
CENG 501
Deep Learning:

Sinan Kalkan

© AlchemyAPI

Today

• Overview of the course

• A review of deep learning fundamentals

C
E

N
G

5
0

1

About the course

C
E

N
G

5
0

1

Syllabus http://ceng.metu.edu.tr/~skalkan/DL/syllabus.pdf

C
E

N
G

5
0

1

Syllabus

C
E

N
G

5
0

1

Syllabus

C
E

N
G

5
0

1

Weekly
outline

C
E

N
G

5
0

1

Project

• Implement a conference paper without any implementation

 Reproduce their results and provide a critical analysis

 Produce a Github Repo with a detailed Readme file

• Papers can only be from the following top conferences:

 ICLR, AAAI, NeurIPS, ICML, CVPR, ECCV or similar

• You can work in groups of two.

• Deadline for picking papers: 13 October.

C
E

N
G

5
0

1

Taking the course

C
E

N
G

5
0

1

Basic DL Concepts

Ensure that you know the following:

• Why does DL work now?

• End-to-end learning

• Distributed representations

• Advantages and disadvantages of DL

C
E

N
G

5
0

1

Basic ML Concepts

Ensure that you know the following:

• Supervised vs. unsupervised learning

• Discriminative vs. generative learning

• Model selection, cross validation

• Overfitting, memorization, bias-variance trade-off

C
E

N
G

5
0

1

Taking the course

• Background

 Programming, Python

 Data structures and algorithms

 Linear algebra, Calculus, Statistics

 Fundamental deep learning models: MLP, CNN, RNN

• Fill out the following form until October 3 (Wednesday), midnight:

https://forms.gle/zyu7wUAFabVbxSGR6

C
E

N
G

5
0

1

• Read CH1-7 (pages 4-96) of the
book

• Quiz next week

• Alternative:

 Machine Learning - A First Course
for Engineers and Scientists

 https://smlbook.org/

C
E

N
G

5
0

1

https://smlbook.org/

BEFORE
Deep Learning
History of deep learning

Biological neuron

Artificial neuron

Perceptron learning

S
in

a
n

 K
a

lk
a

n

15

Neuron

http://animatlab.com/Help/Documentation/Neural-Network-Editor/Neural-Simulation-Plug-ins/Firing-Rate-Neural-Plug-in/Neuron-Basics

A neuron

• receives input signals generated
by other neurons through its
dendrites,

• integrates these signals in its
body,

• then generates its own signal (a
series of electric pulses) that
travel along the axon which in
turn makes contacts with
dendrites of other neurons.

• The points of contact between
neurons are called synapses. S

in
a

n
 K

a
lk

a
n

16

Neuron

• The pulses generated by the
neuron travels along the axon
as an electrical wave.

• Once these pulses reach the
synapses at the end of the
axon open up chemical
vesicles exciting the other
neuron.

Slide credit: Erol Sahin

S
in

a
n

 K
a

lk
a

n

17

Neuron

http://animatlab.com/Help/Documentation/Neural-Network-Editor/Neural-Simulation-Plug-ins/Firing-Rate-Neural-Plug-in/Neuron-Basics

(Carlson, 1992)
(Carlson, 1992) S

in
a

n
 K

a
lk

a
n

18

The biological neuron - 2

http://animatlab.com/Help/Documentation/Neural-Network-Editor/Neural-Simulation-Plug-ins/Firing-Rate-Neural-Plug-in/Neuron-Basics

(Carlson, 1992)

S
in

a
n

 K
a

lk
a

n

19

http://www.billconnelly.net/?p=291

S
in

a
n

 K
a

lk
a

n

20

Artificial neuron

S
in

a
n

 K
a

lk
a

n

21

Alexander Bain
(1818 –1903)

1873

“Bain on Neural

Networks”, Wilkes &
Wade, 1997.

1943 1958

Perceptron Learning

Frank Rosenblatt

(1928-1971)

http://www.webpages.ttu.edu/dleverin/neural_network/neural_networks.html

McCulloch-Pitts Neuron

𝑛𝑒𝑡 =

𝑖

𝑤𝑖𝑥𝑖 + 𝑏

𝑓(𝑛𝑒𝑡) = ቊ
0, 𝑛𝑒𝑡 < 0
1, 𝑛𝑒𝑡 ≥ 0

S
in

a
n

 K
a

lk
a

n

22

1873 ‘43 ‘58

Alexand
er Bain

McCulloch
-Pitts

Neurons

Perceptro
n

Learning

Convolutional
Weights

(Fukushima’s

Neocognitron, 1979)

‘79

(Werbos, 1982)

‘82 ‘86

(Rumelhart vd., 1986)

(Parker, 1985;
 LeCun, 1985)

‘85

Backpropagation

Convolutional Neural
Networks

LeCun et al. (1989)

‘89 2012

Object Classification
Traffic Sign Recogn.

Cancer Detection

S
in

a
n

 K
a

lk
a

n

23

S
in

a
n

 K
a

lk
a

n

25

S
in

a
n

 K
a

lk
a

n

26

S
in

a
n

 K
a

lk
a

n

27

McCulloch-Pitts Neuron
(McCulloch & Pitts, 1943)

• Binary input-output

• Can represent Boolean
functions.

• No training.

http://www.tau.ac.il/~tsirel/dump/Static/knowino.org/wiki/Artificial_neural_network.html

net =

S
in

a
n

 K
a

lk
a

n

28

McCulloch-Pitts Neuron

• Implement AND(𝑥, 𝑦):

 Let 𝑤𝑥 and 𝑤𝑦 to be 1, and 𝑤+1 to be -2.

• When input is 1 & 1; net is 0.

• When one input is 0; net is -1.

• When input is 0 & 0; net is -2.

http://www.tau.ac.il/~tsirel/dump/Static/knowino.org/wiki/Artificial_neural_network.html

http://www.webpages.ttu.edu/dleverin/neural_network/neural_networks.html

S
in

a
n

 K
a

lk
a

n

30

McCulloch-Pitts Neuron

• Binary input-output is a big limitation

• Also called

“[…] caricature models since they are intended to reflect one or more
neurophysiological observations, but without regard to realism […]”

 -- Wikipedia

• No training! No learning!

• They were useful in inspiring research into connectionist models

S
in

a
n

 K
a

lk
a

n

32

S
in

a
n

 K
a

lk
a

n

35

https://www.youtube.com/watch?v=cNxadbrN_aI

S
in

a
n

 K
a

lk
a

n

36

Let’s go back to a biological neuron

• A biological neuron has:
 Dendrites

 Soma

 Axon

• Firing is continuous, unlike
most artificial neurons

• Rather than the response
value, the firing rate is
critical S

in
a

n
 K

a
lk

a
n

38

• Neurone vs. Node

• Very crude abstraction
• Many details overseen

“Spherical cow” problem!

S
in

a
n

 K
a

lk
a

n

39

Spherical cow

https://en.wikipedia.org/wiki/Spherical_cow

Q: How does a physicist milk a cow?

A: Well, first let us consider a spherical cow...

Or

“Milk production at a dairy farm was low, so the farmer wrote to the local

university, asking for help from academia. A multidisciplinary team of

professors was assembled, headed by a theoretical physicist, and two
weeks of intensive on-site investigation took place. The scholars then

returned to the university, notebooks crammed with data, where the task of

writing the report was left to the team leader. Shortly thereafter the

physicist returned to the farm, saying to the farmer, "I have the solution,

but it only works in the case of spherical cows in a vacuum".”

https://www.washingtonpost.com/news/wonk/wp/2013/09/04/the-coase-theorem-is-widely-cited-in-economics-ronald-coase-hated-it/

S
in

a
n

 K
a

lk
a

n

40

More on this

• https://medium.com/intuitionmachine/neurons-are-more-complex-than-what-we-have-
imagined-b3dd00a1dcd3

S
in

a
n

 K
a

lk
a

n

41

Perceptron Learning

Sinan Kalkan 42

Let us take a closer look at perceptrons
• Initial proposal of connectionist networks

• Rosenblatt, 50’s and 60’s

• Essentially a linear model composed of nodes and weights, followed by a non-linear
thresholding operation

Sinan Kalkan 43

𝑥1

𝑥2

𝑤1

𝑤2

𝑦

or

Activation Function

𝑤0

𝑦 𝐱 = ቊ
1, 𝑤0 + 𝑤1𝑥1+. . 𝑤𝑛𝑥𝑛 > 0
0, otherwise

…

𝑥𝑛

𝑤𝑛

𝑥1

𝑥2

𝑤1

𝑤2

𝑦

𝑤0

…

𝑥𝑛

𝑤𝑛

1

Or, simply

𝑦 𝐱 = sgn(𝐰 ⋅ 𝐱)

where sgn 𝑥 = ቊ
0, 𝑥 ≤ 0
1, 𝑥 > 0

Motivation for perceptron learning

• We have estimated an output ො𝑦 = sgn(𝐰 ⋅ 𝐱)
• But the target was 𝑦

• Error (simply): 𝑦 − ො𝑦

• Let us update each weight such that we “learn” from the
error:
• 𝑤𝑖 ← 𝑤𝑖 + Δ𝑤𝑖

• where Δ𝑤𝑖 ∝ (𝑦 − ො𝑦)

• We somehow need to distribute the error to the weights.
How?
• Distribute the error according to how much they contributed to

the error: Bigger input contributes more to the error.
• Therefore: Δ𝑤𝑖 ∝ 𝑦 − ො𝑦 𝑥𝑖

Sinan Kalkan 49

(No gradient descent yet)

An example

• Consider 𝑥𝑖 = 0.8, 𝑦 = 1, ො𝑦 = −1
• Then, 𝑦 − ො𝑦 𝑥𝑖 = 1.6

• Which will increase weight 𝑤𝑖 by 1.6.

• Which makes sense considering the output and the target

Sinan Kalkan 50

Perceptron training rule

• Update weights
𝑤𝑖 ← 𝑤𝑖 + Δ𝑤𝑖

• How to determine Δ𝑤𝑖?
Δ𝑤𝑖 ← 𝜂 𝑦 − ො𝑦 𝑥𝑖

• 𝜂: learning rate – can be slowly
decreased

• 𝑦: target/desired output

• ො𝑦: current output, prediction

Sinan Kalkan 51

Perceptron - intuition

• A perceptron defines a hyperplane in N-1 space: a line in 2-D (two inputs), a
plane in 3-D (three inputs),….

• The perceptron is a linear classifier: It’s output is -1 on one side of the plane, and
1 for the other.

• Given a linearly separable problem, the perceptron learning rule guarantees
convergence.

Sinan Kalkan 52
Slide credit: Erol Sahin

Problems with perceptron

• Perceptron unit is non-linear. However, it provides zero gradient (due to
thresholding function), which makes it unsuitable to gradient descent
in multi-layer networks.

Sinan Kalkan 53

Problems with perceptron learning

• Can only learn linearly separable classification.

Sinan Kalkan 54

linearly separable not linearly separable

Towards deep learning
Linear classification/regression

Non-linear classification/regression

Multi-layer perceptrons

Sinan Kalkan 55

Linear classification and
regression

Sinan Kalkan 56

Linear Classification

• Goal: Find the following mapping, given the training set (𝐱𝑖, 𝐲𝑖) 𝑖=1
𝑁 :

𝐲 = 𝑓 𝐱

𝑓: 𝕏 → 𝕐.

• Linear model:

𝐲 ≈ 𝑓 𝐱 ≡ 𝑓 𝐱; 𝑊, 𝑏 = 𝑊𝐱 + 𝑏 =

𝑖=1

𝑁

𝑤𝑖𝑥𝑖 + 𝑏,

 where 𝑤𝑖 (𝑖 = 1, … , 𝑁) and 𝑏 are parameters to be learned.

Sinan Kalkan 57

Linear Classification with Neurons

Sinan Kalkan 58

𝑡 = ∑𝑤𝑖𝑥𝑖 + 𝑏

𝑥1

𝑥𝑛

𝑥2

…

𝑤1
𝑤2

𝑤𝑛

𝑦

apple

car

house

person

…

𝑏

Linear Classification with Neurons

Sinan Kalkan 59

𝑡 = ∑𝑤𝑖𝑥𝑖 + 𝑏

𝑥1

𝑥𝑛

𝑥2

…

𝑤1
𝑤2

𝑤𝑛

𝑦

𝒚 ≈ 𝑓 𝐱 ≡ 𝑓 𝐱; 𝛉

=

𝑖

𝑤𝑖𝑥𝑖 + 𝑏 = 𝐰 ⋅ 𝐱

𝑥1

𝑥𝑛

𝑥2

…

𝑤1

𝑤2

𝑤𝑛

𝑦

𝑏

𝑏

Linear classification

For class 𝑗:

For all classes: 𝑓 𝐱; 𝑊, 𝑏 = 𝑊𝐱 + 𝑏

Sinan Kalkan 60

Figure: http://cs231n.github.io/linear-classify/One row per class
𝐱𝑖

𝑓(𝐱𝑖; 𝑊, 𝑏)

𝑓𝑗 = 𝑓 𝐱; 𝑊, 𝑏 𝒋 = 𝒘𝑗 ⋅ 𝐱 + 𝑏𝑗 =

𝑖=1

𝑁

𝑤𝑗𝑖𝑥𝑖 + 𝑏𝑗

Linear classification:
One interpretation

Sinan Kalkan 61

Figure: http://cs231n.github.io/linear-classify/

𝑓 𝐱𝑖; 𝑊, 𝑏 = 𝑊𝐱𝑖 + 𝑏

Interpretation: Each row of W and b
describes a line for a class

Linear classification:
Another interpretation

• Each row in 𝑊 can be interpreted as a template of that class.
• 𝑓 𝐱𝑖; 𝑊, 𝑏 = 𝑊𝐱𝑖 + 𝑏 calculates the inner product to find which

template best fits 𝐱𝑖.

• Effectively, we are doing Nearest Neighbor with the “prototype”
images of each class.

Sinan Kalkan 62

http://cs231n.github.io/linear-classify/

Loss function
• A function which measures how good our parameters (weights) are.

• Other names: cost function, objective function

• Let 𝑠𝑗 = 𝑓 𝐱𝑖; 𝑊 𝑗

• An example loss function:

𝐿𝑖 =

𝑗≠𝑦𝑖

max(0, 𝑠𝑗 − 𝑠𝑦𝑖
+ Δ)

Or equivalently:

𝐿𝑖 =

𝑗≠𝑦𝑖

max(0, 𝐰𝑗
𝑇𝐱𝑖 − 𝐰𝑦𝑖

𝑇 𝐱𝑖 + Δ)

• This forces the distances to other classes to be more than Δ (the margin)

Sinan Kalkan 63

http://cs231n.github.io/linear-classify/

Take Δ
as 1

Example

• Consider our scores for 𝐱𝑖 to be 𝑠 = [13, −7,11] and assume Δ as 10.

• Then,
𝐿𝑖 = max 0, −7 − 13 + 10 + max(0, 11 − 13 + 10)

Sinan Kalkan 64

http://cs231n.github.io/linear-classify/

Regularization

• In practice, there are many possible solutions leading to the same loss
value.
• Based on the requirements of the problem, we might want to penalize certain

solutions.

• E.g.,

𝑅 𝑊 =

𝑖

𝑗

𝑊𝑖,𝑗
2

• which penalizes large weights.
• Why do we want to do that?

Sinan Kalkan 65

http://cs231n.github.io/linear-classify/

Why penalize large weights?

𝑅 𝑊 =

𝑖

𝑗

𝑊𝑖,𝑗
2

• The solution is not unique: 𝑊 is a solution, so is ∝ 𝑊.

• Large 𝑊 has large variance:
• Large and small weights can lead to abrupt changes in the boundary.

• I.e. overfitting.

• Robustness to small changes in the input.

Sinan Kalkan 66

Combined Loss Function

• The loss function becomes:

• If you expand it:

𝐿 =
1

𝑁

𝑖

𝑗≠𝑦𝑖

max 0, 𝑓 𝐱𝑖 , 𝑊 𝑗 − 𝑓 𝐱𝑖 , 𝑊 𝑦𝑖
+ Δ + 𝜆

𝑖

𝑗

𝑊𝑖,𝑗
2

Sinan Kalkan 67

Hyper parameters
(estimated using validation set)http://cs231n.github.io/linear-classify/

Hinge Loss, or Max-Margin Loss

Sinan Kalkan 68

𝐿 =
1

𝑁

𝑖

𝑗≠𝑦𝑖

max 0, 𝑓 𝐱𝑖 , 𝑊 𝑗 − 𝑓 𝐱𝑖 , 𝑊 𝑦𝑖
+ Δ + 𝜆

𝑖

𝑗

𝑊𝑖,𝑗
2

http://cs231n.github.io/linear-classify/

Regression loss

Sinan Kalkan 69

𝐿 =
1

𝑁

𝑖

𝑗

𝑠𝑖𝑗 − 𝑦𝑖𝑗
2

+ 𝜆

𝑖

𝑗

𝑤𝑖,𝑗
2

In general:

𝑗

𝑠𝑗 − 𝑦𝑗
𝑞

• 𝑞 = 1: Absolute Value Loss

• 𝑞 = 2: Square Error Loss.
Bishop

𝐿(𝐱; 𝛉) = d 𝑦, 𝑓 𝐱; 𝛉

𝛉∗ = arg min
𝛉

𝐿(𝐱; 𝛉)

𝑥1

𝑥𝑛

𝑥2

…

𝑤1

𝑤2

𝑤𝑛

𝑔 ො𝑦 = 𝑓 𝐱; 𝛉

𝑏

Sinan Kalkan 70

𝛉∗ = arg min
𝛉

𝐿(𝐱; 𝛉)

𝐿(𝐱; 𝛉)

𝜃0

𝜃1

𝛉𝑡

Minimum

𝛻𝛉𝐿(𝐱; 𝛉)

𝛉𝑡+1 ← 𝛉𝑡 − 𝜂 𝛻𝛉𝐿(𝐱; 𝛉)

Gradient
Descent

Sinan Kalkan 71

𝛉𝑡+1 ← 𝛉𝑡 − 𝜂 𝛻𝛉𝐿(𝐱; 𝛉)

Learning Rate
(Step Size)

𝛻𝛉𝐿 𝐱; 𝛉 =
𝜕𝐿 𝐱; 𝛉

𝜕𝛉

Sinan Kalkan 72

Gradient Descent

• True Gradient Descent
• Calculate the loss & the gradient on the

whole dataset
• Then make the update

• Stochastic Gradient Descent
• Calculate the loss & the gradient on

examples one at a time
• Update the weights after each example

• Batch Gradient Descent
• Calculate the loss & the gradient on a set

of examples (batch)
• Update the weights after each bath

Sinan Kalkan 73

Stochastic Gradient Descent

Batch Gradient Descent

Gradient Descent

Input: Training set: 𝐱𝑖, 𝑦𝑖 , 𝑖 = 1, … , 𝑁

 The network architecture.

Output: Network parameters, 𝛉

1. 𝛉𝟎 ← Random initial values

2. Until convergence:
i. Take 𝑚 samples from the dataset randomly
ii. Calculate predictions, ො𝑦, on 𝑚 samples using the current parameters 𝛉𝑡
iii. Calculate loss 𝐿() and take the gradient 𝛻𝛉L
iv. Update the weights
 𝛉𝑡+𝟏 ← 𝛉𝑡 − 𝜂𝛻𝛉L

Sinan Kalkan 74

Gradient descent

Sinan Kalkan 75

https://en.wikipedia.org/wiki/Gradient_descent (Goodfellow vd., 2016)

Derive the gradients of hinge loss

𝜕𝐿𝑖

𝜕𝑤𝑚𝑘
= ?

𝜕𝐿𝑖

𝜕𝑤𝑚𝑘
=

𝜕𝐿𝑖

𝜕𝑒𝑚

𝜕𝑒𝑚

𝜕𝑠𝑚

𝜕𝑠𝑚

𝜕𝑤𝑚𝑘

𝜕𝐿𝑖

𝜕𝑤𝑚𝑘
= 𝕀 𝑠𝑚 − 𝑠𝑦𝑖

+ Δ > 0 𝑥𝑖𝑘

Sinan Kalkan 76

𝑥𝑖1

𝑥𝑖𝑛

𝑥𝑖𝑘

…

𝑤𝑚1

𝑤𝑚𝑘

𝑤𝑚𝑛

𝑠𝑚 = 𝐰𝑚𝐱𝑖

=

𝑘

𝑤𝑚𝑘 𝑥𝑖𝑘

…

𝐿𝑖 =

𝑗≠𝑦𝑖

max 0, 𝑠𝑗 − 𝑠𝑦𝑖
+ Δ

𝑒𝑗

1

𝕀(𝑠𝑚 − 𝑠𝑦𝑖
+ Δ > 0)

𝑥𝑖𝑘

This assumed that 𝑚 ≠ 𝑦𝑖.
What happens if that’s not the case?
See the next page.

𝐱𝑖

Derive the gradients of hinge loss

𝜕𝐿𝑖

𝜕𝑤𝑦𝑖𝑘
= ?

𝜕𝐿𝑖

𝜕𝑤𝑦𝑖𝑘
= ∑𝑗≠𝑦𝑖

𝜕𝐿𝑖

𝜕𝑒𝑗

𝜕𝑒𝑗

𝜕𝑠𝑦𝑖

𝜕𝑠𝑦𝑖

𝜕𝑤𝑦𝑖𝑘

𝜕𝐿𝑖

𝜕𝑤𝑦𝑖𝑘
=

𝑗≠𝑦𝑖

𝕀 𝑠𝑗 − 𝑠𝑦𝑖
+ Δ > 0 (−1)𝑥𝑖𝑘

Sinan Kalkan

𝐿𝑖 =

𝑗≠𝑦𝑖

max 0, 𝑠𝑗 − 𝑠𝑦𝑖
+ Δ

𝑒𝑗

𝕀(𝑠𝑗 − 𝑠𝑦𝑖
+ Δ > 0)(−1)

𝑥𝑖𝑘

77

𝑥𝑖1

𝑥𝑖𝑛

𝑥𝑖𝑘

…

𝑤𝑦𝑖1

𝑤𝑦𝑖𝑘

𝑤𝑦𝑖𝑛

𝑠𝑦𝑖
= 𝐰𝑦𝑖

𝐱𝑖

=

𝑘

𝑤𝑦𝑖𝑘 𝑥𝑖𝑘

…

𝐱𝑖

1

Non-linear
Classification/Regression

Plane neuron

Deer neuron

Car neuron

Sinan Kalkan 78

𝑡 = ∑𝑤𝑖𝑥𝑖 + 𝑏

𝑥1

𝑥𝑛

𝑥2

…

𝑤1
𝑤2

𝑤𝑛

𝑦
𝑔 𝑡

𝒚 = 𝑓 𝐱 = 𝑓 𝐱; 𝛉

= 𝑔

𝑖

𝑤𝑖𝑥𝑖 + 𝑏 = 𝑔(𝐰 ⋅ 𝐱)

𝑥1

𝑥𝑛

𝑥2

…

𝑤1

𝑤2

𝑤𝑛

𝑔 𝑦

𝑏

𝑏 Sinan Kalkan 79

Multi-layer Perceptrons

Sinan Kalkan 80

𝑥1

𝑥𝑛

𝑥2

…

𝑔

𝑔

𝑔

…

𝑔

𝑔

𝑔

…

𝑔

𝑔

𝑔

…

…

ො𝑦1

ො𝑦2

ො𝑦𝑚

𝑓() = 𝑔 𝑔 𝑔 𝑔 … .

𝐚1 = g 𝐖𝟎𝐱T 𝐚2 = g 𝐖𝟏𝐚1
T 𝐚𝑙 = g 𝐖𝐥−𝟏𝐚𝑙−1

T

Sinan Kalkan 81

𝑥1

𝑥𝑛

𝑥2

…

𝑔

𝑔

𝑔

𝑔

𝑔

𝑔

… …

𝑔

𝑔

𝑔

…

…

ො𝑦1

ො𝑦2

ො𝑦𝑚

𝐿(𝐱; 𝛉) = d 𝐲, 𝑓 𝐱; 𝛉

𝛉∗ = arg min
𝛉

𝐿(𝐱; 𝛉)

𝛉𝑡+1 ← 𝛉𝑡 − 𝜂 𝛻𝛉𝐿(𝐱; 𝛉)

𝛻𝛉𝐿 𝐱; 𝛉 =
𝜕𝐿 𝐱; 𝛉

𝜕𝛉

Sinan Kalkan 82

𝑥1

𝑥𝑛

𝑥2

…

𝑔

𝑔

𝑔

𝑔

𝑔

𝑔

… …

𝑔

𝑔

𝑔

…

…

ො𝑦1

ො𝑦2

ො𝑦𝑚

𝜕𝐿 𝐱; 𝛉

𝜕𝑤𝑚𝑖
=

𝜕𝐿

𝜕 ො𝑦𝑚

𝜕 ො𝑦𝑚

𝜕𝑔𝑚
𝑙

𝜕𝑔𝑚
𝑙

𝜕𝑡𝑚

𝜕𝑡𝑚

𝜕𝑤𝑚𝑖

𝜕𝐿 𝐱; 𝛉

𝜕𝑤𝑗
=

𝜕𝐿

𝜕 ො𝑦𝑚

𝜕 ො𝑦𝑚

𝜕𝑔𝑚
𝑙

𝜕𝑔𝑚
𝑙

𝜕𝑡𝑚

𝜕𝑡𝑚

𝜕𝑔𝑘
𝑙−1

𝜕𝑔𝑘
𝑙−1

𝜕𝑡𝑘
…

Backpropagation

Sinan Kalkan 83

𝑎1
𝑙−1 𝑎2

𝑙−1 𝑎𝑛𝑙−1
𝑙−1

𝑎1
𝑙

𝑎2
𝑙 𝑎𝑛𝑙

𝑙

…

…

𝜕𝐿 𝐱; 𝛉

𝜕𝑎𝑖
𝑙−1 =

𝑗

𝜕𝐿 𝐱; 𝛉

𝜕𝑎𝑗
𝑙

𝜕𝑎𝑗
𝑙

𝜕𝑎𝑖
𝑙−1

𝜕𝐿 𝐱; 𝛉

𝜕𝑤𝑖𝑗
=

𝜕𝐿 𝐱; 𝛉

𝜕𝑎𝑖
𝑙

𝜕𝑎𝑖
𝑙

𝜕𝑤𝑖𝑗

…

…
Sinan Kalkan 84

Importance of increasing layers

• Continuous functions:
• Every bounded continuous function can be approximated with small error

with two layers

• Arbitrary functions:
• Three layers can approximate any arbitrary function

• Why do we need deep layers then?
• If the problem has a hierarchical nature, more layers yield better

performance

• Lin vd., “Why does deep and cheap learning work so well?”, 2017.

Sinan Kalkan 85

Cybenko, G. (1989) "Approximations by superpositions of sigmoidal functions", Mathematics of Control, Signals, and Systems, 2 (4), 303-314

Kurt Hornik (1991) "Approximation Capabilities of Multilayer Feedforward Networks", Neural Networks, 4(2), 251257.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. "Multilayer feedforward networks are universal approximators." Neural networks 2.5 (1989): 359-366.

Importance of increasing layers

Krueger, Jannsen, Kalkan, Lappe, .., “Deep Hierarchies in the Primate Visual Cortex: What Can We
Learn For Computer Vision”, IEEE PAMI, 2013.

Sinan Kalkan 86

Multi-layer Perceptrons

• To be able to have solutions for linearly
non-separable cases, we need a non-
linear and differentiable unit, e.g.:

ො𝑦 = 𝜎(𝐰 ⋅ 𝐱)

 where

𝜎 𝑥 =
1

1 + 𝑒−𝑥

- Sigmoid (logistic) function
- Output is in range (0,1)
- Since it maps a large domain to (0,1) it is

also called squashing function
- Alternatives: tanh

Sinan Kalkan 87

Multi-layer Perceptrons

Derivative of the sigmoid:

d𝜎 𝑥

𝑑𝑥
=

𝑑

𝑑𝑥

1

1 + 𝑒−𝑥 =
0 ⋅ 1 + 𝑒−𝑥 − 1 ⋅ (−𝑒−𝑥)

1 + 𝑒−𝑥 2

=
𝑒−𝑥

1 + 𝑒−𝑥 2 =
1

1 + 𝑒−𝑥 ⋅
𝑒−𝑥

1 + 𝑒−𝑥

=
1

1 + 𝑒−𝑥 ⋅ 1 −
1

1 + 𝑒−𝑥

= 𝜎 𝑥 ⋅ 1 − 𝜎 𝑥

Sinan Kalkan 88

A neuron with sigmoid function

Sinan Kalkan 89

𝑥𝑖1

𝑥𝑖𝑛

𝑥𝑖2

…
∑ ො𝑦 = 𝜎 𝑛𝑒𝑡 =

1

1 + 𝑒−𝑛𝑒𝑡
𝜎

𝑛𝑒𝑡 =

𝑘

𝑤𝑘𝑥𝑖𝑘

Backpropagation

Sinan Kalkan 90

Why do we need to learn backpropagation?

• “Many frameworks implement backpropagation for us, why do we
need to learn?”
• This is not a blackbox. There are many problems/issues involved. You can only

deal with them if you have a good understanding of backpropagation.

https://medium.com/@karpathy/yes-you-should-understand-backprop-
e2f06eab496b#.7zawffou2

Sinan Kalkan 91

92Sinan Kalkan

Backpropagation

93

The Model

Hidden activations:

ℎ𝑖𝑗 = 𝜎 𝐰𝑗
ℎ ⋅ 𝐱𝑖 = 𝜎 𝑛𝑒𝑡𝑖𝑗

ℎ

Output layer:
ො𝑦𝑖𝑐 = 𝜎 𝐰𝑐

𝑜 ⋅ 𝐡𝑖 = 𝜎 𝑛𝑒𝑡𝑖𝑐
𝑜

The loss function:

𝐿 𝛉 =
1

2

𝑖=1

𝑁

𝑐∈𝐶

ො𝑦𝑖𝑐 − 𝑦𝑖𝑐
2

- For one sample:

𝐿𝑖 𝛉 =
1

2

𝑐∈𝐶

ො𝑦𝑖𝑐 − 𝑦𝑖𝑐
2

𝑥𝑖1

𝑥𝑖𝑛

𝑥𝑖2

…

𝜎

𝜎

𝜎

…

𝜎

𝜎

𝜎

…

ො𝑦𝑖1

ො𝑦𝑖2

ො𝑦𝑖𝐶

𝐡𝑖 = 𝜎 𝐖𝒉𝐱𝒊 ෝ𝒚𝑖 = 𝜎 𝐖𝒐𝐡𝑖

Sinan Kalkan

Backpropagation

For each output unit 𝑐, calculate its grad term 𝛿𝑐
𝑜:

 𝛿𝑖𝑐
𝑜 =

𝜕𝐿𝑖

𝜕𝑛𝑒𝑡𝑖𝑐
𝑜 =

𝜕𝐿𝑖

𝜕 ො𝑦𝑖𝑐

𝜕 ො𝑦𝑖𝑐

𝜕𝑛𝑒𝑡𝑖𝑐
𝑜 = ො𝑦𝑖𝑐 − 𝑦𝑖𝑐 ො𝑦𝑖𝑐(1 − ො𝑦𝑖𝑐)

For each hidden unit 𝑗, calculate its grad term 𝛿𝑗
ℎ:

 𝛿𝑖𝑗
ℎ =

𝜕𝐿𝑖

𝜕𝑛𝑒𝑡𝑖𝑗
ℎ =

𝜕𝐿𝑖

𝜕ℎ𝑖𝑗

𝜕ℎ𝑖𝑗

𝜕𝑛𝑒𝑡𝑖𝑗
ℎ = ∑𝑐∈𝐶

𝜕𝐿𝑖

𝜕𝑛𝑒𝑡𝑖𝑐
𝑜

𝜕𝑛𝑒𝑡𝑖𝑐
𝑜

𝜕ℎ𝑖𝑗
ℎ𝑖𝑗 1 − ℎ𝑖𝑗

 = ∑𝑐∈𝐶 𝛿𝑖𝑐
𝑜 𝑤𝑐𝑗 ℎ𝑖𝑗 1 − ℎ𝑖𝑗

Update weight 𝑤𝑗𝑘
𝑜 in the output layer:
𝑤𝑗𝑘

𝑜 = 𝑤𝑗𝑘
𝑜 − 𝜂𝛿𝑖𝑗

𝑜 ℎ𝑖𝑘

Update weight 𝑤𝑗𝑘
ℎ in the hidden layer:

𝑤𝑗𝑘
ℎ = 𝑤𝑗𝑘

ℎ − 𝜂𝛿𝑖𝑗
ℎ 𝑥𝑖𝑘

94

The Model

Hidden activations: ℎ𝑖𝑗 = 𝜎 𝐰𝑗
ℎ ⋅ 𝐱𝑖 = 𝜎 𝑛𝑒𝑡𝑖𝑗

ℎ

Output layer: ො𝑦𝑖𝑐 = 𝜎 𝐰𝑐
𝑜 ⋅ 𝐡𝑖 = 𝜎 𝑛𝑒𝑡𝑖𝑐

𝑜

The loss function:

𝐿 𝛉 =
1

2

𝑖=1

𝑁

𝑐∈𝐶

ො𝑦𝑖𝑐 − 𝑦𝑖𝑐
2

- For one sample:

𝐿𝑖 𝛉 =
1

2

𝑐∈𝐶

ො𝑦𝑖𝑐 − 𝑦𝑖𝑐
2

Sinan Kalkan

Derivation of
backpropagation

Derivation of the output unit weights

Δ𝑤𝑐𝑘
𝑜 = −𝜂

𝜕𝐿𝑖

𝜕𝑤𝑐𝑘
𝑜

𝜕𝐿𝑖

𝜕𝑤𝑐𝑘
𝑜 =

𝜕𝐿𝑖

𝜕𝑛𝑒𝑡𝑖𝑐
𝑜

𝜕𝑛𝑒𝑡𝑖𝑐
𝑜

𝜕𝑤𝑐𝑘
𝑜

𝜕𝐿𝑖

𝜕𝑛𝑒𝑡𝑖𝑐
𝑜 =

𝜕𝐿𝑖

𝜕 ො𝑦𝑖𝑐

𝜕 ො𝑦𝑖𝑐

𝜕𝑛𝑒𝑡𝑖𝑐
𝑜

𝜕𝐿𝑖

𝜕 ො𝑦𝑖𝑐
=

𝜕

𝜕 ො𝑦𝑖𝑐

1

2
∑𝑐∈𝐶 ො𝑦𝑖𝑐 − 𝑦𝑖𝑐

2 =
𝜕

𝜕 ො𝑦𝑖𝑐

1

2
ො𝑦𝑖𝑐 − 𝑦𝑖𝑐

2 = ො𝑦𝑖𝑐 − 𝑦𝑖𝑐

Derivative of sigmoid:
ො𝑦𝑖𝑐(1 − ො𝑦𝑖𝑐)

Sinan Kalkan 95

ℎ𝑖𝑘

The Model

Hidden activations: ℎ𝑖𝑗 = 𝜎 𝐰𝑗
ℎ ⋅ 𝐱𝑖 = 𝜎 𝑛𝑒𝑡𝑖𝑗

ℎ

Output layer: ො𝑦𝑖𝑐 = 𝜎 𝐰𝑐
𝑜 ⋅ 𝐡𝑖 = 𝜎 𝑛𝑒𝑡𝑖𝑐

𝑜

The loss function:

𝐿 𝛉 =
1

2

𝑖=1

𝑁

𝑐∈𝐶

ො𝑦𝑖𝑐 − 𝑦𝑖𝑐
2

- For one sample:

𝐿𝑖 𝛉 =
1

2

𝑐∈𝐶

ො𝑦𝑖𝑐 − 𝑦𝑖𝑐
2

Δ𝑤𝑐𝑘
𝑜 = −𝜂

𝜕𝐿𝑖

𝜕𝑤𝑐𝑘
𝑜 = −𝜂 ො𝑦𝑖𝑐 − 𝑦𝑖𝑐 ො𝑦𝑖𝑐 1 − ො𝑦𝑖𝑐 ℎ𝑖𝑘 = −𝜂𝛿𝑖𝑐

𝑜 ℎ𝑖𝑘

1

2

3

123

Derivation of
backpropagation
Derivation of the hidden unit weights

Δ𝑤𝑗𝑘
ℎ = −𝜂

𝜕𝐿𝑖

𝜕𝑤𝑗𝑘
ℎ

𝜕𝐿𝑖

𝜕𝑤𝑗𝑘
ℎ =

𝜕𝐿𝑖

𝜕𝑛𝑒𝑡𝑖𝑗
ℎ

𝜕𝑛𝑒𝑡𝑖𝑗
ℎ

𝜕𝑤𝑗𝑘
ℎ

𝜕𝐿𝑖

𝜕𝑛𝑒𝑡𝑖𝑗
ℎ = ∑𝑐

𝜕𝐿𝑖

𝜕 ො𝑦𝑖𝑐

𝜕 ො𝑦𝑖𝑐

𝜕𝑛𝑒𝑡𝑖𝑐
𝑜

𝜕𝑛𝑒𝑡𝑖𝑐
𝑜

𝜕ℎ𝑖𝑗

𝜕ℎ𝑖𝑗

𝜕𝑛𝑒𝑡𝑖𝑗
ℎ

 = ∑𝑐 𝛿𝑖𝑐
𝑜 𝑤𝑐𝑗 ℎ𝑖𝑗(1 − ℎ𝑖𝑗)

Sinan Kalkan 96

𝑥𝑖𝑘

The Model

Hidden activations: ℎ𝑖𝑗 = 𝜎 𝐰𝑗
ℎ ⋅ 𝐱𝑖 = 𝜎 𝑛𝑒𝑡𝑖𝑗

ℎ

Output layer: ො𝑦𝑖𝑐 = 𝜎 𝐰𝑐
𝑜 ⋅ 𝐡𝑖 = 𝜎 𝑛𝑒𝑡𝑖𝑐

𝑜

The loss function:

𝐿 𝛉 =
1

2

𝑖=1

𝑁

𝑐∈𝐶

ො𝑦𝑖𝑐 − 𝑦𝑖𝑐
2

- For one sample:

𝐿𝑖 𝛉 =
1

2

𝑐∈𝐶

ො𝑦𝑖𝑐 − 𝑦𝑖𝑐
2

Δ𝑤𝑗𝑘
ℎ = −𝜂

𝜕𝐿𝑖

𝜕𝑤𝑗𝑘
ℎ = −𝜂

𝑐

𝛿𝑖𝑐
𝑜 𝑤𝑐𝑗 ℎ𝑖𝑗 1 − ℎ𝑖𝑗 𝑥𝑖𝑘 = −𝜂𝛿𝑖𝑗

ℎ 𝑥𝑖𝑘

Forward pass

Sinan Kalkan 97

https://cs231n.github.io/

Backward pass

loss = 0.5*np.sum((out-y)**2)

dout = (out-y)

dW3 = np.dot(dout, h2.T)

…

Sinan Kalkan 98

https://cs231n.github.io/

Backpropagation vs. numerical differentiation

What are their complexities?

• Backpropagation:
• 𝑂 𝜃

• Numerical differentiation
• 𝑂 𝜃 2

99Sinan Kalkan

Neural Engineering

• Loss functions

• On optimization

• Activation functions

• Capacity, convergence

• Preprocessing

• …

Sinan Kalkan 100

	Slide 1: CENG 501 Deep Learning:
	Slide 2: Today
	Slide 3: About the course
	Slide 4: Syllabus
	Slide 5: Syllabus
	Slide 6: Syllabus
	Slide 7: Weekly outline
	Slide 8: Project
	Slide 10: Taking the course
	Slide 11: Basic DL Concepts
	Slide 12: Basic ML Concepts
	Slide 13: Taking the course
	Slide 14
	Slide 15: BEFORE Deep Learning
	Slide 16: Neuron
	Slide 17: Neuron
	Slide 18: Neuron
	Slide 19: The biological neuron - 2
	Slide 20
	Slide 21: Artificial neuron
	Slide 22
	Slide 23
	Slide 25
	Slide 26
	Slide 27
	Slide 28: McCulloch-Pitts Neuron (McCulloch & Pitts, 1943)
	Slide 30: McCulloch-Pitts Neuron
	Slide 32: McCulloch-Pitts Neuron
	Slide 35
	Slide 36
	Slide 38: Let’s go back to a biological neuron
	Slide 39
	Slide 40: Spherical cow
	Slide 41: More on this
	Slide 42: Perceptron Learning
	Slide 43: Let us take a closer look at perceptrons
	Slide 49: Motivation for perceptron learning
	Slide 50: An example
	Slide 51: Perceptron training rule
	Slide 52: Perceptron - intuition
	Slide 53: Problems with perceptron
	Slide 54: Problems with perceptron learning
	Slide 55: Towards deep learning
	Slide 56: Linear classification and regression
	Slide 57: Linear Classification
	Slide 58: Linear Classification with Neurons
	Slide 59: Linear Classification with Neurons
	Slide 60: Linear classification
	Slide 61: Linear classification: One interpretation
	Slide 62: Linear classification: Another interpretation
	Slide 63: Loss function
	Slide 64: Example
	Slide 65: Regularization
	Slide 66: Why penalize large weights?
	Slide 67: Combined Loss Function
	Slide 68: Hinge Loss, or Max-Margin Loss
	Slide 69: Regression loss
	Slide 70
	Slide 71
	Slide 72
	Slide 73: Gradient Descent
	Slide 74: Gradient Descent
	Slide 75: Gradient descent
	Slide 76: Derive the gradients of hinge loss
	Slide 77: Derive the gradients of hinge loss
	Slide 78: Non-linear Classification/Regression
	Slide 79
	Slide 80: Multi-layer Perceptrons
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85: Importance of increasing layers
	Slide 86: Importance of increasing layers
	Slide 87: Multi-layer Perceptrons
	Slide 88: Multi-layer Perceptrons
	Slide 89: A neuron with sigmoid function
	Slide 90: Backpropagation
	Slide 91: Why do we need to learn backpropagation?
	Slide 92
	Slide 93: Backpropagation
	Slide 94: Backpropagation
	Slide 95: Derivation of backpropagation
	Slide 96: Derivation of backpropagation
	Slide 97: Forward pass
	Slide 98: Backward pass
	Slide 99: Backpropagation vs. numerical differentiation
	Slide 100: Neural Engineering

