝑖



𝑗

𝑊𝑖,𝑗
2

• which penalizes large weights. 
• Why do we want to do that?

Sinan Kalkan 65

http://cs231n.github.io/linear-classify/



Why penalize large weights?

𝑅 𝑊 = 

𝑖



𝑗

𝑊𝑖,𝑗
2

• The solution is not unique: 𝑊 is a solution, so is ∝ 𝑊.

• Large 𝑊 has large variance: 
• Large and small weights can lead to abrupt changes in the boundary. 

• I.e. overfitting.

• Robustness to small changes in the input.

Sinan Kalkan 66



Combined Loss Function

• The loss function becomes:

• If you expand it:

𝐿 =
1

𝑁


𝑖



𝑗≠𝑦𝑖

max 0, 𝑓 𝐱𝑖 , 𝑊 𝑗 − 𝑓 𝐱𝑖 , 𝑊 𝑦𝑖
+ Δ + 𝜆 

𝑖



𝑗

𝑊𝑖,𝑗
2

Sinan Kalkan 67

Hyper parameters
(estimated using validation set)http://cs231n.github.io/linear-classify/



Hinge Loss, or Max-Margin Loss

Sinan Kalkan 68

𝐿 =
1

𝑁


𝑖



𝑗≠𝑦𝑖

max 0, 𝑓 𝐱𝑖 , 𝑊 𝑗 − 𝑓 𝐱𝑖 , 𝑊 𝑦𝑖
+ Δ + 𝜆 

𝑖



𝑗

𝑊𝑖,𝑗
2

http://cs231n.github.io/linear-classify/



Regression loss

Sinan Kalkan 69

𝐿 =
1

𝑁


𝑖



𝑗

𝑠𝑖𝑗 − 𝑦𝑖𝑗
2

+ 𝜆 

𝑖



𝑗

𝑤𝑖,𝑗
2

In general: 



𝑗

𝑠𝑗 − 𝑦𝑗
𝑞

• 𝑞 = 1: Absolute Value Loss

• 𝑞 = 2: Square Error Loss.
Bishop



𝐿(𝐱; 𝛉) = d 𝑦, 𝑓 𝐱; 𝛉

𝛉∗ = arg min
𝛉

𝐿(𝐱; 𝛉)

𝑥1

𝑥𝑛

𝑥2

…

𝑤1

𝑤2

𝑤𝑛

𝑔 ො𝑦 = 𝑓 𝐱; 𝛉

𝑏

Sinan Kalkan 70



𝛉∗ = arg min
𝛉

𝐿(𝐱; 𝛉)

𝐿(𝐱; 𝛉)

𝜃0

𝜃1

𝛉𝑡

Minimum

𝛻𝛉𝐿(𝐱; 𝛉)

𝛉𝑡+1 ← 𝛉𝑡 − 𝜂 𝛻𝛉𝐿(𝐱; 𝛉)

Gradient 
Descent

Sinan Kalkan 71



𝛉𝑡+1 ← 𝛉𝑡 − 𝜂 𝛻𝛉𝐿(𝐱; 𝛉)

Learning Rate
(Step Size)

𝛻𝛉𝐿 𝐱; 𝛉 =
𝜕𝐿 𝐱; 𝛉

𝜕𝛉

Sinan Kalkan 72



Gradient Descent

• True Gradient Descent
• Calculate the loss & the gradient on the 

whole dataset
• Then make the update

• Stochastic Gradient Descent
• Calculate the loss & the gradient on 

examples one at a time
• Update the weights after each example

• Batch Gradient Descent
• Calculate the loss & the gradient on a set 

of examples (batch)
• Update the weights after each bath

Sinan Kalkan 73

Stochastic Gradient Descent

Batch Gradient Descent



Gradient Descent

Input: Training set: 𝐱𝑖, 𝑦𝑖 , 𝑖 = 1, … , 𝑁

            The network architecture.

Output: Network parameters, 𝛉

1.  𝛉𝟎 ← Random initial values

2. Until convergence:
i. Take 𝑚 samples from the dataset randomly
ii. Calculate predictions, ො𝑦, on 𝑚 samples using the current parameters 𝛉𝑡  
iii. Calculate loss 𝐿() and take the gradient 𝛻𝛉L 
iv. Update the weights
   𝛉𝑡+𝟏 ← 𝛉𝑡 − 𝜂𝛻𝛉L

Sinan Kalkan 74



Gradient descent 

Sinan Kalkan 75

https://en.wikipedia.org/wiki/Gradient_descent (Goodfellow vd., 2016)



Derive the gradients of hinge loss

𝜕𝐿𝑖

𝜕𝑤𝑚𝑘
= ?

𝜕𝐿𝑖

𝜕𝑤𝑚𝑘
=

𝜕𝐿𝑖

𝜕𝑒𝑚

𝜕𝑒𝑚

𝜕𝑠𝑚

𝜕𝑠𝑚

𝜕𝑤𝑚𝑘
 

         

𝜕𝐿𝑖

𝜕𝑤𝑚𝑘
= 𝕀 𝑠𝑚 − 𝑠𝑦𝑖

+ Δ > 0 𝑥𝑖𝑘 

Sinan Kalkan 76

𝑥𝑖1

𝑥𝑖𝑛

𝑥𝑖𝑘

…

𝑤𝑚1

𝑤𝑚𝑘

𝑤𝑚𝑛

𝑠𝑚 = 𝐰𝑚𝐱𝑖

= 

𝑘

𝑤𝑚𝑘 𝑥𝑖𝑘

…

𝐿𝑖 = 

𝑗≠𝑦𝑖

max 0, 𝑠𝑗 − 𝑠𝑦𝑖
+ Δ

𝑒𝑗

1

𝕀(𝑠𝑚 − 𝑠𝑦𝑖
+ Δ > 0)

𝑥𝑖𝑘

This assumed that 𝑚 ≠ 𝑦𝑖.
What happens if that’s not the case?
See the next page.

𝐱𝑖



Derive the gradients of hinge loss

𝜕𝐿𝑖

𝜕𝑤𝑦𝑖𝑘
= ?

𝜕𝐿𝑖

𝜕𝑤𝑦𝑖𝑘
= ∑𝑗≠𝑦𝑖

𝜕𝐿𝑖

𝜕𝑒𝑗

𝜕𝑒𝑗

𝜕𝑠𝑦𝑖

𝜕𝑠𝑦𝑖

𝜕𝑤𝑦𝑖𝑘
 

𝜕𝐿𝑖

𝜕𝑤𝑦𝑖𝑘
= 

𝑗≠𝑦𝑖

𝕀 𝑠𝑗 − 𝑠𝑦𝑖
+ Δ > 0 (−1)𝑥𝑖𝑘

Sinan Kalkan

𝐿𝑖 = 

𝑗≠𝑦𝑖

max 0, 𝑠𝑗 − 𝑠𝑦𝑖
+ Δ

𝑒𝑗

𝕀(𝑠𝑗 − 𝑠𝑦𝑖
+ Δ > 0)(−1)

𝑥𝑖𝑘
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𝑥𝑖1

𝑥𝑖𝑛

𝑥𝑖𝑘

…

𝑤𝑦𝑖1

𝑤𝑦𝑖𝑘

𝑤𝑦𝑖𝑛

𝑠𝑦𝑖
= 𝐰𝑦𝑖

𝐱𝑖

= 

𝑘

𝑤𝑦𝑖𝑘 𝑥𝑖𝑘

…

𝐱𝑖

1



Non-linear 
Classification/Regression

Plane neuron

Deer neuron

Car neuron
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𝑡 = ∑𝑤𝑖𝑥𝑖 + 𝑏

𝑥1

𝑥𝑛

𝑥2

…

𝑤1
𝑤2

𝑤𝑛

𝑦
𝑔 𝑡

𝒚 = 𝑓 𝐱 = 𝑓 𝐱; 𝛉

= 𝑔 

𝑖

𝑤𝑖𝑥𝑖 + 𝑏 = 𝑔(𝐰 ⋅ 𝐱)

𝑥1

𝑥𝑛

𝑥2

…

𝑤1

𝑤2

𝑤𝑛

𝑔 𝑦

𝑏

𝑏 Sinan Kalkan 79



Multi-layer Perceptrons
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𝑥1

𝑥𝑛

𝑥2

…

𝑔

𝑔

𝑔

…

𝑔

𝑔

𝑔

…

𝑔

𝑔

𝑔

…

…

ො𝑦1

ො𝑦2

ො𝑦𝑚

𝑓() = 𝑔 𝑔 𝑔 𝑔 … .

𝐚1 = g 𝐖𝟎𝐱T 𝐚2 = g 𝐖𝟏𝐚1
T 𝐚𝑙 = g 𝐖𝐥−𝟏𝐚𝑙−1

T
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𝑥1

𝑥𝑛

𝑥2

…

𝑔

𝑔

𝑔

𝑔

𝑔

𝑔

… …

𝑔

𝑔

𝑔

…

…

ො𝑦1

ො𝑦2

ො𝑦𝑚

𝐿(𝐱; 𝛉) = d 𝐲, 𝑓 𝐱; 𝛉

𝛉∗ = arg min
𝛉

𝐿(𝐱; 𝛉)

𝛉𝑡+1 ← 𝛉𝑡 − 𝜂 𝛻𝛉𝐿(𝐱; 𝛉)

𝛻𝛉𝐿 𝐱; 𝛉 =
𝜕𝐿 𝐱; 𝛉

𝜕𝛉

Sinan Kalkan 82



𝑥1

𝑥𝑛

𝑥2

…

𝑔

𝑔

𝑔

𝑔

𝑔

𝑔

… …

𝑔

𝑔

𝑔

…

…

ො𝑦1

ො𝑦2

ො𝑦𝑚

𝜕𝐿 𝐱; 𝛉

𝜕𝑤𝑚𝑖
=

𝜕𝐿

𝜕 ො𝑦𝑚

𝜕 ො𝑦𝑚

𝜕𝑔𝑚
𝑙

𝜕𝑔𝑚
𝑙

𝜕𝑡𝑚

𝜕𝑡𝑚

𝜕𝑤𝑚𝑖

𝜕𝐿 𝐱; 𝛉

𝜕𝑤𝑗
=

𝜕𝐿

𝜕 ො𝑦𝑚

𝜕 ො𝑦𝑚

𝜕𝑔𝑚
𝑙

𝜕𝑔𝑚
𝑙

𝜕𝑡𝑚

𝜕𝑡𝑚

𝜕𝑔𝑘
𝑙−1

𝜕𝑔𝑘
𝑙−1

𝜕𝑡𝑘
…

Backpropagation
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𝑎1
𝑙−1 𝑎2

𝑙−1 𝑎𝑛𝑙−1
𝑙−1

𝑎1
𝑙

𝑎2
𝑙 𝑎𝑛𝑙

𝑙

…

…

𝜕𝐿 𝐱; 𝛉

𝜕𝑎𝑖
𝑙−1 = 

𝑗

𝜕𝐿 𝐱; 𝛉

𝜕𝑎𝑗
𝑙

𝜕𝑎𝑗
𝑙

𝜕𝑎𝑖
𝑙−1

𝜕𝐿 𝐱; 𝛉

𝜕𝑤𝑖𝑗
=

𝜕𝐿 𝐱; 𝛉

𝜕𝑎𝑖
𝑙

𝜕𝑎𝑖
𝑙

𝜕𝑤𝑖𝑗

…

…
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Importance of increasing layers

• Continuous functions:
• Every bounded continuous function can be approximated with small error 

with two layers

• Arbitrary functions:
• Three layers can approximate any arbitrary function

• Why do we need deep layers then?
• If the problem has a hierarchical nature, more layers yield better 

performance

• Lin vd., “Why does deep and cheap learning work so well?”, 2017.

Sinan Kalkan 85

Cybenko, G. (1989) "Approximations by superpositions of sigmoidal functions", Mathematics of Control, Signals, and Systems, 2 (4), 303-314

Kurt Hornik (1991) "Approximation Capabilities of Multilayer Feedforward Networks", Neural Networks, 4(2), 251257.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. "Multilayer feedforward networks are universal approximators." Neural networks 2.5 (1989): 359-366.



Importance of increasing layers

Krueger, Jannsen, Kalkan, Lappe, .., “Deep Hierarchies in the Primate Visual Cortex: What Can We 
Learn For Computer Vision”, IEEE PAMI, 2013.
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Multi-layer Perceptrons

• To be able to have solutions for linearly 
non-separable cases, we need a non-
linear and differentiable unit, e.g.:

ො𝑦 = 𝜎(𝐰 ⋅ 𝐱)

    where 

𝜎 𝑥 =
1

1 + 𝑒−𝑥

- Sigmoid (logistic) function
- Output is in range (0,1)
- Since it maps a large domain to (0,1) it is 

also called squashing function
- Alternatives: tanh

Sinan Kalkan 87



Multi-layer Perceptrons

Derivative of the sigmoid:

d𝜎 𝑥

𝑑𝑥
=

𝑑

𝑑𝑥

1

1 + 𝑒−𝑥 =
0 ⋅ 1 + 𝑒−𝑥 − 1 ⋅ (−𝑒−𝑥)

1 + 𝑒−𝑥 2

=
𝑒−𝑥

1 + 𝑒−𝑥 2 =
1

1 + 𝑒−𝑥 ⋅
𝑒−𝑥

1 + 𝑒−𝑥

=
1

1 + 𝑒−𝑥 ⋅ 1 −
1

1 + 𝑒−𝑥

= 𝜎 𝑥 ⋅ 1 − 𝜎 𝑥
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A neuron with sigmoid function

Sinan Kalkan 89

𝑥𝑖1

𝑥𝑖𝑛

𝑥𝑖2

…
∑ ො𝑦 = 𝜎 𝑛𝑒𝑡 =

1

1 + 𝑒−𝑛𝑒𝑡
𝜎

𝑛𝑒𝑡 = 

𝑘

𝑤𝑘𝑥𝑖𝑘



Backpropagation
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Why do we need to learn backpropagation?

• “Many frameworks implement backpropagation for us, why do we 
need to learn?”
• This is not a blackbox. There are many problems/issues involved. You can only 

deal with them if you have a good understanding of backpropagation.

https://medium.com/@karpathy/yes-you-should-understand-backprop-
e2f06eab496b#.7zawffou2
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Backpropagation

93

The Model

Hidden activations:

ℎ𝑖𝑗 = 𝜎 𝐰𝑗
ℎ ⋅ 𝐱𝑖 = 𝜎 𝑛𝑒𝑡𝑖𝑗

ℎ

Output layer:
ො𝑦𝑖𝑐 = 𝜎 𝐰𝑐

𝑜 ⋅ 𝐡𝑖 = 𝜎 𝑛𝑒𝑡𝑖𝑐
𝑜

The loss function:

𝐿 𝛉 =
1

2


𝑖=1

𝑁



𝑐∈𝐶

ො𝑦𝑖𝑐 − 𝑦𝑖𝑐
2

- For one sample:

𝐿𝑖 𝛉 =
1

2


𝑐∈𝐶

ො𝑦𝑖𝑐 − 𝑦𝑖𝑐
2

𝑥𝑖1

𝑥𝑖𝑛

𝑥𝑖2

…

𝜎

𝜎

𝜎

…

𝜎

𝜎

𝜎

…

ො𝑦𝑖1

ො𝑦𝑖2

ො𝑦𝑖𝐶

𝐡𝑖 = 𝜎 𝐖𝒉𝐱𝒊 ෝ𝒚𝑖 = 𝜎 𝐖𝒐𝐡𝑖
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Backpropagation

For each output unit 𝑐, calculate its grad term 𝛿𝑐
𝑜:

 𝛿𝑖𝑐
𝑜 =

𝜕𝐿𝑖

𝜕𝑛𝑒𝑡𝑖𝑐
𝑜 =

𝜕𝐿𝑖

𝜕 ො𝑦𝑖𝑐

𝜕 ො𝑦𝑖𝑐

𝜕𝑛𝑒𝑡𝑖𝑐
𝑜 = ො𝑦𝑖𝑐 − 𝑦𝑖𝑐 ො𝑦𝑖𝑐(1 − ො𝑦𝑖𝑐)

For each hidden unit 𝑗, calculate its grad term 𝛿𝑗
ℎ:

 𝛿𝑖𝑗
ℎ =

𝜕𝐿𝑖

𝜕𝑛𝑒𝑡𝑖𝑗
ℎ =

𝜕𝐿𝑖

𝜕ℎ𝑖𝑗

𝜕ℎ𝑖𝑗

𝜕𝑛𝑒𝑡𝑖𝑗
ℎ = ∑𝑐∈𝐶

𝜕𝐿𝑖

𝜕𝑛𝑒𝑡𝑖𝑐
𝑜

𝜕𝑛𝑒𝑡𝑖𝑐
𝑜

𝜕ℎ𝑖𝑗
ℎ𝑖𝑗 1 − ℎ𝑖𝑗

      = ∑𝑐∈𝐶 𝛿𝑖𝑐
𝑜 𝑤𝑐𝑗 ℎ𝑖𝑗 1 − ℎ𝑖𝑗  

Update weight 𝑤𝑗𝑘
𝑜  in the output layer:
𝑤𝑗𝑘

𝑜 = 𝑤𝑗𝑘
𝑜 − 𝜂𝛿𝑖𝑗

𝑜 ℎ𝑖𝑘

Update weight 𝑤𝑗𝑘
ℎ  in the hidden layer:

𝑤𝑗𝑘
ℎ = 𝑤𝑗𝑘

ℎ − 𝜂𝛿𝑖𝑗
ℎ 𝑥𝑖𝑘
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The Model

Hidden activations:  ℎ𝑖𝑗 = 𝜎 𝐰𝑗
ℎ ⋅ 𝐱𝑖 = 𝜎 𝑛𝑒𝑡𝑖𝑗

ℎ

Output layer:    ො𝑦𝑖𝑐 = 𝜎 𝐰𝑐
𝑜 ⋅ 𝐡𝑖 = 𝜎 𝑛𝑒𝑡𝑖𝑐

𝑜

The loss function:

𝐿 𝛉 =
1

2


𝑖=1

𝑁



𝑐∈𝐶

ො𝑦𝑖𝑐 − 𝑦𝑖𝑐
2

- For one sample:

𝐿𝑖 𝛉 =
1

2


𝑐∈𝐶

ො𝑦𝑖𝑐 − 𝑦𝑖𝑐
2
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Derivation of 
backpropagation

Derivation of the output unit weights

Δ𝑤𝑐𝑘
𝑜 = −𝜂

𝜕𝐿𝑖

𝜕𝑤𝑐𝑘
𝑜

𝜕𝐿𝑖

𝜕𝑤𝑐𝑘
𝑜 =

𝜕𝐿𝑖

𝜕𝑛𝑒𝑡𝑖𝑐
𝑜

𝜕𝑛𝑒𝑡𝑖𝑐
𝑜

𝜕𝑤𝑐𝑘
𝑜

𝜕𝐿𝑖

𝜕𝑛𝑒𝑡𝑖𝑐
𝑜 =

𝜕𝐿𝑖

𝜕 ො𝑦𝑖𝑐

𝜕 ො𝑦𝑖𝑐

𝜕𝑛𝑒𝑡𝑖𝑐
𝑜

      

𝜕𝐿𝑖

𝜕 ො𝑦𝑖𝑐
=

𝜕

𝜕 ො𝑦𝑖𝑐

1

2
∑𝑐∈𝐶 ො𝑦𝑖𝑐 − 𝑦𝑖𝑐

2 =
𝜕

𝜕 ො𝑦𝑖𝑐

1

2
ො𝑦𝑖𝑐 − 𝑦𝑖𝑐

2 = ො𝑦𝑖𝑐 − 𝑦𝑖𝑐

Derivative of sigmoid:
ො𝑦𝑖𝑐(1 − ො𝑦𝑖𝑐)
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ℎ𝑖𝑘

The Model

Hidden activations:  ℎ𝑖𝑗 = 𝜎 𝐰𝑗
ℎ ⋅ 𝐱𝑖 = 𝜎 𝑛𝑒𝑡𝑖𝑗

ℎ

Output layer:    ො𝑦𝑖𝑐 = 𝜎 𝐰𝑐
𝑜 ⋅ 𝐡𝑖 = 𝜎 𝑛𝑒𝑡𝑖𝑐

𝑜

The loss function:

𝐿 𝛉 =
1

2


𝑖=1

𝑁



𝑐∈𝐶

ො𝑦𝑖𝑐 − 𝑦𝑖𝑐
2

- For one sample:

𝐿𝑖 𝛉 =
1

2


𝑐∈𝐶

ො𝑦𝑖𝑐 − 𝑦𝑖𝑐
2

Δ𝑤𝑐𝑘
𝑜 = −𝜂

𝜕𝐿𝑖

𝜕𝑤𝑐𝑘
𝑜 = −𝜂 ො𝑦𝑖𝑐 − 𝑦𝑖𝑐 ො𝑦𝑖𝑐 1 − ො𝑦𝑖𝑐 ℎ𝑖𝑘 = −𝜂𝛿𝑖𝑐

𝑜 ℎ𝑖𝑘

1

2

3
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Derivation of 
backpropagation
Derivation of the hidden unit weights

Δ𝑤𝑗𝑘
ℎ = −𝜂

𝜕𝐿𝑖

𝜕𝑤𝑗𝑘
ℎ

𝜕𝐿𝑖

𝜕𝑤𝑗𝑘
ℎ =

𝜕𝐿𝑖

𝜕𝑛𝑒𝑡𝑖𝑗
ℎ

𝜕𝑛𝑒𝑡𝑖𝑗
ℎ

𝜕𝑤𝑗𝑘
ℎ

𝜕𝐿𝑖

𝜕𝑛𝑒𝑡𝑖𝑗
ℎ = ∑𝑐

𝜕𝐿𝑖

𝜕 ො𝑦𝑖𝑐

𝜕 ො𝑦𝑖𝑐

𝜕𝑛𝑒𝑡𝑖𝑐
𝑜

𝜕𝑛𝑒𝑡𝑖𝑐
𝑜

𝜕ℎ𝑖𝑗

𝜕ℎ𝑖𝑗

𝜕𝑛𝑒𝑡𝑖𝑗
ℎ

                

                = ∑𝑐  𝛿𝑖𝑐
𝑜  𝑤𝑐𝑗  ℎ𝑖𝑗(1 − ℎ𝑖𝑗)
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𝑥𝑖𝑘

The Model

Hidden activations:  ℎ𝑖𝑗 = 𝜎 𝐰𝑗
ℎ ⋅ 𝐱𝑖 = 𝜎 𝑛𝑒𝑡𝑖𝑗

ℎ

Output layer:    ො𝑦𝑖𝑐 = 𝜎 𝐰𝑐
𝑜 ⋅ 𝐡𝑖 = 𝜎 𝑛𝑒𝑡𝑖𝑐

𝑜

The loss function:

𝐿 𝛉 =
1

2


𝑖=1

𝑁



𝑐∈𝐶

ො𝑦𝑖𝑐 − 𝑦𝑖𝑐
2

- For one sample:

𝐿𝑖 𝛉 =
1

2


𝑐∈𝐶

ො𝑦𝑖𝑐 − 𝑦𝑖𝑐
2

Δ𝑤𝑗𝑘
ℎ = −𝜂

𝜕𝐿𝑖

𝜕𝑤𝑗𝑘
ℎ = −𝜂 

𝑐

𝛿𝑖𝑐
𝑜 𝑤𝑐𝑗 ℎ𝑖𝑗 1 − ℎ𝑖𝑗 𝑥𝑖𝑘 = −𝜂𝛿𝑖𝑗

ℎ 𝑥𝑖𝑘



Forward pass
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Backward pass

loss = 0.5*np.sum((out-y)**2)

dout = (out-y)

dW3 = np.dot(dout, h2.T)

…
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Backpropagation vs. numerical differentiation

What are their complexities?

• Backpropagation: 
• 𝑂 𝜃

• Numerical differentiation
• 𝑂 𝜃 2
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Neural Engineering

• Loss functions

• On optimization

• Activation functions

• Capacity, convergence

• Preprocessing

• …

Sinan Kalkan 100
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