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ViT: Architecture
Applied to classification tasks only!
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Swin Transformer v1

• Motivation:
• ViT is promising but limited to 

classification
• Challenges in using Tranformers: 

• large variations in scales of visual entities, 
• more pixels compared to words in text

• Existing Transformers use fixed token 
size across layers

• Contributions:
• Limit self-attention to non-overlapping 

windows while allowing cross-window 
attention

• Change token size across layers
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Image: http://dx.doi.org/10.48550/arXiv.2206.03336
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Figure: https://amaarora.github.io/posts/2022-07-04-swintransformerv1.html
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Swin Transformer v1
Plot from https://arxiv.org/pdf/2107.14222:
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Swin Transformer v2

Scaling up model capacity
• Residual post normalization: 

Prevents output to diverge

• Scaled cosine attention: 
•  learnt attention maps of some 

blocks and heads are frequently 
dominated by a few pixel pairs, 
especially in the res-post-norm 
configuration => cosine yields 
values in a smaller range
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Scaling Up Window Resolution

• Continuous relative position bias 

CENG501

Trained on Tested/Finetuned on Finetuned on

Log-spaced coordinates
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Swin Transformer v2

Self-Supervised Pre-training
• Prior work used JFT-3B

• Use SimMIM to train 3B-size Swin 
Transformer 

From SimMIM paper.
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ConvNeXt v1

• “Modernized” ResNet 
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ConvNeXt v2

• Training ConvNeXt v1 with 
Masked AE performs poorly

• Introduce 
• fully convolutional masked 

autoencoder framework and

• a new Global Response 
Normalization to enhance 
inter-channel competition
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ConvNeXt v2
Global Response Normalization

• Inspiration from lateral inhibition 
in brain

• Three steps:
1. global feature aggregation, 

2. feature normalization, and 

3. feature calibration.
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Fast ViT
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Faster ViT
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15
https://arxiv.org/pdf/2411.16508



Today

• Vision Models
• Pretraining

• Vision-Language Models
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Administrative Notes
• No quiz this week

• Time plan for the projects
1. Milestone (November 24, midnight):

• Github repo will be ready

• Read & understand the paper

• Download the datasets

• Prepare the Readme file excluding the results & conclusion

2. Milestone (December 8, midnight)

• The results of the first experiment

3. Milestone (January 5, midnight)
• Final report (Readme file) 

• Repo with all code & trained models
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Pretraining Vision Transformers
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Masked Autoencoders CVPR 2022

MSE loss between pixels for masked tokens only! 19



Masked Autoencoders CVPR 2022
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Masked Autoencoders CVPR 2022
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SimMIM
CVPR 2022
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DINO v1 & v2 (ICCV’21 & TMLR’24)
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DINO v1 & v2 (ICCV’21 & TMLR’24)
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ViViT ICCV 2021
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ViViT ICCV 2021
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VideoMAE NeurIPS 2022
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Vision-Language Models

Reference: Bordes et al., “An Introduction to Vision-Language Modeling”, 2024. 

                     https://arxiv.org/pdf/2405.17247
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Earlier Attempts: 
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Earlier Attempts: 
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2019

Co-TRM: Co-attentional Transformer



Earlier Attempts: 
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Earlier Attempts: 
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Earlier Attempts: 
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Overview

34Fig: https://huggingface.co/blog/vlms



Overview
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Bordes et al., “An Introduction to 
Vision-Language Modeling”, 2024. 
https://arxiv.org/pdf/2405.17247



Contrastive Approaches
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Fig: Bordes et al., “An Introduction to Vision-Language Modeling”, 2024. 



CLIP

• Motivation:
• NLP models have benefited significantly from large amounts of web data

• “Could scalable pre-training methods which learn directly from web text 
result in a similar breakthrough in computer vision?”

• Contribution: 
• Using natural language supervision for image representation learning at large 

scale

• 400M pairs of (image, text)

• Adapted from ConVIRT (train from scratch)
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ConVIRT
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Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christopher D. Manning, Curtis P. Langlotz



ConVIRT
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CLIP
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CLIP: Dataset

• MS-COCO, Visual Genome, .. are limited in size

• YFCC100M: Includes 100M images but metadata for each image is sparse and low 
quality. When filtered, the # of images is around the size of ImageNet

• NL supervision requires a large-scale dataset

• Search (image, text) pairs with text including 500K base queries: 
• “The base query list is all words occurring at least 100 times in the English version of 

Wikipedia. This is augmented with bi-grams with high pointwise mutual information as well as 
the names of all Wikipedia articles above a certain search volume. Finally all WordNet synsets 
not already in the query list are added.”

• To balance, 20K (image, text) pairs are included for each query.

• 400M is similar to the size of WebText used to train GPT-2
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CLIP: Efficiency
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CLIP: Method
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CLIP: Architecture

• Image Encoder
• Option 1: ResNet-D, some 

modifications over ResNet-50 + 
antialiased rect-2 blur pooling + 
attention pooling (instead of 
global average pooling

• Option 2: ViT + additional layer 
norm after combining patch and 
position embeddings
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• Text Encoder
• Transformer (same architecture 

as GPT-2)
• Different sizes (base version: 63M 

params, 12 layers, 512-wide 
model with 8 attention heads)

• Lowercased byte-pair encoding
• Max sequence length: Trimmed 

at 76
• [SOS] and [EOS] tokens



CLIP: Training

• Train 5 ResNets, 3 ViTs:
• ResNet-50, ResNet-101, 3 More 

following EfficientNet-style 
modifications on ResNet-50

• ViT-B/32, ViT-B/16, ViT-L/14

• 32 epochs, Adam, weight decay 
(on all weights except for biases), 
LR with cosine scheduling

• Hyperparams: 
• Grid search, random search, manual 

tuning for 1 epoch for ResNet-50-
baseline

• Then based on heuristics adapted 
for larger models
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• Temperature: Learnable, initialized at 
0.07 and clipped to prevent 
explosion

• Batchsize: 32,768.

• “The largest ResNet model, RN50x64, 
took 18 days to train on 592 V100 
GPUs while the largest Vision 
Transformer took 12 days on 256 
V100 GPUs.”



CLIP: Results
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CLIP: Results
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CLIP: Results
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CLIP: Results
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CLIP: Extensions

• SigLIP (Zhai et al., 2023)
• CLIP with NCE Loss with binary CE instead of CLIP’s multi-class InfoNCE

• Better zero-shot performance on smaller batch sizes

• SLIP
• CLIP combined with Self-Supervised Learning
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Masking Approaches
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Fig: Bordes et al., “An Introduction to Vision-Language Modeling”, 2024. 



FLAVA
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Foundational Language And Vision Alignment (FLAVA) 
[Singh et al., 2022].



FLAVA
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GC: Global Contrastive Loss (same as CLIP)



FLAVA: Results
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Generative Approaches
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Fig: Bordes et al., “An Introduction to Vision-Language Modeling”, 2024. 



CoCa 
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Contrastive Captioner (CoCa), 
Yu et al., 2022.



CoCa 
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Contrastive Captioner (CoCa), 
Yu et al., 2022.
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CoCa Contrastive Captioner (CoCa), 
Yu et al., 2022.



Chameleon
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Chameleon: Mixed-Modal Early-
Fusion Foundation Models, Meta, 
2024.



Chameleon
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Chameleon: Mixed-Modal Early-Fusion Foundation
Models, Meta, 2024.



Chameleon
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Approaches Using 
Pre-trained Backbones
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Fig: Bordes et al., “An Introduction to Vision-Language Modeling”, 2024. 



Frozen
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Multimodal Few-Shot Learning with
Frozen Language Models, 2021



Frozen
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Multimodal Few-Shot Learning with
Frozen Language Models, 2021



Frozen
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Multimodal Few-Shot Learning with
Frozen Language Models, 2021



Frozen
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Multimodal Few-Shot Learning with
Frozen Language Models, 2021



Flamingo
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Flamingo: a Visual Language Model
for Few-Shot Learning, Deepmind, 2022



Flamingo
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Flamingo: a Visual Language Model
for Few-Shot Learning, Deepmind, 2022

Vision Encoder: Normalizer-Free ResNet (NFNet)
Perceiver Sampler: Fixed # of queries attend to variable 
length of visual tokens.
LLM: Chinchilla



Flamingo
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Flamingo: a Visual Language Model
for Few-Shot Learning, Deepmind, 2022



Flamingo
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Flamingo: a Visual Language Model
for Few-Shot Learning, Deepmind, 2022



BLIP
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BLIP: Bootstrapping Language-Image Pre-training for Unified 
Vision-Language Understanding and Generation, Salesforce, 2022.



BLIP
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BLIP: Bootstrapping Language-Image Pre-training for Unified 
Vision-Language Understanding and Generation, Salesforce, 2022.



BLIP
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BLIP: Bootstrapping Language-Image Pre-training for Unified 
Vision-Language Understanding and Generation, Salesforce, 2022.



BLIP-2
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BLIP-2: Bootstrapping Language-Image Pre-training with Frozen 
Image Encoders and Large Language Models, Salesforce, 2023.



BLIP-2
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BLIP-2: Bootstrapping Language-Image Pre-training with Frozen 
Image Encoders and Large Language Models, Salesforce, 2023.



BLIP-2
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BLIP-2: Bootstrapping Language-Image Pre-training with Frozen 
Image Encoders and Large Language Models, Salesforce, 2023.



Misc
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Segment Anything Model (SAM)
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Segment Anything Model (SAM) v2
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2024



Segment Everything Everywhere All At Once
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INTERNVIDEO2: SCALING FOUNDATION MODELS FOR 
MULTIMODAL VIDEO UNDERSTANDING
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Stage 1: Reconstructing Unmasked Video Tokens
Stage 2: Aligning Video to Audio-Speech-Text
Stage 3: Predicting Next Token with Video-Centric Inputs



INTERNVIDEO2: SCALING FOUNDATION MODELS FOR 
MULTIMODAL VIDEO UNDERSTANDING

82
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