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\* A local window to
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(a) Architecture (b) Two Successive Swin Transformer Blocks

Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with
Eq. (3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively.
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Relative position bias In computing self-attention, we
follow [47, I, 22, 27] by including a relative position bias
B € RM* XM (g each head in computing similarity:

Attention(Q, K, V) = SoftMax(QK T /v/d + B)V, (4)

where Q, K,V € RM %4 are the query, key and value ma-
trices; d is the querylkey dimension, and M? is the number
of patches in a window. Since the relative position along
each axis lies in the range [-M + 1, M — 1], we parameter-
ize a smaller-sized bias matrix B € 'REM-1)x@M-1) , and
values in B are taken from B.

Plot from https://arxiv.org/pdf/2107.14222:
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Figure 6: Visualization of Euclidean method. The red star
% presents the reference position. Different color means
different bucket. The relative positions with the same color
share the same encoding.
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* Residual post normalization:
Prevents output to diverge

e Scaled cosine attention:

* learnt attention maps of some
blocks and heads are frequently
dominated by a few pixel pairs,
especially in the res-post-norm
configuration => cosine yields
values in a smaller range
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. C&n"t‘muous relative position bias

%)
N4

B(Az, Ay) = G(Az, Ay),

3)

where G is a small network, e.g., a 2-layer MLP with a
ReLU activation in between by default.

The meta network G generates bias values for arbitrary
relative coordinates, and thus can be naturally transferred
to fine-tuning tasks with arbitrarily varying window sizes.

Log-spaced coordinates

Log-spaced coordinates When transferring across
largely varying window sizes, a large portion of the relative
coordinate range needs to be extrapolated. To ease this

issue, we propose using log-spaced coordinates instead of
the original linear-spaced ones:

Az = sign(z) - log(1 + |Az]),
Ay = sign(y) - log(1 + |Ay]),

@

where Az, Ay and Az, &/ are the linear-scaled and log-
spaced coordinates, respectively.

Trained on Tested/Finetuned on Finetuned on

ImageNet* ImageNet' COCO ADE20k
W8, 1256 |W12,1384 | W16, 1512 | W20, 1640 | W24,1768 | W16 | W32 | W16 | W20 | W32
method top-1 acc | top-1acc | top-1acc | top-1acc | top-1acc | AP* | AP* | mIoU | mIoU | mIoU
Parameterized position bias [ (] 81.7 79.4/82.7 | 77.2/83.0 | 73.2/83.2 | 68.7/83.2 | 50.8 | 50.9 | 45.5 | 45.8 | 44.5
Linear-Spaced CPB 81.7 82.0/82.9 | 81.2/83.3 | 79.8/83.6 | 77.6/83.7 | 50.9 | 51.7 | 47.0 | 474 | 47.2
(+0.0) (+2.6/40.2) | (+4.0/+0.3) | (+6.6/+0.4) | (+8.9/+0.5) | (+0.1) | (+0.8) | (+1.5) | (+1.6) | (+2.7)
Log-Spaced CPB 81.8 82.4/83.2 | 81.7/83.8 | 80.4/84.0 | 79.1/84.2 | 51.1 | 51.8 | 47.0 | 47.7 | 47.8
(+0.1) (+3.0/4+0.5) | (+4.5/+0.8) | (+7.2/+0.8) | (+10.4/+1.0) | (+0.3) | (+0.9) | (+1.5) | (+1.9) (+3.3)
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* Prior work used JFT-3B B One-layer Pmr'e!gctioni-‘l‘éad

* Use SimMIM to train 3B-size Swin SHEREE
Transformer 8., VT, Swin)

Figure 1. An illustration of our simple framework for masked lan-
guage modeling, named SimMIM. It predicts raw pixel values of
the randomly masked patches by a lightweight one-layer head, and
performs learning using a simple ¢; loss.

From SimMIM paper.
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Figure 1. ImageNet-1K classification results for e ConvNets and

vision Transformers. Each bubble’s area is proportional to FLOPs
of a variant in a model family. ImageNet-1K/22K models here
take 224%/3842 images respectively. ResNet and ViT results were

obtained with improved training procedures over the original papers.

We demonstrate that a standard ConvNet model can achieve the
same level of scalability as hierarchical vision Transformers while
being much simpler in design.
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Q&\\ * Training ConvNeXt vl with
Masked AE performs poorly

* Introduce

* fully convolutional masked
autoencoder framework and

* a new Global Response
Normalization to enhance
inter-channel competition
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ConvNeXt V2 model scaling. The ConvNeXt V2

model, which has been pre-trained using our fully convolutional
masked autoencoder framework, performs significantly better than
the previous version across a wide range of model sizes.
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* Inspiration from lateral inhibition

in brain

* Three steps:
1. global feature aggregation,
2. feature normalization, and
3. feature calibration.

Algorithm 1 Pseudocode of GRN in a PyTorch-like style.

# gamma, beta: learnable affine transform parameters

# X: input of shape (N,H,W,C)

gx = torch.norm(X, p=2, dim=(1,2), keepdim=True)
nx = gx / (gx.mean(dim=-1, keepdim=True)+le-6)
return gamma * (X » nx) + beta + X

First, we aggregate a spatial feature map X into a vector
gz with a global function G(-):

G(X) =X € REXWXC _, gz € RC. (1)

Next, we apply a response normalization function N/ (+)
to the aggregated values. Concretely, we use a standard di-
visive normalization as follows,

Xill
NAIXID = [1Xil] € R — 1S Si (2
(11X:ll) = [1X:l| > icr..c 1%

where || X;|| is the L2-norm of the i-th channel. ' Intu-

Finally, we calibrate the original input responses using
the computed feature normalization scores:

X; =X; *N(Q(X)t) e RH*W (3)

12
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Figure 2: (a) Overview of FastViT architecture which decouples train-time and inference-time architecture. Stages 1, 2, and
3 have the same architecture and uses RepMixer for token mixing. In stage 4, self attention layers are used for token mixing.
(b) Architecture of the convolutional stem. (c) Architecture of convolutional-FFN (d) Overview of RepMixer block, which

reparameterizes a skip connection at inference.
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i@g\ure 2: Visualization of the proposed Hierarchical
ttention in the feature space. By performing local win-
dow attention and hierarchical attention we can achieve
global information propagation at reduced costs.
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Swin-S 1720 83.2
ConvNeXt-S 2008 83.1
FasterViT-2 3161 84.2
801 Swin-B 1232 83.5
ConvNeXt-B 1485 83.8
FasterViT-3 1780 84.9
ConvNeXt-L 508 84.3
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—@— MaxViT (2022) 9 FAN (2022) FastViT (2023) @ NextviT (2022)

Figure 1: Comparison of image throughput and
ImageNet-1K Top-1 accuracy. Throughput is mea-
sured on A100 GPU with batch size of 128.
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All Languages Matter: Evaluating LMMs on Culturally Diverse 100 Languages

Ashmal Vayani' 2%, Dinura Dissanayake?*, Hasindri Watawana?*, Noor Ahsan?*, Nevasini
Sasikumar?*, Omkar Thawakar” *, Henok Biadglign Ademtew, Yahya Hmaiti, Amandeep Kumar,
Kartik Kuckreja, Mykola Maslych, Wafa Al Ghallabi, Mihail Mihaylov, Chao Qin, Abdelrahman M
Shaker, Mike Zhang, Mahardika Krisna Ihsani, Amiel Esplana, Monil Gokani, Shachar Mirkin, Harsh
Singh, Ashay Srivastava, Endre Hamerlik, Fathinah Asma Izzati, Fadillah Adamsyah Maani, Sebastian
Cavada, Jenny Chim, Rohit Gupta, Sanjay Manjunath, Kamila Zhumakhanova, Feno Heriniaina
Rabevohitra, Azril Amirudin, Muhammad Ridzuan, Daniya Kareem, Ketan More, Kunyang Li,
Pramesh Shakya, Muhammad Saad, Amirpouya Ghasemaghaei, Amirbek Djanibekov, Dilshod Azizov,
Branislava Jankovic, Naman Bhatia, Alvaro Cabrera, Johan Obando-Ceron, Olympiah Otieno, Fabian
Farestam, Muztoba Rabbani, Sanoojan Baliah, Santosh Sanjeev, Abduragim Shtanchaev, Maheen
Fatima, Thao Nguyen, Amrin Kareem, Toluwani Aremu, Nathan Xavier, Amit Bhatkal, Hawau Toyin,
Aman Chadha#, Hisham Cholakkal®>*, Rao Muhammad Anwer> **, Michael Felsberg®*,
Jorma Laaksonen**, Thamar Solorio®#*, Monojit Choudhury?#*, Ivan Laptev? %,

Mubarak Shah! 3 #, Salman Khan?’ %, Fahad Shahbaz Khan? *

4 Core Authors
'University of Central Florida, ?Mohamed bin Zayed University of Al, >Amazon,
“Aalto University, >Australian National University, °Linkdping University

https://mbzuai-oryx.github.io/ALM-Bench/

https://arxiv.org/pdf/2411.16508
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Today

* VVision Models
* Pretraining

* VVision-Language Models



Administrative Notes

* No quiz this week

* Time plan for the projects

2. Milestone (December 8, midnight)
e The results of the first experiment
3. Milestone (January 5, midnight)
* Final report (Readme file)
* Repo with all code & trained models

17
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Masked Autoencoders
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Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches (e.g., 75%) is masked out. The
encoder is applied to the small subset of visible patches. Mask
tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens 1s processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder is discarded and the encoder is applied to uncorrupted
images (full sets of patches) for recognition tasks.

MSE loss between pixels for masked tokens only!

Masked Autoencoders Are Scalable Vision Learners

Kaiming He*! Xinlei Chen* Saining Xie Yanghao Li Piotr Dolldr Ross Girshick
*equal technical contribution 1‘pmjecl lead

Facebook Al Resecarch (FAIR) CVP R 20 22

original mask 75% mask 85% mask 95%

Figure 4. Reconstructions of ImageNet validation images using
an MAE pre-trained with a masking ratio of 75% but applied on
inputs with higher masking ratios. The predictions differ plausibly
from the original images, showing that the method can generalize.
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Masked Autoencoders Are Scalable Vision Learners

Kaiming He*! Xinlei Chen* Saining Xie Yanghao Li Piotr Dollir Ross Girshick

Masked Autoencoders T e

blocks ft lin dim ft lin case ft lin FLOPs
1 84.8 65.5 128 84.9 69.1 encoder w/ [M] 84.2 59.6 33X
2 84.9 70.0 256 84.8 71.3 encoder w/o [M] 84.9 73.5 1x
4 84.9 71.9 512 84.9 73.5
8 84.9 73.5 768 84.4 73.1
12 84.4 73.3 1024  84.3 73.1
(a) Decoder depth. A deep decoder can im- (b) Decoder width. The decoder can be nar- (c) Mask token. An encoder without mask to-
prove linear probing accuracy. rower than the encoder (1024-d). kens is more accurate and faster (Table 2).
case ft lin case ft lin case ratio ft lin
pixel (w/o norm) 84.9 73.5 none 84.0 65.7 random 75 849 735
pixel (w/ norm) 854 73.9 crop, fixed size 84.7 73.1 block 50 839 723
PCA 84.6 72.3 crop, rand size 84.9 73.5 block 75 82.8 63.9
dVAE token 85.3 71.6 crop + color jit 84.3 71.9 grid 75 84.0 66.0
(d) Reconstruction target. Pixels as recon- (e) Data augmentation. Our MAE works with (f) Mask sampling. Random sampling works
struction targets are effective. minimal or no augmentation. the best. See Figure 6 for visualizations.

Table 1. MAE ablation experiments with ViT-L/16 on ImageNet-1K. We report fine-tuning (ft) and linear probing (lin) accuracy (%). If
not specified, the default is: the decoder has depth 8 and width 512, the reconstruction target is unnormalized pixels, the data augmentation
is random resized cropping, the masking ratio is 75%, and the pre-training length is 800 epochs. Default settings are marked in gray .
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Masked Autoencoders

Masked Autoencoders Are Scalable Vision Learners

Kaiming He*! Xinlei Chen* Saining Xie Yanghao Li Piotr Dollir Ross Girshick

J‘proj ect lead

Facebook Al Resecarch (FAIR)

*equal technical contribution

CVPR 2022

88 |- T method pre-traindata ViT-B  ViT-L ViT-H ViT-Hus
ol Vi
i I & L DINO [5] IN1K 82.8 - - -
84 | v MoCo v3 [9] INIK 832  84.1 - .
7ViT—B/16>%J_7_‘7_'_”__7__7x_7_7)_7_d_.¥.~-f——7 ----- X BEiT [2] IN1IK+DALLE  83.2 85.2 - -
20 MAE INIK 836 8.9 869 878
80T — MAE, INIK Table 3. Comparisons with previous results on ImageNet-
el N — - supervised, INIK, our impl. 1K. The pre-training data is the ImageNet-1K training set (ex-
— —C— supervised, IN1K [16] ] ] ) :
- T = -+ supervised, JFT300M [16] cept the tokenizer in BEiT was pre-trained on 250M DALLE data
7 200 200 00 [50]). All self-supervised methods are evaluated by end-to-end
params (M) fine-tuning. The ViT models are B/16, L/16, H/14 [16]. The best

for each column is underlined. All results are on an image size of
224, except for ViT-H with an extra result on 448. Here our MAE
reconstructs normalized pixels and is pre-trained for 1600 epochs.

Figure 8. MAE pre-training vs. supervised pre-training, evalu-
ated by fine-tuning in ImageNet-1K (224 size). We compare with
the original ViT results [16] trained in IN1K or JFT300M.
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SImMIM

L

One-layer Prediction Head

Encoder
(e.g., ViT, Swin)

Figure 1. An illustration of our simple framework for masked lan-
guage modeling, named SimMIM. It predicts raw pixel values of
the randomly masked patches by a lightweight one-layer head, and
performs learning using a simple #; loss.

SimMIM: a Simple Framework for Masked Image Modeling
CVPR 2022

Zhenda Xie'* Zheng Zhang?®  Yue Cao*’
Yutong Lin®  Jianmin Bao?® Zhuliang Yao! Qi Dai?> Han Hu**
ITsinghua University  ?Microsoft Research Asia  3Xi’an Jiaotong University

{tfzhxie,zhez,yuecao,tfyutonglin,jianmin.bao,tfzhuyao,qid,hanhu}@microsoft.com

Input| Fine-tuning Linear eval Pre-training
Size [Top-1 acc (%) Top-1 acc (%)  costs
Sup. baseline [/]|224° 81.8

Methods

DINO['] [224? 82.8 78.2 2.0x
MoCo v3 [7] [2242 83.2 76.7 1.8x
ViT [19] 3842 79.9 - ~4.0%
BEIiT [ ] 2242 83.2 56.7 1.5t
Ours 2242 83.8 56.7 1.0x

Table 6. System-level comparison using ViT-B as the encoder.
Training costs are counted in relative to our approach. T BEiT re-
quires an additional stage to pre-train dVAE, which is not counted.
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DINO vl & v2 (ICCV'21 & TMLR’24)

Figure 1: Self-attention from a Vision Transformer with 8 x 8 patches trained with no supervision. We look at the self-attention of
the [CLS] token on the heads of the last layer. This token is not attached to any label nor supervision. These maps show that the model
automatically learns class-specific features leading to unsupervised object segmentations.
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DINO vl & v2 (ICCV'21 & TMLR’24)

loss:
@ - p2 log p1 @
| softmax |

5g

centering
|

ema
student ggs —> | teacher gg

Figure 2: Self-distillation with no labels. We illustrate DINO in
the case of one single pair of views (x1, x2) for simplicity. The
model passes two different random transformations of an input
image to the student and teacher networks. Both networks have
the same architecture but different parameters. The output of the

teacher network is centered with a mean computed over the batch.

Each networks outputs a K dimensional feature that is normalized
with a temperature softmax over the feature dimension. Their
similarity is then measured with a cross-entropy loss. We apply a
stop-gradient (sg) operator on the teacher to propagate gradients
only through the student. The teacher parameters are updated with
an exponential moving average (ema) of the student parameters.

Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

# gs, gt: student and teacher networks
# C: center (K)
# tps, tpt: student and teacher temperatures

# 1; m:

network and center momentum rates

gt.params = gs.params
for x in loader: # load a minibatch x with n samples

x1,

sl,
j 1 Y8

X2 = augment (x), augment (x) # random views

s2
t2

gs(x1), gs(x2) # student output n-by-K
gt (x1), gt (x2) # teacher output n-by-K

loss = H(tl, s2)/2 + H(t2, sl)/2
loss.backward() # back-propagate

# student, teacher and center updates
update (gs) # SGD
gt.params = lxgt.params + (1l-1)*gs.params

C = mxC + (1-m)xcat ([tl, t2]) .mean(dim=0)
def H(t, s):
t = t.detach() # stop gradient
s = softmax(s / tps, dim=1)
t = softmax((t - C) / tpt, dim=1) # center + sharpen
return - (t * log(s)) .sum(dim=1) .mean()
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ViViT: A Video Vision Transformer

Anurag Arnab* Mostafa Dehghani* Georg Heigold Chen Sun  Mario Lu&i¢’ Cordelia Schmid®
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Figure 2: Uniform frame sampling: We simply sample n: frames,
and embed each 2D frame independently following ViT [12].

Figure 3: Tubelet embedding. We extract and linearly embed non-
overlapping tubelets that span the spatio-temporal input volume.
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Table 1: Comparison of input encoding methods using ViViT-B
and spatio-temporal attention on Kinetics. Further details in text.

Top-1 accuracy

Uniform frame sampling 78.5
Tubelet embedding

Random initialisation [25] 73.2
Filter inflation [¥] 77.6
Central frame 79.2

ViViT: A Video Vision Transformer
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Table 2: Comparison of model architectures using ViViT-B as the
backbone, and tubelet size of 16 x 2. We report Top-1 accuracy on
Kinetics 400 (K400) and action accuracy on Epic Kitchens (EK).

Runtime is during inference on a TPU-v3.

Factorised
Dot-Product

( Fuse )

FLOPs Params Runtime
K400 EK (x10%)  (x10%) (ms)
Model 1: Spatio-temporal 80.0 43.1 455.2 88.9 58.9
Model 2: Fact. encoder 78.8 437 284.4 115.1 17.4
Model 3: Fact. self-attention 77.4  39.1 372.3 117.3 31.7
Model 4: Fact. dot product 763 395 277.1 88.9 22.9
Model 2: Ave. pool baseline  75.8  38.8 283.9 86.7 17.3

ICCV 2021
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VideoMAE: Masked Autoencoders are Data-Efficient

\/ . d I\/l c E Learners for Self-Supervised Video Pre-Training

NeurlPS 2022
Zhan Tong '2* Yibing Song? Jue Wang? Limin Wang "1
!State Key Laboratory for Novel Software Technology, Nanjing University
2Tencent Al Lab 3Shanghai Al Lab
tongzhan@smail.nju.edu.cn {yibingsong. cv, arphid}@gmail. com lmwang@nju.edu.cn
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Figure 1: VideoMAE performs the task of masking random cubes and reconstructing the missing ones
with an asymmetric encoder-decoder architecture. Due to high redundancy and temporal correlation
in videos, we present the customized design of tube masking with an extremely high ratio (90% to
95%). This simple design enables us to create a more challenging and meaningful self-supervised
task to make the learned representations capture more useful spatiotemporal structures.
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Vision-Language Models

Reference: Bordes et al., “An Introduction to Vision-Language Modeling”, 2024.
https://arxiv.org/pdf/2405.17247
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“Searching for Ambiguous Objects in Videos
‘using Relational Referring Expressions
>

Earlier Attempts:  Zaamaur

nayurt@metu.edu.tr

%azan.a
ezai Artun Ozyegin*

Department of Computer Engineering,
Middle East Technical University,
Ankara, Turkey 2019
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Figure 1: An overview of the generation and comprehension tasks performed by our model.
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: ViLBERT: Pretraining Task-Agnostic Visiolinguistic
E d rl ler Atte m pt S. = Representations for Vision-and-Language Tasks

2019
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Figure 1: Our VILBERT model consists of two parallel streams for visual (green) and linguistic
(purple) processing that interact through novel co-attentional transformer layers. This structure allows
for variable depths for each modality and enables sparse interaction through co-attention. Dashed
boxes with multiplier subscripts denote repeated blocks of layers.

Co-TRM: Co-attentional Transformer 20



: VILBERT: Pretraining Task-Agnostic Visiolinguistic
E d rl el Atte m pt S. = Representations for Vision-and-Language Tasks

2019
"-C.I_,-.I‘l;':-\i" ‘?CJ’I)—'L Man shopping . >|:|—> Aligned / Not Aligned
£ t t 4
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Vision & Language BERT Vision & Language BERT
<IMG> | | <MASK> - W'" <MASK> | [<CLS> L<MASK> <MASK> J‘ for ’"' <SEP> -‘.: -l e . * ese <CLS> Man HshoppingH for ’-.. <SEP>
(a) Masked multi-modal learning (b) Multi-modal alignment prediction

Figure 3: We train VILBERT on the Conceptual Captions [24] dataset under two training tasks to
learn visual grounding. In masked multi-modal learning, the model must reconstruct image region
categories or words for masked inputs given the observed inputs. In multi-modal alignment prediction,
the model must predict whether or not the caption describes the image content.
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: VILBERT: Pretraining Task-Agnostic Visiolinguistic
E d rl el Atte m pt S. = Representations for Vision-and-Language Tasks
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(a) Standard encoder transformer block (b) Our co-attention transformer layer

Figure 2: We introduce a novel co-attention mechanism based on the transformer architecture. By

exchanging key-value pairs in multi-headed attention, this structure enables vision-attended language
features to be incorporated into visual representations (and vice versa).
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Earlier Attempts:

VISUALBERT: A SIMPLE AND PERFORMANT
BASELINE FOR VISION AND LANGUAGE

Liunian Harold Lif, Mark Yatskar*, Da Yin°, Cho-Jui Hsieh! & Kai-Wei Chang'

TUniversity of California, Los Angeles
*Allen Institute for Artificial Intelligence
°Peking University

2019
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Figure 2: The architecture of VisualBERT. Image regions and language are combined with a Trans-
former to allow the self-attention to discover implicit alignments between language and vision. It

is pre-trained with a masked language modeling (Objective 1), and sentence-image prediction task
(Objective 2), on caption data and then fine-tuned for different tasks. See §3.3 for more details.
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Overview

Object Localization

Zero-shot Segmentation

Segment: striped cat

Zero-shot Visual QA Vision
What is the breed of Language
these cats? Model

The cats in the image appear

. . . to be domestic shorthair cats.
One-shot Learning with Instructions

Striped cats are called tabby The cats in the image are tabby cats.
cats. What is the breed of —— Tabby cats are a common domestic
the cats in the image? “—— cat breed and are characterized by
their distinctive coat pattern, stripes
on the body, and a ringed tail.

Fig: https://huggingface.co/blog/vims 34



A photo of a bird

Image
Encoder

A photoofa

A photo of a cat

Overview

.......

00 Encoder
=
N
L4 +
S 29 . Image
> £ Text I % Encoder
<5 Encoder .
Fill masked images given text
d) ---------------------------------------------------------------------------------------------------------------------------
2 e
E § Elll Text-to-Image Image-to-Text g'g.
o
8 :'hg Generator Generator R
()]
0
3 2
Bordes et al., “An Introduction to -% .8 | Image Mapping
Vision-Language Modeling”, 2024. 4;-'; < F - il Encoder Network
https://arxiv.org/pdf/2405.17247 a S



-~ — =) I A photo of a bird
Text
LK € A photo of a dog
Encoder
-~ — —p A photo of a cat

<« — —» Push for dissimilarity

......

Fig: Bordes et al., “An Introduction to Vision-Language Modeling”, 2024.

Contrastive Approaches
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Learning Transferable Visual Models From Natural Language Supervision

C L | P Alec Radford “! Jong Wook Kim*! Chris Hallacy! Aditya Ramesh! Gabriel Goh! Sandhini Agarwal!
Girish Sastry! Amanda Askell! Pamela Mishkin! Jack Clark! Gretchen Krueger' Ilya Sutskever !

2021

* Motivation:
* NLP models have benefited significantly from large amounts of web data

e “Could scalable pre-training methods which learn directly from web text
result in a similar breakthrough in computer vision?”

e Contribution:

e Using natural language supervision for image representation learning at large
scale

e 400M pairs of (image, text)
e Adapted from ConVIRT (train from scratch)



Proceedings of Machine Learning Research 182:1-24, 2022 Machine Learning for Healthcare

CO n \/l RT Contrastive Learning of Medical Visual Representations
from Paired Images and Text

Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christopher D. Manning, Curtis P. Langlotz
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CLIP

(1) Contrastive pre-training

Pepper the
aussie pup

Text

Learning Transferable Visual Models From Natural Language Supervision

Alec Radford*! Jong Wook Kim ! Chris Hallacy ! Aditya Ramesh! Gabriel Goh! Sandhini Agarwal !
Girish Sastry! Amanda Askell! Pamela Mishkin! Jack Clark! Gretchen Krueger' Ilya Sutskever !
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CLIP: Dataset

MS-COCO, Visual Genome, .. are limited in size

YFCC100M: Includes 100M images but metadata for each image is sparse and low
qguality. When filtered, the # of images is around the size of ImageNet

* NL supervision requires a large-scale dataset

Search (image, text) pairs with text including 500K base queries:

* “The base query list is all words occurring at least 100 times in the English version of
Wikipedia. This is augmented with bi-grams with high pointwise mutual information as well as
the names of all Wikipedia articles above a certain search volume. Finally all WordNet synsets
not already in the query list are added.”

To balance, 20K (image, text) pairs are included for each query.
400M is similar to the size of WebText used to train GPT-2



CLIP: Efficiency

amounts of compute. Mahajan et al. (2018) required 19
GPU years to train their ResNeXt101-32x48d and Xie et al.
(2020) required 33 TPUv3 core-years to train their Noisy
Student EfficientNet-L2. When considering that both these
systems were trained to predict only 1000 ImageNet classes,
the task of learning an open set of visual concepts from
natural language seems daunting. In the course of our ef-

Our initial approach, similar to VirTex, jointly trained an
image CNN and text transformer from scratch to predict the
caption of an image. However, we encountered difficulties
efficiently scaling this method| In Figure 2 we show that a
63 million parameter transformer language model, which
already uses twice the compute of its ResNet-50 image
encoder, learns to recognize ImageNet classes three times
slower than a much simpler baseline that predicts a bag-of-
words encoding of the same text.

Both these approaches share a key similarity. They try to pre-
dict the exacr words of the text accompanying each image.
This is a difficult task due to the wide variety of descriptions,
comments, and related text that co-occur with images. Re-
cent work in contrastive representation learning for images
has found that contrastive objectives can learn better repre-
sentations than their equivalent predictive objective | Tian

w
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w
o
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N
w
1

N
o
1

4X efficiency < 3X efficiency

S

-8 Bag of Words Contrastive (CLIP)
Bag of Words Prediction
—&— Transformer Language Model

[}
(8]
1

Zero-Shot ImageNet Accuracy
(=]
o

(%)}
1

0 I 1 1 !
2M 33M 67M 134M 268M 400M

# of images processed

Figure 2. CLIP is much more efficient at zero-shot transfer
than our image caption baseline. Although highly expressive,
we found that transformer-based language models are relatively
weak at zero-shot ImageNet classification. Here, we see that it
learns 3x slower than a baseline which predicts a bag-of-words
(BoW) encoding of the text (Joulin et al., 2016). Swapping the
prediction objective for the contrastive objective of CLIP further
improves efficiency another 4x.
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CLIP: Method

LintoncE = — Y, log
(i.5)€P

eCoSim(z;,2;) /7

Ei‘;l eCoSim(z;,zx)/T ’

ResNet or Vision Transformer

# text_encoder CBOW or Text Transformer

# I[n, h, w, c] minibatch of aligned images

# T[n, 1] - minibatch of aligned texts

# W_i[d_i, d_e] learned proj of image to embed
# W_t[d_t, d_e] learned proj of text to embed

# image_encoder

# t - learned temperature parameter

# extract feature representations of each modality
I_f = image_encoder(I) #[n, d_i]

T_f = text_encoder(T) #[n, d_t]

# joint multimodal embedding [n, d_e]

I_e = 12_normalize(np.dot(I_f, W_i), axis=1)
T_e = 12_normalize(np.dot(T_f, W_t), axis=1)
# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)

# symmetric loss function

labels = np.arange(n)

loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2

Figure 3. Numpy-like pseudocode for the core of an implementa-
tion of CLIP.
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CLIP: Architecture

* Image Encoder

* Option 1: ResNet-D, some
modifications over ResNet-50 +
antialiased rect-2 blur pooling +
attention pooling (instead of
global average pooling

e Option 2: ViT + additional layer
norm after combining patch and
position embeddings

EEEEEEE

 Text Encoder

Transformer (same architecture
as GPT-2)

Different sizes (base version: 63M
params, 12 layers, 512-wide
model with 8 attention heads)

Lowercased byte-pair encoding

Max sequence length: Trimmed
at 76

[SOS] and [EOS] tokens
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CLIP: Tralning

* Train 5 ResNets, 3 ViTs:

* ResNet-50, ResNet-101, 3 More
following EfficientNet-style
modifications on ResNet-50

* ViT-B/32, ViT-B/16, ViT-L/14

e 32 epochs, Adam, weight decay
(on all weights except for biases),
LR with cosine scheduling

* Hyperparams:

* Grid search, random search, manual
tuning for 1 epoch for ResNet-50-
baseline

* Then based on heuristics adapted
for larger models

 Temperature: Learnable, initialized at
0.07 and clipped to prevent
explosion

* Batchsize: 32,768.

* “The largest ResNet model, RN50x64,
took 18 days to train on 592 V100
GPUs while the largest Vision
Transformer took 12 days on 256
V100 GPUs.”



CLIP: Results

aYahoo ImageNet SUN

Visual N-Grams 72.4 11.5 23.0
CLIP 98.4 76.2 58.5

Table 1. Comparing CLIP to prior zero-shot transfer image classi-
fication results. CLIP improves performance on all three datasets
by a large amount. This improvement reflects many differences
in the 4 years since the development of Visual N-Grams (Li et al.,
2017).
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=@-= Contextless class names (Li et al. 2017)
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6.1 g9 21.5 75.3 2659
Model GFLOPs

Figure 4. Prompt engineering and ensembling improve zero-
shot performance. Compared to the baseline of using contextless
class names, prompt engineering and ensembling boost zero-shot
classification performance by almost 5 points on average across
36 datasets. This improvement is similar to the gain from using
4 times more compute with the baseline zero-shot method but is

“free” when amortized over many predictions.
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CLIP: Results
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Figure 5. Zero-shot CLIP is competitive with a fully super-
vised baseline. Across a 27 dataset eval suite, a zero-shot CLIP
classifier outperforms a fully supervised linear classifier fitted on
ResNet-50 features on 16 datasets, including ImageNet.
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Figure 6. Zero-shot CLIP outperforms few-shot linear probes.
Zero-shot CLIP matches the average performance of a 4-shot linear
classifier trained on the same feature space and nearly matches the
best results of a 16-shot linear classifier across publicly available
models. For both BiT-M and SimCLRv2, the best performing
model is highlighted. Light gray lines are other models in the eval

suite. The 20 datasets with at least 16 examples per class were
used in this analysis.



CLIP: Results

Linear probe average over Kornblith et al.'s 12 datasets Linear probe average over all 27 datasets
901 L/14@336px L/14@336px
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Figure 10. Linear probe performance of CLIP models in comparison with state-of-the-art computer vision models, including
EfficientNet (Tan & Le, 2019; Xie et al., 2020), MoCo (Chen et al., 2020d), Instagram-pretrained ResNeXt models (Mahajan et al., 2018;
Touvron et al., 2019), BiT (Kolesnikov et al., 2019), ViT (Dosovitskiy et al., 2020), SimCLRv2 (Chen et al., 2020c), BYOL (Grill et al.,
2020), and the original ResNet models (He et al., 2016b). (Left) Scores are averaged over 12 datasets studied by Kornblith et al. (2019).
(Right) Scores are averaged over 27 datasets that contain a wider variety of distributions. Dotted lines indicate models fine-tuned or
evaluated on images at a higher-resolution than pre-training. See Table 10 for individual scores and Figure 20 for plots for each dataset. 13



CLIP: Results

RN50
45

40 - RN50x4

RN50x16

Error (%)

35+ d
30+ [
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Model GFLOPs

Figure 9. Zero-shot CLIP performance scales smoothly as a
function of model compute. Across 39 evals on 36 different
datasets, average zero-shot error is well modeled by a log-log lin-
ear trend across a 44x range of compute spanning 5 different CLIP
models. Lightly shaded lines are performance on individual evals,
showing that performance is much more varied despite the smooth
overall trend.
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CLIP: Extensions

 SigLIP (Zhai et al., 2023)
* CLIP with NCE Loss with binary CE instead of CLIP’s multi-class INfoNCE
* Better zero-shot performance on smaller batch sizes

* SLIP
* CLIP combined with Self-Supervised Learning
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Fig: Bordes et al., “An Introduction to Vision-Language Modeling”, 2024

Masking Approaches
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F LA\/A Foundational Language And Vision Alignment (FLAVA)
[Singh et al., 2022].

multimodal and unimodal pretraining data

image-text unpaired unpaired
pairs images text
Multimodal Pretraining data Pretraining Objectives Target Modalities
FLAVA for multi-domain J oint pret rainin g Method public  dataset(s) size | Contr. ITM  Masking Unimodal | V CV&L MV&L L
: CLIP [83] X WeblmageText 400M v - - - v v - -
(global contrastive, MMM, MIM, MLM, ...) ALIGN [50] . T 188 | 7 - - ) oy - T
SimVLM [109] X JFT 1.8B - -  PrefixLM CLM * v v v
UniT [43] - None - - - - - * - Ve v
VinVL [118] v Combination oM v - MLM - - v v -
.. . . ALBEF [62] v"  Combination 5M v v MLM - - v v -
recognition understanding reasoning FLAVA (ours) v/ PMD(TbL2) 70M | / MMM MLM+MM |/ VA

(e.g. ImageNet) (e.g. GLUE) (e.g. VQA)

Table 1. Comparison of recent models in different modalities. CV&L and MV &L stands for cross-modal and multi-modal vision-and-
language. * means the modality is partially targeted (SimVLM [109] and UniT [43] include ImageNet and object detection, respectively).

Figure 1. We present FLAVA, a language and vision alignment
model that learns strong representations from multimodal (image-
text pairs) and unimodal data (unpaired images and text) and can
be applied to target a broad scope of tasks from three domains
(visual recognition, language understanding, and multimodal rea-
soning) under a common transformer model architecture.
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GC: Global Contrastive Loss (same as CLIP)

FLAVA

=== lec €---__
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vision task heads P
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Figure 2. An overview of our FLAVA model, with an image encoder transformer to capture unimodal image representations, a text
encoder transformer to process unimodal text information, and a multimodal encoder transformer that takes as input the encoded unimodal
image and text and integrates their representations for multimodal reasoning. During pretraining, masked image modeling (MIM) and
mask language modeling (MLM) losses are applied onto the image and text encoders over a single image or a text piece, respectively,
while contrastive, masked multimodal modeling (MMM), and image-text matching (ITM) loss are used over paired image-text data. For
downstream tasks, classification heads are applied on the outputs from the image, text, and multimodal encoders respectively for visual
recognition, language understanding, and multimodal reasoning tasks.
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FLAVA: Results

Vision NLP Multi-modal | Macro
Method Avg. Avg. Avg. Avg.
1 MIM 57.46 - - 19.15
2 MLM - 71.55 - 23.85
3 FLAVA- 64.80 79.14 66.25 70.06
4 FLAVA 7422  79.35 69.11 74.23
5 FLAVA w/o unimodal init  75.55  78.29 67.32 73.72
6 FLAVA 78.19 79.44 69.92 75.85

Table 3. Our full FLAVA pretraining (row 6) achieves the best av-

erage scores on vision, language, and multimodal tasks compared
to ablations. Row 1 to 4 are pretrained on PMD while row 5 and 6
also involve unimodal IN-1k, CCNews, and BookCorpus datasets.
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Fig: Bordes et al., “An Introduction to Vision-Language Modeling”, 2024.
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CoCa

Yu et al., 2022.
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Contrastive Captioner (CoCa),
Yu et al., 2022.

CoCa

two dogsrunning in a field [/s]

r1T 17 1111
Multimodal
Text Decoder

4—
attentional pooling cls-token
Image Unimodal
Encoder Text Decoder

! rrr 1t

0O00000000000 [s] two dogs runningin a field [CLS]

“two dogs running in a field”

text

pairs

Single-Encoder Classification. The classic single-encoder approach pretrains a visual encoder
through image classification on a large crowd-sourced image annotation dataset (e.g., ImageNet [9],
Instagram [20] or JFT [21]), where the vocabulary of annotation texts is usually fixed. These image
annotations are usually mapped into discrete class vectors to learn with a cross-entropy loss as

Lcis = —p(y) log ga (), (n

Dual-Encoder Contrastive Learning. Compared to pretraining with single-encoder classification,
which requires human-annotated labels and data cleaning, the dual-encoder approach exploits noisy
web-scale text descriptions and introduces a learnable text tower to encode free-form texts. The two
encoders are jointly optimized by contrasting the paired text against others in the sampled batch:

N N
1 exp(z; y;/o exp(y, z;/o
ECon — _ﬁ(zlog 5 p( i y't-{ ) +Zlo - p(yz ?;I-/ ) : (2)
= 2 mexp(ziyifo) T Yisiexp(y; xi/o)
imag;-;)-text tcxt-t—(;-rimage

where x; and y; are normalized embeddings of the image in the i-th pair and that of the text in the
j-th pair. N is the batch size, and o is the temperature to scale the logits. In addition to the image

Encoder-Decoder Captioning. While the dual-encoder approach encodes the text as a whole,
the generative approach (a.k.a. captioner) aims for detailed granularity and requires the model
to predict the exact tokenized texts of y autoregressively. Following a standard encoder-decoder
architecture, the image encoder provides latent encoded features (e.g., using a Vision Transformer [39]

or ConvNets [40]) and the text decoder learns to maximize the conditional likelihood of the paired
text y under the forward autoregressive factorization:

T
Lo =— Y log Po(yely<t, ).
t=1

3
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C C Contrastive Captioner (CoCa),
O a Yu et al., 2022.

Flickr30K (1K test set) MSCOCO (5K test set)
Image — Text Text — Image Image — Text Text — Image
Model R@] R@5 R@l10 R@]l R@5 R@10 R@] R@5 R@10 R@1 R@5 R@I10

CLIP [12] 880 987 994 68.7 906 952 584 815 881 37.8 624 722
ALIGN [13] 886 987 997 757 938 968 586 830 897 456 698 78.6
FLAVA [35] 67.7 94.0 - 652 894 - 4277 76.8 - 384 675 -
FILIP [61] 89.8 992 998 750 934 963 613 843 904 459 706 793
Florence [14] 90.9  99.1 - 76.7  93.6 - 64.7 859 - 472 714 -

CoCa-Base 89.8 988 998 76.8 937 96.8 638 8.7 907 475 724 809
CoCa-Large 914 992 999 790 95.1 974 654 856 914 50.1 738 81.8
CoCa 925 995 999 804 957 977 663 862 918 512 742 820

Table 3: Zero-shot image-text retrieval results on Flickr30K [62] and MSCOCO [63] datasets.

Model ImageNet ImageNet-A ImageNet-R ImageNet-V2 ImageNet-Sketch ObjectNet Average
CLIP [12] 76.2 71.2 88.9 70.1 60.2 72.3 74.3
ALIGN [13] 76.4 75.8 92.2 70.1 64.8 72.2 74.5
FILIP [61] 78.3 - - - - - -
Florence [14] 83.7 - - - - - -
LiT [32] 84.5 79.4 93.9 78.7 - 81.1 -
BASIC [33] 85.7 85.6 95.7 80.6 76.1 78.9 83.7
CoCa-Base 82.6 76.4 93.2 76.5 71.7 71.6 78.7
CoCa-Large 84.8 85.7 95.6 79.6 75.7 78.6 83.3
CoCa 86.3 90.2 96.5 80.7 77.6 82.7 85.7

Table 4: Zero-shot image classification results on ImageNet [9], ImageNet-A [64], ImageNet-R [65],
ImageNet-V2 [66], ImageNet-Sketch [67] and ObjectNet [68].



Chameleon

Chameleon: Mixed-Modal Early-
Fusion Foundation Models, Meta,
2024.

Prompt: I’'m bored. Could you show me some cool, quirky-looking birds? Also tell me about them in 2-3
sentences.

Response: Absolutely! Here are three birds with some unique features that
you might find interesting:

Keel-Billed Toucan The Keel-Billed Toucan is a brightly colored bird
native to South American rainforests and woodlands. Its most distinctive
feature is its colorful beak, which can grow up to seven inches long and has a
distinctive, curved shape. The beak is used for plucking fruit from trees and
for social displays. Despite its large size, the Keel-Billed Toucan is a skilled
flyer and can often be seen flitting through the treetops. Here is an image of
this vibrant bird: <img>

Puffin Puffins are small, aquatic birds that are found in the northern hemisphere.
They have distinctive black and white feathers, as well as a brightly colored
beak that is used for attracting mates and defending their territory. Puffins
are known for their distinctive "puffin" call, which sounds like a loud, guttural
chuckle. They feed on fish, which they catch by diving into the water from the
air. Puffins are colonial birds, and they breed in large colonies on rocky cliffs
and islands. Here is an image of this adorable bird: <img>

Golden Pheasant The Golden Pheasant is a brightly colored bird native to the
forests of China. It is a member of the pheasant family and is known for its
g striking plumage, which features a golden-yellow body, red face, and green tail
feathers. The Golden Pheasant is a ground-dwelling bird, and it feeds on a diet
of insects, seeds, and fruits. It is a popular game bird, and is often hunted for
its meat and feathers. In captivity, the Golden Pheasant is sometimes kept as
an ornamental bird, due to its striking appearance. Here is an image of this
beautiful bird: <img>

I hope these images and descriptions have helped to brighten your day! If you have any other questions
or requests, please don’t hesitate to ask.




Chameleon: Mixed-Modal Early-Fusion Foundation
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(a) Mixed-Modal Pre-Training

Figure 1 Chameleon represents all modalities — images, text, and code, as discrete tokens and uses a uniform
transformer-based architecture that is trained from scratch in an end-to-end fashion on ~10T tokens of interleaved
mixed-modal data. As a result, Chameleon can both reason over, as well as generate, arbitrary mixed-modal documents.
Text tokens are represented in green and image tokens are represented in blue.
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Chameleon

2 Pre-Training

Chameleon represents images, in addition to text, as a series of discrete tokens and takes advantage of the
scaling properties of auto-regressive Transformers (Ramesh et al., 2021; Aghajanyan et al., 2022, 2023; Yu
et al., 2023). We present any ordering of images and text during training ranging from text-only, to single
text/image pairs to full interleaved text-image documents.

Prompt: <img> While chameleons are masters of camouflage in the natural
_ world, let’s see how they might fare in a man-made setting.

"\l\\ # 1. Analyze the colors, patterns, and textures in this image and identify the
Tl;; most challenging spot for a chameleon to blend in.

2. Then generate an image of a chameleon with the optimal pattern to

camouflage itself.
3. Then, rate and explain how successful each attempt is on a scale from 1-10.

\ /

< —

Response: The image is of a stop sign in a forested area, with some sunlight filtering through the trees.
The sign has a red octagonal shape with a white border and the word "STOP" written in white letters.
In the background, there are green leaves and trees.

Challenging Spot for a Chameleon: The stop sign would be the most challenging spot for a chameleon
to blend in due to its bright red color and bold white letters, which would stand out in the forested

environment.

Optimal Pattern for Camouflage: To camouflage itself on the stop sign, a chameleon would need
to have a pattern that would break up its outline and make it less conspicuous. A pattern with shades
of brown and red would help the chameleon blend in more effectively.

~__ Additionally, a mottled or dappled pattern would help to scatter

- light and further reduce the chameleon’s visibility.

1 ‘ " <img>

Rating and Explanation: A rating of 2/10 would be given for
the chameleon’s ability to blend in on the stop sign. While the
chameleon’s green and brown pattern helps to break up its outline,
the bright red color of the stop sign will still make it stand out in
« the forested environment.
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Fig: Bordes et al., “An Introduction to Vision-Language Modeling”, 2024.
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Multimodal Few-Shot Learning with

F roze n Frozen Language Models, 2021

Model Completion

This person is
like .

This person is

This person
like .

e T . <E0s>

Model Completion

This was invented by - This was the Wright

invented by brothers. <E0S>

This was invented
by Zacharias
Janssen.

_

Model Completion

= With one of these I With one of these I can
= can drive around a _ | take off from a city and : break into a secure
i track, overtaking : fly across the sky to W‘;th o;e of building, unlock the door
other cars and taking ' somewhere on the other these SR and walk right in <EOS>

corners at speed side of the world

Figure 1: Curated samples with about five seeds required to get past well-known language model
failure modes of either repeating text for the prompt or emitting text that does not pertain to the image.
These samples demonstrate the ability to generate open-ended outputs that adapt to both images and
text, and to make use of facts that it has learned during language-only pre-training.
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Frozen

Multimodal Few-Shot Learning with
Frozen Language Models, 2021

on the water
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} |
Yo Vision || 90 Language Model
Encoder Text Embedder o [FUEEE

o

A small red boat

Figure 2: Gradients through a frozen lan-
guage model’s self attention layers are
used to train the vision encoder.



Multimodal Few-Shot Learning with

F roze n Frozen Language Models, 2021

Blue <EO0S> Steve Jobs . <EO0S> This is a dax . <EOS>
P 1 Pt t 1 r t+ t t t 1
Self Attention Layers ‘ Self Attention Layers Self Attention Layers
Lo errreelr o aeeeeeereeeeeereereeer ) e teereeet ety e e ereeeer )
Vision Text Vision Text Vision Text Vision Text Vision Text Vision Text
Encoder Embedder Encoder Embedder Encoder Embedder Encoder Embedder Encoder Embedder Encoder Embedder

N BB Ouestion: Q: Who Q: Who Thls is a N N9 This is a Question:
; AL What colour invented invented dax. A\ .. ] blicket. What is
A . ;
3 - this? A: this? A: | this?
~ | ¢ is the car~ :
(o =~ Answer: The Wright . Answer:
) brothers. . Yo,

(a) 0-shot VQA (b) 1-shot outside-knowledge VQA (c) Few-shot image classification

Figure 3: Inference-Time interface for Frozen. The figure demonstrates how we can support (a) visual
question answering, (b) outside-knowledge question answering and (c) few-shot image classification

via in-context learning.



Multimodal Few-Shot Learning with

F roze n Frozen Language Models, 2021

Vision Encoder Our vision encoder is based on NF-ResNet-50 [3]. We define vy as a function that
takes a raw image and emits a continuous sequence to be consumed by the transformer. We use the
final output vector of the NF-Resnet after the global pooling layer.

Visual Prefix One important requirement is to represent images in a form that the transformer
already understands: a sequence of continuous embeddings, each having the same dimensionality D
as a token embedding t;. We therefore form the visual prefix by linearly mapping the vision encoder’s
output to D * n channels, and then reshaping the result as a sequence of n embeddings, each with
dimensionality ). We call this sequence a visual prefix since it plays the same functional role in
the transformer architecture as (part of) an embedding sequence of prefix tokens. We experimented
using different number of tokens, specifically 1, 2 and 4 and found that 2 performs best, though
certainly this would be sensitive to other architectural details. See Appendix for more details on the
architecture.



Flamingo

Flamingo: a Visual Language Model
for Few-Shot Learning, Deepmind, 2022

What object are they using? ¢

It looks like a computer.

Is this surprising? &

Yes, it is surprising.

Why is this picture surprising

to you? (&)

I think it is surprising because
teddy bears are not usually
found on the moon.

What is the common thing
about these three images?

(7> They are all flamingos.

What is the difference be-
tween these three images?

The first one is a cartoon, the

second one is a real flamingo,

and the third one is a 3D
(™ model of a flamingo.

(&)

The sticker says "iPod".
Where is the photo taken? ¢

It looks like it’s taken in a
backyard.

Do you think it is printed or
handwritten? (&)

It looks like it’s handwritten.
What color is the sticker? ©

It’s white.

pandas: 3 dogs: 2 — giraffes: 4
J - J
= V- N
, my favourite :
. : ; , my favorite Dreams from
I like reading play is Ha}mlet. I book is — my Father.
also like
< J < J
f 2) 'd A
‘What happens to
the man after
hitting the ball? — he falls down.
Answer:
< J S Y
This is a cityscape. It looks
(> like Chicago.
© ‘What makes you think this is
This is a picture of two teddy Chicago? (&)
bears on the moon. . . . . .
- This is an apple with a sticker I think it’s Chicago because
What are they doing? & onit. of the Shedd Aquarium in the
They are having a What does the sticker say? ¢ (™ background.
conversation.

™ Tower.

What about this one? Which
city is this and what famous
landmark helped you recog-

nise the city? &)
This is Tokyo. I think it’s
Tokyo because of the Tokyo




Vision Encoder: Normalizer-Free ResNet (NFNet)
Perceiver Sampler: Fixed # of queries attend to variable

F | am | neo Flamingo: a Visual Language Model :.(i.rlﬁthcr?f Vi;}:?' tokens.
g for Few-Shot Learning, Deepmind, 2022 - ~hinchifia

Output: text

. Pretrained and frozen .
a very serilous cat.
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1st GATED XATTN-DENSE
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<image> This is a very cute dog.<image> This is

Interleaved visual/text data

1 4 .
This is a very cute dog.
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Figure 3: Flamingo architecture overview. Flamingo is a family of visual language models (VLMs)
that take as input visual data interleaved with text and produce free-form text as output.
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: Flamingo: a Visual Language Model
F | a m I n go for Few-Shot Learning, Deepmind, 2022

(%)4 def gated_xattn_dense(

y, # input language features

X, # input visual features

alpha_xattn, # xattn gating parameter - init at @.

alpha_dense, # ffw gating parameter - init at 8.
):
"""Applies a GATED XATTN-DENSE layer."""

self attention 3
LM layer k=v=[v] 1 t P e=v]

|
1
1
1
1
1
1
1
:
1
1
1
:
1
1
:
|
(iy_ I # 1. Gated Cross Attention
1
:
1
1
1
:
1
1
1
1
|
1
1
1
1
|
1
1

tanh gating y = y + tanh(alpha_xattn) * attention(g=y, kv=x)
1

X ——>  GATED XATTN-DENSE EEW
T

GDA

tanh gating
1

# 2. Gated Feed Forward (dense) Layer

y = y + tanh(alpha_dense) * ffw(y)

# Regular self-attention + FFW on language

. y = y + frozen_attention(g=y, kv=y)
cross attention ~
y =y + frozen_ffw(y)

return y # output visually informed language features
Jkevebal L e=lvl !

Vision Language
input input

Figure 4: GATED XATTN-DENSE layers. To condition the LM on visual inputs, we insert new
cross-attention layers between existing pretrained and frozen LM layers. The keys and values in these
layers are obtained from the vision features while the queries are derived from the language inputs.
They are followed by dense feed-forward layers. These layers are gated so that the LM is kept intact

at initialization for improved stability and performance.
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: Flamingo: a Visual Language Model
F | a m l n gO for Few-Shot Learning, Deepmind, 2022
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Figure 2: Flamingo results overview. Left: Our largest model, dubbed Flamingo, outperforms
state-of-the-art fine-tuned models on 6 of the 16 tasks we consider with no fine-tuning. For the 9
tasks with published few-shot results, Flamingo sets the new few-shot state of the art. Note: We omit
RareAct, our 16th benchmark, as it is a zero-shot benchmark with no available fine-tuned results to
compare to. Right: Flamingo performance improves with model size and number of shots.

70



BLIP

BLIP: Bootstrapping Language-Image Pre-training for Unified
Vision-Language Understanding and Generation, Salesforce, 2022.

“blue sky bakery in
sunset park ”

“chocolate cake
with cream frosting
and chocolate
sprinkles on top”

Figure 1. We use a Captioner (Cap) to generate synthetic captions
for web images, and a Filter (Filt) to remove noisy captions.
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B I_l P BLIP: Bootstrapping Language-Image Pre-training for Unified
Vision-Language Understanding and Generation, Salesforce, 2022.
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Image [ Bi Self-Att ] { Bi Self-Att ] [ Causal Self-Att ]
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Encoder “leLs)+( ) Text encoder “[Encode] +(__ )" Text decoder “IDecode] +(___)”

*
'\[ “a little girl holding a kitten next to a blue fence” ]/v

Figure 2. Pre-training model architecture and objectives of BLIP (same parameters have the same color). We propose multimodal mixture
of encoder-decoder, a unified vision-language model which can operate in one of the three functionalities: (1) Unimodal encoder is
trained with an image-text contrastive (ITC) loss to align the vision and language representations. (2) Image-grounded text encoder uses
additional cross-attention layers to model vision-language interactions, and is trained with a image-text matching (ITM) loss to distinguish
between positive and negative image-text pairs. (3) Image-grounded text decoder replaces the bi-directional self-attention layers with
causal self-attention layers, and shares the same cross-attention layers and feed forward networks as the encoder. The decoder is trained
with a language modeling (LM) loss to generate captions given images.
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B I_l P BLIP: Bootstrapping Language-Image Pre-training for Unified
Vision-Language Understanding and Generation, Salesforce, 2022.
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1
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Figure 3. Learning framework of BLIP. We introduce a captioner to produce synthetic captions for web images, and a filter to remove
noisy image-text pairs. The captioner and filter are initialized from the same pre-trained model and finetuned individually on a small-scale
human-annotated dataset. The bootstrapped dataset is used to pre-train a new model.
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BLIP-2

BLIP-2: Bootstrapping Language-lmage Pre-training with Frozen
Image Encoders and Large Language Models, Salesforce, 2023.

Vision-and-Language
Representation Learning

Vision-to-Language
Generative Learning

Q-Former
Querying Transformer
5 ; that goes along this photo.
Love is like a sunset, it's
00-8@) Text hard to see it coming but
when it does it’s so beautiful.

Bootstrapping Pre-trained
Image Models

Bootstrapping Pre-trained
Large Language Models (LLMs)

I
I
I
I
|
I
I
I
I
I
I
_ l
I
Write a romantic message |
I
I
I
|
I
I
I
I
I
I
I
|
|
I
I

1

1

1

:

. 1
Queries I
1

1

1

1

1

Figure 1. Overview of BLIP-2’s framework. We pre-train a
lightweight Querying Transformer following a two-stage strat-
egy to bridge the modality gap. The first stage bootstraps vision-
language representation learning from a frozen image encoder. The
second stage bootstraps vision-to-language generative learning
from a frozen LLM, which enables zero-shot instructed image-to-
text generation (see Figure 4 for more examples).
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BLIP-

Input Image

%

Encoder

BLIP-2: Bootstrapping Language-lmage Pre-training with Frozen
Image Encoders and Large Language Models, Salesforce, 2023.
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Figure 2. (Left) Model architecture of Q-Former and BLIP-2’s first-stage vision-language representation learning objectives. We jointly
optimize three objectives which enforce the queries (a set of learnable embeddings) to extract visual representation most relevant to the
text. (Right) The self-attention masking strategy for each objective to control query-text interaction.
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B Ll P BLIP-2: Bootstrapping Language-lmage Pre-training with Frozen
Image Encoders and Large Language Models, Salesforce, 2023.
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(e.g. OPT) i A 4
) (Do-oo) (Do-oo)
Input Image Learned Queries
, * (DO0-00 Suffix Text ( wearing sunglasses |
Bootstrapping from an .S [}

Encoder-Decoder-based %! . Image . Fully
Large Language Model ﬁ 4 Encoder [ Q-Former J Bareeies - LLM Decoder
ik

(e.g. FlanTb) )

) (oo-oo) \»[D 0-00)(acat |
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Figure 3. BLIP-2’s second-stage vision-to-language generative pre-training, which bootstraps from frozen large language models (LLMs).
(Top) Bootstrapping a decoder-based LLM (e.g. OPT). (Bottom) Bootstrapping an encoder-decoder-based LLM (e.g. FlanT5). The
fully-connected layer adapts from the output dimension of the Q-Former to the input dimension of the chosen LLM.
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Segment Anything Model (SAM) 2o

Segment Anything
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Tete Xiao®  Spencer Whitehead  Alexander C. Berg ~ Wan-YenLo  Piotr Dollir*  Ross Girshick*
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1 image Segment Anything 1B (SA-1B):
— - encoder
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segmentation prompt image prompt image
(a) Task: promptable segmentation (b) Model: Segment Anything Model (SAM) (c) Data: data engine (top) & dataset (bottom)

Figure 1: We aim to build a foundation model for segmentation by introducing three interconnected components: a prompt-
able segmentation zask, a segmentation model (SAM) that powers data annotation and enables zero-shot transfer to a range
of tasks via prompt engineering, and a data engine for collecting SA-1B, our dataset of over 1 billion masks.
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(a) Task: promptable visual segmentation  (b) Model: Segment Anything Model 2

Figure1 We introduce the Segment Anything Model 2 (SAM 2), towards solving the promptable visual segmentation
task (a) with our foundation model (b), trained on our large-scale SA-V dataset collected through our data engine (c).

SAM 2 is capable of interactively segmenting regions through prompts (clicks, boxes, or masks) on one or multiple
video frames by utilizing a streaming memory that stores previous prompts and predictions.
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Figure 1: SEEM supports generic segmentation tasks—including semantic, instance, and panoptic
segmentation—in an open-set fashion when no prompt is provided. SEEM also enables the use of
visual, textual, and referring region prompts in flexbile combinations, making it a promptable and
interactive segmentation interface.
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INTERNVIDEOZ2: SCALING FOUNDATION MODELS FOR
MULTIMODAL VIDEO UNDERSTANDING
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Figure 2: Framework of InternVideo2. It consists of three consecutive training phases: unmasked video token
reconstruction, multimodal contrastive learning, and next token prediction. In stage 1, the video encoder 1s trained from
scratch, while in stages 2 and 3, it is initialized from the version used in the previous stage.

Stage 1: Reconstructing Unmasked Video Tokens
Stage 2: Aligning Video to Audio-Speech-Text
Stage 3: Predicting Next Token with Video-Centric Inputs
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INTERNVIDEOZ2: SCALING FOUNDATION MODELS FOR
MULTIMODAL VIDEO UNDERSTANDING
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ero-Shot T2y Rt oval A: It seems like the robotic arm is drawing a heart on the latte.

Figure 1: InternVideo2 yields strong transferable visual and visual-linguistic representations across a total of 70 video
understanding tasks, ranging from action recognition, video-text understanding, to video-centric dialogue. It also
exhibits capability of long-form video understanding and procedure-aware reasoning.

82



	Slide 1: CENG501 – Deep Learning
	Slide 2: ViT: Architecture
	Slide 3: Swin Transformer v1
	Slide 4
	Slide 5
	Slide 6: Swin Transformer v1
	Slide 7: Swin Transformer v2
	Slide 8
	Slide 9: Swin Transformer v2
	Slide 10: ConvNeXt v1
	Slide 11: ConvNeXt v2
	Slide 12: ConvNeXt v2
	Slide 13: Fast ViT
	Slide 14: Faster ViT
	Slide 15
	Slide 16: Today
	Slide 17: Administrative Notes
	Slide 18: Pretraining Vision Transformers
	Slide 19: Masked Autoencoders
	Slide 20: Masked Autoencoders
	Slide 21: Masked Autoencoders
	Slide 22: SimMIM
	Slide 23: DINO v1 & v2 (ICCV’21 & TMLR’24)
	Slide 24: DINO v1 & v2 (ICCV’21 & TMLR’24)
	Slide 25: ViViT
	Slide 26: ViViT
	Slide 27: VideoMAE
	Slide 28: Vision-Language Models
	Slide 29: Earlier Attempts: 
	Slide 30: Earlier Attempts: 
	Slide 31: Earlier Attempts: 
	Slide 32: Earlier Attempts: 
	Slide 33: Earlier Attempts: 
	Slide 34: Overview
	Slide 35: Overview
	Slide 36: Contrastive Approaches
	Slide 37: CLIP
	Slide 38: ConVIRT
	Slide 39: ConVIRT
	Slide 40: CLIP
	Slide 41: CLIP: Dataset
	Slide 42: CLIP: Efficiency
	Slide 43: CLIP: Method
	Slide 44: CLIP: Architecture
	Slide 45: CLIP: Training
	Slide 46: CLIP: Results
	Slide 47: CLIP: Results
	Slide 48: CLIP: Results
	Slide 49: CLIP: Results
	Slide 50: CLIP: Extensions
	Slide 51: Masking Approaches
	Slide 52: FLAVA
	Slide 53: FLAVA
	Slide 54: FLAVA: Results
	Slide 55: Generative Approaches
	Slide 56: CoCa 
	Slide 57: CoCa 
	Slide 58: CoCa 
	Slide 59: Chameleon
	Slide 60: Chameleon
	Slide 61: Chameleon
	Slide 62: Approaches Using  Pre-trained Backbones
	Slide 63: Frozen
	Slide 64: Frozen
	Slide 65: Frozen
	Slide 66: Frozen
	Slide 67: Flamingo
	Slide 68: Flamingo
	Slide 69: Flamingo
	Slide 70: Flamingo
	Slide 71: BLIP
	Slide 72: BLIP
	Slide 73: BLIP
	Slide 74: BLIP-2
	Slide 75: BLIP-2
	Slide 76: BLIP-2
	Slide 77: Misc
	Slide 78: Segment Anything Model (SAM)
	Slide 79: Segment Anything Model (SAM) v2
	Slide 80: Segment Everything Everywhere All At Once
	Slide 81: INTERNVIDEO2: SCALING FOUNDATION MODELS FOR MULTIMODAL VIDEO UNDERSTANDING
	Slide 82: INTERNVIDEO2: SCALING FOUNDATION MODELS FOR MULTIMODAL VIDEO UNDERSTANDING

