CENG501 — Deep Learning

Week 11
Fall 2024

Sinan Kalkan

Dept. of Computer Engineering, METU

QY

6‘0
I\/Ig%‘ked Autoencoders

o
AN

encoder

~
Vi
=
v
i
r
B
R

v
HEEE-EENEENEEEEEE
|
HEN - IIII-‘IIIIIIII

Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches (e.g., 75%) is masked out. The
encoder is applied to the small subset of visible patches. Mask
tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens 1s processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder is discarded and the encoder is applied to uncorrupted
images (full sets of patches) for recognition tasks.

MSE loss between pixels for masked tokens only!

Masked Autoencoders Are Scalable Vision Learners

Kaiming He*! Xinlei Chen* Saining Xie Yanghao Li Piotr Dolldr Ross Girshick
*equal technical contribution 1‘pmjecl lead

Facebook Al Resecarch (FAIR) CVP R 20 22

original mask 75% mask 85% mask 95%

Figure 4. Reconstructions of ImageNet validation images using
an MAE pre-trained with a masking ratio of 75% but applied on
inputs with higher masking ratios. The predictions differ plausibly
from the original images, showing that the method can generalize.

e"&
SigMIM
&"&

One-layer Prediction Head

Encoder
(e.g., ViT, Swin)

Figure 1. An illustration of our simple framework for masked lan-
guage modeling, named SimMIM. It predicts raw pixel values of
the randomly masked patches by a lightweight one-layer head, and
performs learning using a simple #; loss.

SimMIM: a Simple Framework for Masked Image Modeling
CVPR 2022

Zhenda Xie'* Zheng Zhang?® Yue Cao*’
Yutong Lin® Jianmin Bao?® Zhuliang Yao! Qi Dai?> Han Hu**
ITsinghua University ?Microsoft Research Asia 3Xi’an Jiaotong University

{tfzhxie, zhez, yuecao, t-yutonglin, jianmin.bao,t-zhuyao,gid, hanhu}@microsoft .com

Input| Fine-tuning Linear eval Pre-training
Size [Top-1 acc (%) Top-1 acc (%) costs
Sup. baseline [/]|224° 81.8

Methods

DINO['] [224? 82.8 78.2 2.0x
MoCo v3 [7] [2242 83.2 76.7 1.8x
ViT [19] 3842 79.9 - ~4.0%
BEIiT [] 2242 83.2 56.7 1.5xT
Ours 2242 83.8 56.7 1.0x

Table 6. System-level comparison using ViT-B as the encoder.
Training costs are counted in relative to our approach. T BEiT re-
quires an additional stage to pre-train dVAE, which is not counted.

XoFTR: Cross-modal Feature Matching Transformer CVPR Workshops 2024

Onder Tuzcuoglu'® Aybora Koksal'® Bugra Sofu* Sinan Kalkan?? A. Aydin Alatan'?
! Dept. of Electrical and Electronics Eng. 2 Dept. of Computer Eng.
3 Center for Image Analysis, Middle East Technical University, Ankara, Turkey
4 ROKETSAN Inc., Ankara, Turkey

Masked Image Reconstructed Image

XoFTR (Ours)
TIR

LoFTR
Visible (gray)

Figure 1. Our XoFTR provides significant improvements over : : 5 o2 ; :
TFTR [69] on visibles and Genmdl inmes pais, Only ibe inkier Figure 3. Visualization of reconstructed images using MIM pretext

matches after RANSAC are shown, and matches with epipolar er- task. Input images are from [39].
ror below 5 x 10~ * are drawn in green.

&4\0
4

o

<
Dl(l‘ﬁ) vl & v2 (ICCV'21 & TMLR’24)
N

loss:
@ - p2 log p1 @
| softmax |

5g

centering
|

ema

student ggs —> | teacher gg

Figure 2: Self-distillation with no labels. We illustrate DINO in
the case of one single pair of views (x1, x2) for simplicity. The
model passes two different random transformations of an input
image to the student and teacher networks. Both networks have
the same architecture but different parameters. The output of the

teacher network is centered with a mean computed over the batch.

Each networks outputs a K dimensional feature that is normalized
with a temperature softmax over the feature dimension. Their
similarity is then measured with a cross-entropy loss. We apply a
stop-gradient (sg) operator on the teacher to propagate gradients
only through the student. The teacher parameters are updated with
an exponential moving average (ema) of the student parameters.

Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

gs, gt: student and teacher networks
C: center (K)
tps, tpt: student and teacher temperatures

1; m:

network and center momentum rates

gt.params = gs.params
for x in loader: # load a minibatch x with n samples

x1,

sl,
j 1 Y8

X2 = augment (x), augment (x) # random views

s2
t2

gs(x1), gs(x2) # student output n-by-K
gt (x1), gt (x2) # teacher output n-by-K

loss = H(tl, s2)/2 + H(t2, sl)/2
loss.backward() # back-propagate

student, teacher and center updates
update (gs) # SGD
gt.params = lxgt.params + (1l-1)*gs.params

C = mxC + (1-m)xcat ([tl, t2]) .mean(dim=0)
def H(t, s):
t = t.detach() # stop gradient
s = softmax(s / tps, dim=1)
t = softmax((t - C) / tpt, dim=1) # center + sharpen
return - (t * log(s)) .sum(dim=1) .mean()

() VideoMAE: Masked Autoencoders are Data-Efficient

\/ . S‘E I\/l E Learners for Self-Supervised Video Pre-Training

lci M NeurIPS 2022
Zhan Tong '2* Yibing Song? Jue Wang? Limin Wang "1
oo !State Key Laboratory for Novel Software Technology, Nanjing University
2Tencent Al Lab 3Shanghai Al Lab
9* tongzhan@smail.nju.edu.cn {yibingsong. cv, arphid}@gmail. com lmwang@nju.edu.cn
'\0\)

__Time | Time | Time Time
d 4 4 4 "%

—h P e
P PP & ‘B
A g
E'E

g " . ’ . ’ Target video clip
Downsampled video clip Tube masking with an extremely high ratio Tokens w/o [M]

Encoder —_— Decoder

keeping masking

Figure 1: VideoMAE performs the task of masking random cubes and reconstructing the missing ones
with an asymmetric encoder-decoder architecture. Due to high redundancy and temporal correlation
in videos, we present the customized design of tube masking with an extremely high ratio (90% to
95%). This simple design enables us to create a more challenging and meaningful self-supervised
task to make the learned representations capture more useful spatiotemporal structures.

QY

Ne)
Vlﬁan—Language Models: Overview
N

\)
04 Object Localization
Q\
Zero-shot Segmentation

Segment: striped cat

Zero-shot Visual QA Vision
What is the breed of Language
these cats? Model

The cats in the image appear

. . . to be domestic shorthair cats.
One-shot Learning with Instructions

Striped cats are called tabby The cats in the image are tabby cats.
cats. What is the breed of —— Tabby cats are a common domestic
the cats in the image? “—— cat breed and are characterized by
their distinctive coat pattern, stripes
on the body, and a ringed tail.

Fig: https://huggingface.co/blog/vims

QY

‘o

VILBERT: Pretraining Task-Agnostic Visiolinguistic

E %ﬁ' ler Atte m pt S. = Representations for Vision-and-Language Tasks
\-\\o 2019

< |
b bl -t Man shopping . Aligned / Not Aligned
i3 bt il

v |[P |[o |[P | [oo | [|[P |[P | [Fowa | oo [B | (g | (o,][o,][vy o [,[g | (| [B, [oy | [y

Vision & Language BERT Vision Language BERT
dﬁ <MASK> ’- .. } eee | <MASK> | [<CLS> L<MASK> <MASK> J‘ for ’"- <SEP> & L : Wy W""‘Fr - <CLS> H hopp QH or ’... bﬂb

(a) Masked multi-modal learning (b) Multi-modal alignment prediction

Figure 3: We train VILBERT on the Conceptual Captions [24] dataset under two training tasks to
learn visual grounding. In masked multi-modal learning, the model must reconstruct image region
categories or words for masked inputs given the observed inputs. In multi-modal alignment prediction,
the model must predict whether or not the caption describes the image content.

Q\, VISUALBERT: A SIMPLE AND PERFORMANT
oY BASELINE FOR VISION AND LANGUAGE

N
E @ﬁ‘ | e r Att e m pt S ' Liunian Harold Lif, Mark Yatskar*, Da Yin®, Cho-Jui Hsieh! & Kai-Wei Chang'
AN

TUniversity of California, Los Angeles
*Allen Institute for Artificial Intelligence

°Peking University 2019
Objective 2 Objective 1
o i
e’ e’ e’n-1 e'n 1 . i 'k
-~
f)
Transformer
_ Y,
-
€1 ez eN-1 en fi f2 f f
4+ 4+ 4+ O+ 4+ O+ 4+ <+
I I N N [[Position
I OO T [| — Segment
| il] |] [] |]I] Token/Image
> > o - - o e
- - - -\. |
A person hits a ball with a tennis racket [CLS] a [MASK] [SEP] @J

Figure 2: The architecture of VisualBERT. Image regions and language are combined with a Trans-
former to allow the self-attention to discover implicit alignments between language and vision. It

is pre-trained with a masked language modeling (Objective 1), and sentence-image prediction task
(Objective 2), on caption data and then fine-tuned for different tasks. See §3.3 for more details.

Bordes et al., “An Introduction to
Vision-Language Modeling”, 2024.
https://arxiv.org/pdf/2405.17247

A photo of a bird
Image
Encoder

A photoofa

A photo of a cat

......

A photo
l ! mege |8 Kl
o0 Encoder
= -2
Au‘) N Decoder
§ 28 Text _ Image
. Encoder I " v Encoder
<< © .
Fill masked images given text

o 9>
Gl Text-to-Image Image-to-Text -
L - o g‘
:'hg Generator Generator Q8

Image Mapping
Encoder Network

Learning Transferable Visual Models From Natural Language Supervision

C Loﬁ Alec Radford*! Jong Wook Kim ! Chris Hallacy ! Aditya Ramesh! Gabriel Goh! Sandhini Agarwal !

* Girish Sastry! Amanda Askell! Pamela Mishkin! Jack Clark! Gretchen Krueger' Ilya Sutskever !
N 2021
°
Q¥
(1) Contrastive pre-training (2) Create dataset classifier from label text
Pepper the ‘H&H\\%\k%w Y
aussie pup > Text 8 A photo of s Text
Encoder o "l a {object}. "1 Encoder
T \ \ 4
T, | T, | Ts &N
ird
> I Ty | 1,1, | 1Ty 0 o 1T -
ol B PN (3) Use for zero-shot prediction - v
\‘ » b LTy | Ty | 1Ty I Ty \\\\\—\\\\7 T, T, T3 TN
Image

I3Ty | I3T, | 13Ty I'Tn Image T
I LT | L1'Ty | I T - I
Encoder : P12 b

Encoder

\ 4

v i
>
-

A photo of
a dog.

\ 4
z

11

CLIP¢Results

cf‘§

StanfordCars +28.9
O
(o)

Country211
Foodl01l +22.5

0\\\ Kinetic gg?_g

4\0 SUN397
> UCF101

Q’(HatefulMemes

ImageNet i|+1.9
OxfordPets i+ 1.1
PascalvOC2007|+0.5

. Birdsnap
MNIST
FGVCAircraft
RESISC45
Flowers102
DTD
CLEVRCounts
GTSRB
PatchCamelyon
KITTI Distance
EuraSIAT | | |

—-40 -30 -20 -10 O 10 20 30 40

A Score (%)
Zero-Shot CLIP vs. Linear Probe on ResNet50

Figure 5. Zero-shot CLIP is competitive with a fully super-
vised baseline. Across a 27 dataset eval suite, a zero-shot CLIP
classifier outperforms a fully supervised linear classifier fitted on
ResNet-50 features on 16 datasets, including ImageNet.

75
Linear Probe CLIP
70
65 1Zero-Shot BiT-M (ImageNet-21K
+ CLIP |
60 ImMCLRu2
&
g 55 ResNet50
&
&
g 50
S
< 45 -
40
35+
30’ T T T T
0 1 4 8 16

2
of labeled training examples per class

Figure 6. Zero-shot CLIP outperforms few-shot linear probes.
Zero-shot CLIP matches the average performance of a 4-shot linear
classifier trained on the same feature space and nearly matches the
best results of a 16-shot linear classifier across publicly available
models. For both BiT-M and SimCLRv2, the best performing
model is highlighted. Light gray lines are other models in the eval
suite. The 20 datasets with at least 16 examples per class were
used in this analysis.

Q\' GC: Global Contrastive Loss (same as CLIP)

\)‘(5* === 7 lec €---_
i\o f"frﬂ multimodal task heads ‘HH‘“
z Py T
Q¢

vision task heads py NLP task heads

. LY
/ Lvmam, Lt <~ . multimodal encoder
ImageNet [, \ m
’ T § =)
L < ,
~ / v ~=» Lwmum
| o - - e
\ -~

[y ! image encoder i’ text encoder
e |
= T

was making his daily cleaning
[input image] » [CLs_]] m on an ancient grave as to say »

“I am the boss here!”

This cat was wonderfull He

Figure 2. An overview of our FLAVA model, with an image encoder transformer to capture unimodal image representations, a text
encoder transformer to process unimodal text information, and a multimodal encoder transformer that takes as input the encoded unimodal
image and text and integrates their representations for multimodal reasoning. During pretraining, masked image modeling (MIM) and
mask language modeling (MLM) losses are applied onto the image and text encoders over a single image or a text piece, respectively,
while contrastive, masked multimodal modeling (MMM), and image-text matching (ITM) loss are used over paired image-text data. For
downstream tasks, classification heads are applied on the outputs from the image, text, and multimodal encoders respectively for visual
recognition, language understanding, and multimodal reasoning tasks.

13

Multimodal
Text Decoder

T

Image Unimodal

Encoder Text Decoder
I I
image text
Pretraining

Contrastive Captioner (CoCa),
Yu et al., 2022.

classification

l

Image

' =:> Encoder
!

image

Visual Recognition
(single-encoder models)

alignment

N

Image Unimodal

Encoder Text Decoder
image text

Crossmodal Alignment
(dual-encoder models)

image captioning &
multimodal representation

t

Multimodal
Text Decoder

Image Unimodal
Encoder Text Decoder
image text
Image Captioning &

Multimodal Understanding
(encoder-decoder models)

Zero-shot, frozen-feature or finetuning

14

S
?% Chameleon: Mixed-Modal Early-Fusion Foundation
C ha’ e ‘ e O n Models, Meta, 2024.
o(\
AN

S DPEDDE

Q‘Q f f f y Y

(7 %

“Here is a recipe for
banana bread.”

K TEXT OUTPUT)

Mixed-Modal Auto-Regressive LM

DU 00D

A

Mixed Modal Auto-Regressive LM

Y A A A

=000ECD

(b) Mixed-Modal Generation

“What can | bake
with this?”

& Wy
__ IMAGE PROMPT

|
LIT
i

TEXT PROMPT /

—
—/
M)
—
S
—
M

(a) Mixed-Modal Pre-Training

Figure 1 Chameleon represents all modalities — images, text, and code, as discrete tokens and uses a uniform
transformer-based architecture that is trained from scratch in an end-to-end fashion on ~10T tokens of interleaved

mixed-modal data. As a result, Chameleon can both reason over, as well as generate, arbitrary mixed-modal documents.

Text tokens are represented in green and image tokens are represented in blue.

15

,\' 2 Pre-Training
Chameleon represents images, in addition to text, as a series of discrete tokens and takes advantage of the
C h m ‘ scaling properties of auto-regressive Transformers (Ramesh et al., 2021; Aghajanyan et al., 2022, 2023; Yu
a' e e O n et al., 2023). We present any ordering of images and text during training ranging from text-only, to single

text/image pairs to full interleaved text-image documents.

Prompt: While chameleons are masters of camouflage in the natural
world, let’s see how they might fare in a man-made setting.
Q WEPE T # 1. Analyze the colors, patterns, and textures in this image and identify the
R ! Tt;: most challenging spot for a chameleon to blend in.
g ‘ 2. Then generate an image of a chameleon with the optimal pattern to
camouflage itself.
3. Then, rate and explain how successful each attempt is on a scale from 1-10.

N\
an |

N o

Response: The image is of a stop sign in a forested area, with some sunlight filtering through the trees.
The sign has a red octagonal shape with a white border and the word "STOP" written in white letters.
In the background, there are green leaves and trees.

Challenging Spot for a Chameleon: The stop sign would be the most challenging spot for a chameleon
to blend in due to its bright red color and bold white letters, which would stand out in the forested
environment.

Optimal Pattern for Camouflage: To camouflage itself on the stop sign, a chameleon would need
to have a pattern that would break up its outline and make it less conspicuous. A pattern with shades
of brown and red would help the chameleon blend in more effectively.

~__ Additionally, a mottled or dappled pattern would help to scatter

Rating and Explanation: A rating of 2/10 would be given for
the chameleon’s ability to blend in on the stop sign. While the
chameleon’s green and brown pattern helps to break up its outline,
the bright red color of the stop sign will still make it stand out in
s the forested environment.

Multimodal Few-Shot Learning with
Frozen Language Models, 2021

on the water

t t t t t t

f 0 Language Model
Self Attention Layers 7
A i nl A A A A A A
L JeJeJeJt ot Je Je Je
} |
Yo Vision || 90 Language Model
Encoder Text Embedder o [FUEEE

o

A small red boat

Figure 2: Gradients through a frozen lan-
guage model’s self attention layers are
used to train the vision encoder.

17

Q\' Vision Encoder: Normalizer-Free ResNet (NFNet)
\e) Perceiver Sampler: Fixed # of queries attend to variable

*$$° length of visual tok

F | a(?h . N Flamingo: a Visual Language Model L‘i_ﬁ_‘ cr?' VII:}:Ia tokens.
o l go for Few-Shot Learning, Deepmind, 2022 +hinehtia

AN

Output: text

. Pretrained and frozen .
a very serilous cat.

Trained from soraten —

.

| . n-th GATED XATTN-DENSE
Perceiver Perceiver :

s NSRS S ek

1st GATED XATTN-DENSE

Processed text T

<image> This is a very cute dog.<image> This is

Interleaved visual/text data

1 4 .
This is a very cute dog.

* | This is

Figure 3: Flamingo architecture overview. Flamingo is a family of visual language models (VLMs)
that take as input visual data interleaved with text and produce free-form text as output.

18

BLIP-2: Bootstrapping Language-lmage Pre-training with Frozen
Image Encoders and Large Language Models, Salesforce, 2023.

Vision-and-Language
Representation Learning

Q-Former
—
Querying Transformer

Vision-to-Language
Generative Learning

-

I
I
I
I
|
I
I
I
I
I
I
:
I
— G .

Write a romantic message |
I
I
I
|
I
I
I
I
I
I
I
|
|
I
I

that goes along this photo.

f f
Love is like a sunset, it's
00-8@) Text hard to see it coming but
when it does it’s so beautiful.

Bootstrapping Pre-trained
Image Models

Bootstrapping Pre-trained
Large Language Models (LLMs)

Queries i
Figure 1. Overview of BLIP-2’s framework. We pre-train a
lightweight Querying Transformer following a two-stage strat-
egy to bridge the modality gap. The first stage bootstraps vision-
language representation learning from a frozen image encoder. The
second stage bootstraps vision-to-language generative learning
from a frozen LLM, which enables zero-shot instructed image-to-
text generation (see Figure 4 for more examples).

19

QY

oY
B L¢F§ BLIP-2: Bootstrapping Language-lmage Pre-training with Frozen
) Image Encoders and Large Language Models, Salesforce, 2023.

N
\)‘5
°
,(?/
R 5 . % (ODo-oo Output Text | a cat wearing sunglasses |
ootstrapping from a . i
Decoder-based ‘E%' I |mage N [Q-Former [Fully] % LLM Decoder
Large Language Model Encoder Connected
e.g. OP i f)
(e.g. OPT)
) (Do-oo) (Do-oo)
Input Image Learned Queries
s (@o-m D]—\ Suffix Text (wearing sunglasses |
)

Bootstrapping from an u.;mﬂ_i,.
Encoder-Decoder-based %? g |mage . Fully
Large Language Model ﬁ L4 Encoder [Q-Former J {Connected m % LLM Decoder
ik

(e.g. FlanTb))

) (oo-oo) \»[D 0-00)(acat |

Input Image Learned Queries Prefix Text

Figure 3. BLIP-2’s second-stage vision-to-language generative pre-training, which bootstraps from frozen large language models (LLMs).
(Top) Bootstrapping a decoder-based LLM (e.g. OPT). (Bottom) Bootstrapping an encoder-decoder-based LLM (e.g. FlanT5). The
fully-connected layer adapts from the output dimension of the Q-Former to the input dimension of the chosen LLM.

20

o

<
S§g‘r$nent Anything Model (SAM) 2
ANY

Segment Anything

Nikhila Ravi'*?> Hanzi Mao? Chloe Rolland® Laura Gustafson?

Alexander Kirillov!'>? Eric Mintun?
Wan-Yen Lo Piotr Dollar? Ross Girshick?

Tete Xiao® Spencer Whitehead Alexander C. Berg

!project lead %joint first author 3equal contribution 4directional lead
Meta Al Research, FAIR
valid mask |—> annotate —l
lightweight mask decoder model data
1 L o —
model
P& imzﬁe Segment Anything 1B (SA-1B):
encoder
s — : * 1+ billion masks [E——wEwe
. * D cat with :;2:;‘; l ‘ * 11 million images 4
. black ears * privacy respecting ﬁ ‘ wj'
T ‘ T * licensed images /| el
segmentation prompt image prompt image
(c) Data: data engine (top) & dataset (bottom)

(a) Task: promptable segmentation (b) Model: Segment Anything Model (SAM)

Figure 1: We aim to build a foundation model for segmentation by introducing three interconnected components: a prompt-
able segmentation zask, a segmentation model (SAM) that powers data annotation and enables zero-shot transfer to a range
of tasks via prompt engineering, and a data engine for collecting SA-1B, our dataset of over 1 billion masks.

21

<>°\’

Sgeé‘ment Anything Model (SAM) v2 2o

&
Q video & prompts in one or multiple frames - prompt video frame
| ’—> annotate j

Sl T B! B
o I!‘ 1n : 1 - ¥
ll - l (P = : ;11113:)%121' model data -

bo skipped oints mask
X (skipp)\L p ~ train (—‘ :
prompt memory memory
ﬂ
: 3
-”
| 4

model ---ooooo encoder attention ~ bank SA-V Dataset
(c) Data: data engine and dataset

4 » 642.6 K masklets
* 35.5 M masks

o A &) | _) mask J . .
1... 1% deor o e
|
v
object segmentation throughout the video - ----valid object mask on each frame
(a) Task: promptable visual segmentation (b) Model: Segment Anything Model 2

Figure1 We introduce the Segment Anything Model 2 (SAM 2), towards solving the promptable visual segmentation

task (a) with our foundation model (b), trained on our large-scale SA-V dataset collected through our data engine (c).

SAM 2 is capable of interactively segmenting regions through prompts (clicks, boxes, or masks) on one or multiple
video frames by utilizing a streaming memory that stores previous prompts and predictions.

22

Today

CENG796 DEEP GENERATIVE MODELS

Course Code: 5710796
o METU Credit (Theoretical-Laboratory hours/week): 3(3-0)
* (Deep) Generative Models
(Department: Computer Engineering
o Language of Instruction: English
e Auto regressive models Level of Study: Graduate
Course Coordinator: Assoc.Prof.Dr. RAMAZAN GOKBERK CINBIS
Offered Semester: Fall Semesters.

* Variational AEs
F I OW M O d e | S At the end of the course, the students will be expected to:
* Generative Adversarial Networks Comonhnda ety of o s o

o E n e rgy— b a S e d IVl O d e | S * Know the c?pen.issues in learning deep generative models, and have a grasp of the current
research directions.
L] L]
* Diffusion Models

Course Objectives

Course Content

Deep generative modeling with Autoregressive models; Energy-based models; Adversarial models; Variational

models.

23

Administrative Notes

* New quiz this week
* Deadline: Thursday midnight

* Time plan for the projects

3. Milestone (January 5, midnight)
* Final report (Readme file)
e Repo with all code & trained models

24

Overview & Problem Formulation

Supervised

Label

unhappy
Extract

Features
unhappy

Learn a
unhappy

Extract
Features

Learn a
model

https://machinelearningmastery.com/plot-a-decision-surface-for-machine-learning/
https://figshare.com/articles/journal_contribution/jaffe_desc_pdf/5245003

Q
P
)

(qe)
=

&
-

O
0
O

Figs: learnopenc

Unsupervised Learning via Density Estimation

1-d density estimation

2-d density estimation

Modeling p(x) 2 ey g e

Figure: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

29

Generative Modeling

* Learning the probability distribution of data

e - g

Training data ~ pyata(X)
Objectives:

1. Learn p.q4el(X) that approximates pya¢,(X)
2. Sampling new x from pmogel(X)

Figure: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

31

Generative Modeling

* Learning the probability distribution of data

Po = Pmodel

d(pdatar pﬂ)
.4_

Pdata

Po

0 eEM

Model family

Figure: https://deepgenerativemodels.github.io/notes/introduction/ .

Why Generative Modeling?

- Realistic samples for artwork, super-resolution, colorization, etc.

- Learn useful features for downstream tasks such as classification.

- Getting insights from high-dimensional data (physics, medical imaging, etc.)

- Modeling physical world for simulation and planning (robotics and reinforcement
learning applications)

- Many more...

s from L-R are copyright: (1) AlecRadford etal 2016; (2) Phillipisolaetal 2017 Reproduced with authors permission (3) BAIRBIog

33

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Generative Modeling: State of the Art

* Image Generation -- Midjourney
* https://clickup.com/blog/midjourney-prompt-examples/

* Video Generation -- OpenAl
* https://openai.com/index/video-generation-models-as-world-simulators/

e Audio Generation -- Stable audio
* https://stableaudio.com/

e “World” Generation -- Genie 2

* https://deepmind.google/discover/blog/genie-2-a-large-scale-foundation-
world-model/

34

https://clickup.com/blog/midjourney-prompt-examples/
https://openai.com/index/video-generation-models-as-world-simulators/
https://stableaudio.com/
https://deepmind.google/discover/blog/genie-2-a-large-scale-foundation-world-model/
https://deepmind.google/discover/blog/genie-2-a-large-scale-foundation-world-model/

Generative Modeling

* Learning the probability distribution of data

J‘ leag‘é [pmodel(x } Sgp“&g J‘

Training data ~ pyata(X

Formulate as density estimation problems:
- Explicit density estimation: explicitly define and solve for pyogel(X)
- Implicit density estimation: learn model that can sample from p,0q4e1(X) Without
explicitly defining it.

Figure: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

35

Taxonomy of Generative Models

Direct

Generative models

.-—//'\.

Explicit density

GAN

Implicit density

T

\>

Tractable density

Approximate density

Markov Chain

Fully Visible Belief Nets

T

- NADE
- MADE

GSN

Variational

- PixelRNN/CNN
- NICE / RealNVP
- Glow

- Ffjord

Variational Autoencoder

Markov Chain

Boltzmann Machine

+ Diffusion Models

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

36

Autoregressive Models

Fully visible belief network (FVBN)

Explicit density model

p(.’l?) :p(wlawZV"amn)

T T

Likelihood of Joint likelihood of each
image x pixelin the image

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Fully visible belief network (FVBN)

Explicit density model
Use chain rule to decompose likelihood of an image x into product of 1-d

distributions:
n

p(x) = Hp(a:z-\:rl, ooy Ti—1)
e

Likelihood of Probability of i’th pixel value
Image X given all previous pixels

Then maximize likelihood of training data

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

39

Fully visible belief network (FVBN)

Explicit density model
Use chain rule to decompose likelihood of an image x into product of 1-d

distributions:
n
p(z) = || p(zila1, ... zio1) -

e

Uk}?“hOOd of Probability of i’th pixel value
IMage X given all previous pixels
Complex distribution over pixel
o o values => Express using a neural
Then maximize likelihood of training data network!

40

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Recurrent Neural Network

X2 X3 X4 Xn
I | | |
X X3 X3 Xn-1

p(zi|T1,..., Ti—1)

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

PiXGlRN N [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

© O O O @
© 0 0 O O

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

© 0 0 O O

© 0 0 O O

© O O O O

42

P |Xe l. R N N [van der Oord et al. 2016]

Generate image pixels starting from corner

i

© 0 0 0 O

Dependency on previous pixels modeled
using an RNN (LSTM)

© O O
© O O

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

© 0 O O O

© 0 O O O

43

PIXG[RN N [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

© O
© O O

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

© ©0 O O

© 0 0 O O

© 0 0 0 O

44

PIXQ[RN N [van der Oord et al. 2016]

Generate image pixels starting from corner @

Dependency on previous pixels modeled
using an RNN (LSTM)

o @
© O
© O O

Drawback: sequential generation is slow in
both training and inference!

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Q-
© O O O Ej
© 0 0 O O

45

Pixe I.C N N [van der Oord et al. 2016]

Still generate image pixels starting from
corner

Dependency on previous pixels now modeled z
using a CNN over context region / /
(masked convolution)

Figure copyright van der Oord et al., 2016. Reproduced with permission.

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf "o

P IXG lC N N [van der Oord et al. 2016]

Still generate image pixels starting from

corner

A7
Dependency on previous pixels now modeled AT .
using a CNN over context region ; /
(masked convolution)

Training is faster than PixelRNN
(can parallelize convolutions since context region
values known from training images)

Generation is still slow:
For a 32x32 image, we need to do forward passes of the
network 1024 times for a single image

Figure copyright van der Oord et al., 2016. Reproduced with permission.

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf 7

Generation Samples

ey MRIASLITL. CELIRCH TS
.Ilﬁﬁlﬂiﬁl ot BEEA L R TR
P21 PR RSN Y
WS eFNR o).

ik 2959).
s F I |t B TR

Sbns. AT S
B ol L B
il R K |
EII“Iﬂlﬂﬁ w00 & Gk B e Sl

32x32 CIFAR-10 32x32 ImageNet

Figures copyright Aaron van der Oord et al., 2016. Reproduced with permission

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

48

PixelRNN and PixelCNN

Pros:

Con:

Improving PixelCNN performance

Gated convolutional layers
Short-cut connections

Discretized logistic loss

Can explicitly compute likelihood
p(x)

Easy to optimize - Multi-scale
Good samples - Training tricks
- Etc...

Sequential generation => slow See

- VanderOord et al. NIPS 2016
- Salimans et al. 2017 (PixelCNN++)

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

49

Variational Autoencoders

Autoregressive Models vs
Variational Autoencoders

PixelRNN/CNNs define tractable density function, optimize likelihood of training data:

pe(ﬂ?) = Hpg(mdan, eey 33'?2—1)

i=1
Variational Autoencoders (VAEs) define intractable density function with latent z:

po(z) = / po(2)pe (z|2)dz

No dependencies among pixels, can generate all pixels at the same time!
Cannot optimize directly, derive and optimize lower bound on likelihood instead

Why latent z?

51

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Disentangled Representation Learning

X ~ Sim(w()

K conditionally
independent factors

Sam | o
R
T T LI

o\
SEDN oo

p(X(i) | z(i)) ~ S|m(w(|))

Figure: X. Wang, H. Chen, S. Tang, Z. Wu, and W. Zhu. Disentangled representation learning. arXiv preprint arXiv:2211.11695, 2022.

52

Recap: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation from
unlabeled training data

Decoder

Encoder

T
Features &
I

Input data

53

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Recap: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation from
unlabeled training data

z usually smaller than x
(dimensionality reduction)

Q: Why dimensionality

-
reduction? Decoder

T
Features ,‘z .-ﬁ ..
xIr

Encoder W‘@
o T
el R | T

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf >

Input data

Recap: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation from

unlabeled training data

z usually smaller than x
(dimensionality reduction)

Q: Why dimensionality
reduction?

Decoder
A: Want features to
capture meaningful
factors of variation in
data Encoder

T
Features A
€I

Input data

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

s s s T
=
o Y
ol TS Py
i < WS

55

Recap: Autoencoders

How to learn this feature

representation? Reconstructed
input data
Train such that features T
can be used to 3
reconstruct original data Decoder
“Autoencoding” -
encoding input itself Features v
Encoder
Input data €T

Reconstructed data

a7l < S
f
Encoder: 4-layer conv
Decoder: 4- layer upconv

Edata
IED@
Pl S N

a7l « 63

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

56

Recap: Autoencoders

Reconstructed data

- -~ EEERES
Train such that features can Doesn’t use labels! A K i,
b d L2 Loss function: —
e L. TS P
T -EHT* 5L

Encoder: 4-layer conv
Decoder: 4- layer upconv

Decoder

T
‘ ut data
Features > E .

Encoder .’K‘.ﬁ

S
Input data XL -H < .E

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Recap: Autoencoders

Reconstructed 4
input data 3
Decoder
Features 2
Encoder
Input data T

\ After training,

throw away decoder

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Recap: Autoencoders

Transfer from large, unlabeled
dataset to small, labeled dataset.

Predicted Label

Encoder can be used

y/\

y \

Loss function
(Softmax, etc)

Classifier

to initialize a Features

2

supervised model

Encoder

Input data

b

Fine-tune
encoder
jointly with
classifier

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

bird plane
dog deer truck

Train for final task
(sometimes with
small data)

o MR

59

Recap: Autoencoders

Reconstructed A

i i

input data 3
Decoder

Features z
Encoder

Input data T

Autoencoders can reconstruct
data, and can learn features to
initialize a supervised model

Features capture factors of
variation in training data.

But we can’t generate new images

from an autoencoder because we
don’t know the space of z.

How do we make autoencoder a
generative model?

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Variational Autoencoders (VAEs)

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data {3:("')},?;1 is generated from the distribution of unobserved (latent)
representation z

Intuition (remember from autoencoders!): x
is an image, z is latent factors used to

Sample from , ; :
generate x: attributes, orientation, etc.

true conditional H /1
pe-(z | zV)

Sample from
true prior >

20 ~ py (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

61

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Variational Autoencoders (VAEs)

We want to estimate the true parameters 9*
of this generative model given training data x.

Sample from
true conditional H 1

po-(z | z)

Sample from
true prior >

20 ~ py (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

62

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Variational Autoencoders (VAEs)

We want to estimate the true parameters §*
of this generative model given training data x.

Sample from
true conditional H H

po-(z | z¥)

How should we represent this model?

Sample from
true prior >

29 ~ pg (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

63

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Variational Autoencoders (VAEs)

Sample from
true conditional

pe+(z | ()

Sample from
true prior

20 ~ Py (2)

VAN

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

We want to estimate the true parameters 9*
of this generative model given training data x.

How should we represent this model?
Choose prior p(z) to be simple, e.g. Gaussian.

Reasonable for latent attributes, e.g. pose, how
much smile.

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

64

Variational Autoencoders (VAEs)

Hmn We want to estimate the true parameters *
‘ of this generative model given training data x.
Sample from

true conditional €T
A

How should we represent this model?

po-(x | 2)
Decoder Choose prior p(z) to be simple, e.g. Gaussian.
network Reasonable for latent attributes, e.g. pose, how
Sample from much smile.
trge prior >
2 ~ py (2) Conditional p(x|z) is complex (generates image)

‘ i } \ => represent with neural network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

65

Variational Autoencoders (VAEs)

We want to estimate the true parameters 6*
of this generative model given training data x.

Sample from

. How to train the model?
true conditional xZr
. A
po+(w | Z(z)) Learn model parameters to maximize likelihood
Decoder of training data
network
Sample from
true prior
P Z = [po(2)po(z|2)dz

20 ~ py (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

66

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Variational Autoencoders (VAEs)

Sample from
true conditional

pe+(z | 29)

Sample from
true prior

20 ~ py (2)

We want to estimate the true parameters §*
of this generative model given training data x.

T How to train the model?
A
Learn model parameters to maximize likelihood
Decoder of training data
network
Z = | po(2)pe(z|2)dz

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Q: What is the problem with this?

Intractable!
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

67

Variational Autoencoders (VAEs): Intractability
v

Data likelihood: Ppo(z) = [pe(2)pe(z|2)dz

f

Simple Gaussian prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

68

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Variational Autoencoders (VAEs): Intractability
v Vv '

Data likelihood: Po(z) = | pe(2)pe(z|2)d2

\

Decoder neural network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

69

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Variational Autoencoders (VAEs): Intractability
\/ v

Data likelihood: po(z) = fpe 2)pg(z|2)dz

f

Intractable to compute p(x|z) for every z!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

70

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Variational Autoencoders (VAEs): Intractability
® Vv Vv

Data likelihood: Pe(z) = [pe(2)pe(z|2)dz

f

Intractable to compute p(x|z) for every z!

log p(x) ~ log % Zle p(z|z"), where 2 ~ p(z)

Monte Carlo estimation is too high variance

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

71

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Variational Autoencoders (VAEs): Intractability
\/ v

Data likelihood: Pg(T) = fpe 2)pg(z|2)dz

Posterior density: pg(z|z) = p9($|z)p9(z)/p;.($)

Intractable data likelihood

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

72

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Variational Autoencoders (VAEs)

Data likelihood: pg(z fpg 2)pg(z|2)dz

Posterior density also intractable: po(2|T) = po(x|2)py(2)/P0(T)

Solution: In addition to modeling pg(x|z), learn qq(z|x) that approximates the true
posterior pg(z|x).

Will see that the approximate posterior allows us to derive a lower bound on the data
likelihood that is tractable, which we can optimize.

Variational inference is to approximate the unknown posterior distribution from only
the observed data x

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

73

Variational Autoencoders (VAEs)

log pg (') = E, qs(zla®) [logpg (:t(";'))] (pe(x?) Does not depend on 2)

ya

Taking expectation wrt. z (using
encoder network) will come in
handy later

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

74

Variational Autoencoders (VAEs)

log pg(z'V) = E. g, (za() [Ingg (x(i))] (pe(x?) Does not depend on 2)

po(z") | 2)po(2)
po(z | z)

=E, {log] (Bayes’ Rule)

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

75

Variational Autoencoders (VAEs)

log pg(zV) = By (22 [logpg(x(i))] (pg(z'?) Does not depend on 2)

po(z) | 2)po(2)
po(z | (™)

po(z) | 2)pg(2) g4(z | V)
po(z |) gg(z | z®)

=E, |log] (Bayes” Rule)

=E, |log] (Multiply by constant)

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

76

Variational Autoencoders (VAEs)

log pg(z'”) = E, gy (z|z®) [logpg (:L‘(""))] (po(2'?) Does not depend on 2)

()
=E, |log po(z™ | z)pg(z)] (Bayes’ Rule)
po(z | x)

(4) (4)
= E. |log po(z™ | Z)PB(Z) gy(z | = |)
i po(z | z®) gy(z | z®)

] (Multiply by constant)

)

— ' (@ (i
=E, |logpe(z@ | z)] _E. [log qe(z | x)] +E, llog gs(z | x |
) pt?(z) pg(z | (1)

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

)

] (Logarithms)

77

Variational Autoencoders (VAEs)

log po(z'V) = B, gz} [1ogp9(a:(i))] (po(?) Does not depend on z)

I (4)
log po(e™ | z)pg(z)] (Bayes’ Rule)

po(z | z®)
po(z | 2)pa(2) gp(z |)
po(z | zW)) gg(z | 2¥)

log] (Multiply by constant)

- , 1 (2) (2)
log pg(z'V | 2)| —E, [log 42| 2)] +E, llog 4z | 2)] (Logarithms)

po(2) po(z | (D)

log po (2@ | 2)| — Dicr(go(z | 2@) || pa(2)) + D (go(z | £@) || pa(z |)

~

The expectation wrt. z (using
encoder network) let us write
nice KL terms

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

78

Variational Autoencoders (VAEs)

log pg(z'”) = E, gy (z|z) [logpg (:L‘(i))] (pe(x?) Does not depend on z)

A

We want to
maximize the
data
likelihood

—E,

Decoder network gives pg(x|z), can
compute estimate of this term through

sampling.

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

po(z") | z)ps(2)

lo :
5 pe(z [2®)

] (Bayes’ Rule)

po (@ | 2)pp(2) gp (2 | =)

lo :
& ez [20)

=

f

log pe (2 | Z)] ~E. [log

g¢(z |)
g5(z |)

g4(z | z¥)

T

This KL term (between
Gaussians for encoder and z
prior) has nice closed-form

solution!

] (Multiply by constant)

+E. |lo .
] [gmmw)

log po(z® | Z)] — Dir(as(z | 2) || pa(2)) + D1 (gs(z | 27) || po(z | 7))

po(2)

] (Logarithms)

Pe(z|x) intractable (saw earlier),
can’t compute this KL term :(
But we know KL divergence
always >=0.

79

Variational Autoencoders (VAEs)

log pg(z'V)) = E, gy (z]z®) [lngg (m(i))] (po(x'?) Does not depend on z)

I (4)
/ =E. |log po(z™ | z)(f)g(z)] (Bayes’ Rule)
We want to = po(z |)
Lnaxlmlze ¢ = E. |log G Z)Pﬁ(z) 42 | 2 .) (Multiply by constant)
ata i po(z | 2®) qu(z| ™)
likelihood] _ (2 | (i)) (% | (1)
=E, |logpe(z? | 2)| — E, |log LA R +E. [log ‘

_ - PG(Z) po(z |

] (Logarithms)

=|E. Flogpg(:r(i} | z) — Dir,(ge(2 | !)Hpﬂ() +DKL(Q¢(Z | z)||P9(|3-'?(i)))J

n - A

£(z9.0.9)

0

Tractable lower bound which we can take
gradient of and optimize! (pg(x|z) differentiable,
KL term differentiable)

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

80

Variational Autoencoders (VAEs)

log pe(zV) = E,q,(z|z®) {log pg(x(i))] (po(z?) Does not depend on z)

I (2)
=E, |lo po(a | z)(ge(z)} (Bayes’ Rule) Encoder:
po(z |) make approximate
Decoder: po(zV | 2)pe(2) qp(z | @) posterior distribution
=E, |I : . Multi :
reconstruct o8 po(z | @) gqu(z | :1:(2))] (Multiply K constart) close to prior

the input data . ‘
(2] =) gp(z | 1)

— : I po(2) | po(z |)
=B [logpa(il?(i) | 2)| = Drr(gs(z | WZ)) + Dkrlgs(z |z :

())
£z, 0, ¢) =0

Tractable lower bound which we can take
gradient of and optimize! (pg(x|z) differentiable,
KL term differentiable)

(Logarithms)

log

ogpo(a® | z)| - E. llog o] +E

[1po(2 | ')

o

81

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Variational Autoencoders (VAEs)

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(a? | 2)] —|DKL(q¢(z | =) ||pe(z>]

E(a:(i), 6,)

Let’s look at computing the KL divergence
between the estimated posterior and the
prior given some data

Input Data b

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf 5

Variational Autoencoders (VAEs)

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(a | 2)] —|DKL(q¢(z | 2) Hpa(z)]

L(z",0,9)

IJ’Zl.'B Ezlm

Encoder network
N

Input Data XL

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf 2

Variational Autoencoders (VAEs)

Putting it all together: maximizing the
likelihood lower bound

E. [10gpe(x“) | 2)] —lDKL(qqs(Z |) HPB(Z)ZI

L(z",0,0)

Drr(N (ta)e 222) |IN(0, 1))

Have analytical solution

Make approximate
posterior distribution
close to prior

l‘l'Zla? Ezlm

Encoder network
N

Input Data b

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Variational Autoencoders (VAEs)

Putting it all together: maximizing the
likelihood lower bound

(2) (2)
£ [10gp9($ | Z)] Dir(gp(z | &™) Hp"(z)l Not part of the computation graph!
L(z®, 0, ¢) X’

Z
Samplezfrom z|x ~ N)
Make approximate P | (p’zl-’m 2|$c)

posterior distribution /

close to prior Hz|x 2z|x

Encoder network
wel) N

Input Data b

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Variational Autoencoders (VAESs)

Reparameterization trick to make
sampling differentiable:

Putting it all together: maximizing the
5 5 & Sample € ~~ N(O, I)

likelihood lower bound
2 = Hz|z + S

E. |logpo(a? | 2)| |- Dicr(as(z | 2P) || po(2))

£(z,0,6)

Z
Sample z from z|:c ~ N(ILZ|$, 2z|$)

/’ \
I‘LZ|(B Zzlx

Encoder network
N

Input Data L

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Variational Autoencoders (VAEs)

Reparameterization trick to make
sampling differentiable:

Putting it all together: maximizing the

likelihood lower bound Sample

E. [logpo(= | 2)] | Dicrlas(z | 29) 1l po(2))

e ~N(0,]I

Mzl

L(z,0,0) Part of computation graph

Z

Input to
the graph

Sample z from z|$ ~ N(l—llzlm) 2z|a:)

/'

l‘l’.?.?l.’l: Ez |_']3
Encoder network \/
q¢(2|)
Input Data XL

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

87

Variational Autoencoders (VAEs)

Maximize likelihood of original
input being reconstructed

Putting it all together: maximizing the

U D
likelihood lower TV / \
E. [logpo(=®) | 2)] f=BRL(as(z | 29) [po(2)) Bz|2 IR

L(o:(’?)r, 0,0) Decoder network \/
Do (ZL‘ z)

Y4
Sample z from z|:c ~ N(}szg, 2z|:c)

/'

I'I'Z|.'B Zzlx

Encoder network
wel) N

Input Data b

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Variational Autoencoders (VAEs)

Putting it all together: maximizing the

likelihood lower bound / i \

E. [logps(z® | 2)| = Dicr(as(= | 27| po(2))z Yzl
L(z®,0,¢) Decoder network \/
po(z|2)
For every minibatch of input <
data: compute this forward pass, Samplezfrom 2|z ~ N(ﬂ'zla:a Yolz)
and then backprop! /
“Zlﬂ: Ezlm
Encoder network \/
g4 (2|z)
Input Data XL

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Variational Autoencoders (VAEs)

Now given a trained VAE:

Our assumption about data generation use decoder network & sample z from prior!
process
Sample from L
true condltlpnal EC samplex|zfrom |z ~ N (g2, X))
po+(z | 2)
Decoder / \
network Fox|z 23ar:l,z:
fampl? from Decoder network \/
rue prior
0 < po(z|2)
2\~ pg (2) 2

Samplezfrom 2z ~ N(O, I)
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Variational Autoencoders (VAEs)

Data manifold for 2-d z

Use decoder network. Now sample z from prior!

VDAV NANNANAANNNSNNSNNNNS
QA ELLLLLLW NN~
QAVINN R LLLVY Y N~
QAUAVVDNININLn Gy toto ©VOVVY W w~~
QAVVHHINNWVGW WP BVIOVIVY W - - —
QAOODNHINININMHBPIBDIOIVI D W - - —
QAOOMIMMMMOoNMDIIY D W = - —
QOODOIMMNMMMNMMEDDD DD W — —
QODOMMWM MMM NP DD e e —
QOMMM MM 0" 000000 o e en oo~ o - —
R L G o Nl Rl e
SRS N Ko Ko R Rl alal okl S S N N
Sl dodogorocrororrrraaon~
SAddadddogrrrrrrrTIIIINN
SAddddgrrrrrrdITITRIRIRINN
SAdITTTTrrrrrrrrrr2R™2RNN
S I e gl gl sl ol el ool ol ol ol ol S NI N LN N

< >

Vary z;

zar:lz

M|z

Sample x|z from :13|Z ~ N(Mm|z, 2x|z)

Decoder network
po(z|2)

Samplezfrom z ~ AN(0, 1)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Vary z,

91

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Variational Autoencoders (VAEs)

Diagonal prioron z
=>indepenaent Degree of smile
latent variables \ \
Different dimensions

of z encode Vary z;
interpretable factors

of variation

\

Also good feature representation that
can be computed using qe(z|x)!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

92

Variational Autoencoders (VAEs)

Labeled Faces in the Wild

32x32 CIFAR-10

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with
permission.

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

93

Variational Autoencoders (VAEs)

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:
- Principled approach to generative models
- Interpretable latent space.
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as

PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANS)

Active areas of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal
Gaussian, e.g., Gaussian Mixture Models (GMMs), Categorical Distributions.
- Learning disentangled representations.

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

94

Disentangled Representation Learning

X ~ Sim(w()

K conditionally
independent factors

Sam | o
R
T T LI

o\
SEDN oo

p(X(i) | z(i)) ~ S|m(w(|))

Figure: X. Wang, H. Chen, S. Tang, Z. Wu, and W. Zhu. Disentangled representation learning. arXiv preprint arXiv:2211.11695, 2022.

95

Variational Auto-Encoders and its Variations

Reconstructed
Input <o Ideally they are identical. ---------------------- > .
N input
X=~<X
Probabilistic Encoder
99 (2[x)
latent vector
Probabilistic
X [—¥> Decoder | 3/
Po(x|2)
o
Std. dev
An compressed low dimensional

zZ=p+toQe representation of the input.
e ~N(0,I)

L(0,6:%,2, 8) = Eyyaw [108ps(x[2) | — Dict.(a5(2lx) || p())

96

B-VAE (Higgins et al., 2016)

L(0, p:x,2,8) = Eq, (2x)[log ps(x|2)]] — BDk1(q4(2]x)|[p(2))

* B> 1implies stronger disentanglement”

* Limitations:
* |ncreased reconstruction loss
* Increased complexity

97

Our Work

 Learnable VAE

1 1
Li-vae(8,¢0;x,2) = —5 B, o) [10gP9(X|Z)} — = Dki (Q¢(Z|X) | p(Z)) + > o}
0 1 i=0,1
* Dimensionwise-learnable VAE
1
LdL—VAE(QaQb;Xa Z) :1 —|—ln(1 n ag)Eq¢(z|x) {10gp9(X|Z)}
L+1

- Z 1+ ln(ll Fo7) K (%(Zi‘l‘x) | p(z))

L+1

+ Z O',?.
i=0

98

Our Work

VAE 11.86 058 093 077 056 063 030 032 092 028
B-VAE (8 = 4) 29.11 058 092 075 055 051 030 028 094 026
ControlVAE 2435 060 097 076 059 058 030 030 094 030
DynamicVAE 3375 056 089 058 050 051 033 029 085 032
o-VAE 1230 029 077 055 047 043 007 009 090 0.03
L-VAE(3=0.89) 1177 059 096 077 057 065 031 032 092 0.32
dL-VAE 1999 060 097 077 059 057 031 030 094 0.33

99

Flow-based Models

L Discriminator Generator
GAN minimax the <’ % | 7 - %/
classification error loss. D(x) G(z)
VAE: maximize ELBO. x |—| Encoder z Decoder > x
q4(z|x) po(x|z)
Flow-based I
generative models: .. IR Flow | z2— » nvlerse o
minimize the negative f(x) f~*(z)
log-likelihood

Figure: https://lilianweng.github.io/posts/2018-10-13-flow-models/ 101

Background

Given a random variable z and its known probability density function z ~ 7(z), we would like to
construct a new random variable using a 1-1 mapping function z = f(z). The function f is
invertible, so z = f - (:r) Now the question is how to infer the unknown probability density
function of the new variable, p(x)?

/ p(z)dz = / 7(2)dz = 1 ; Definition of probability distribution.

F1(2) |—‘ — (@)Y @)

p(z) = m(2)

da:

Figure: https://lilianweng.github.io/posts/2018-10-13-flow-models/ 102

Background

The multivariable version has a similar format:

z ~ m(z),x = f(z),2z = f_l(x)

92 | _ (5) [aet 2

det I

det d_][

p(x) = m(z)

f

where det g—z is the Jacobian determinant of the function f. The full proof of the multivariate

Figure: https://lilianweng.github.io/posts/2018-10-13-flow-models/

[Of1
5$1

Ofm

3:1:1

103

0f1
oz,

Ofm

Or, J

Z=f(Y)
-
Normalizing

direction

pz(z)
Py (y)

Y —g(Z)
—

Generative
direction

Base distribution, Z Target distribution, Y

£(Y)

Z
Derivative |Df(y)]

Target distribution, Y Target distribution, Y

Fig. 1. Change of variables (Equation (1)). Top-left: the density of
the source pz. Top-right: the density function of the target distribution
py (y). There exists a bijective function g, such that pyv = g«pz, with
inverse f. Bottom-left: the inverse function f. Bottom-right: the absolute

Jacobian (derivative) of f.

Figure: “Normalizing Flows: An Introduction and Review of Current Methods”, 2021.
104

Normalizing Flow

f1(zo) fz Z;—1) fit1(23)
(=@ - Q@ - @)

= X

i \ J\/\ /\'\If\,\
| 1
\]

\\ ,'

N /

~ ’/ \\-..__.f’ \-...___,—-’

Zy ~ Po(zo) Zj ~ pz’(zi) ZRg ~ PK(ZK)

Fig. 2. lllustration of a normalizing flow model, transforming a simple
distribution p_0(z_0) to a complex one p_K (z_K) step by step.

Figure: https://lilianweng.github.io/posts/2018-10-13-flow-models/ 106

Planar Radial

K=2 K=10 - K=2 - K=10

EEBCDF:J[] o«
L[\ Dok o JEpe

Figure 1. Effect of normalizing flow on two distributions.

Figure: ”Variational Inference with Normalizing Flows”, 2016.

107

Normalising Flows

Exploit the rule for change of variables:
e Begin with an initial distribution
e Apply a sequence of K invertible transforms

Sampling and Entropy

2Kk = fx0...0f20 fi(zo) /\/\/_\
log gk (zk) = log qo(z0) — f:losdet 2

k=1 Oz « .i

s

Distribution flows through a sequence of invertible transforms

Rezende and Mohamed, 2015

108

fi(zi—l) @fi+l(zi)
Z;—1~ Pi—1(Zi-1)
z; = fi(zi—1), thus z;_; = fz-_l(zz') '—.)/—\~

pila) = pia(7; a0)) fdet 5L

Then let’s convert the equation to be a function of z; so that we can do inference with the base
distribution.

z; ~ pi(2;)
ple) = 7(a)| £ | = =/ @)

det

df-1
dx

-1 dfz'_l
pi(2zi) = pi—1(f; (2)) |det 7
Z;
df; \ 1
= Pi—1 (zi_l) det () : According to the inverse func theorem.
dz;
df; |
= Pi-1 (zi_l) det d : According to a property of Jacobians of invertible func.
Zi_1
dfi
log p; (zz) = logpi—l(zi-l) — log |det d
Z;1

109

Figure: https://lilianweng.github.io/posts/2018-10-13-flow-models/

Given such a chain of probability density functions, we know the relationship between each pair of
consecutive variables. We can expand the equation of the output x step by step until tracing back
to the initial distribution zg.

X =12 = fxo fxk_10---0 f1(2o)

d
logp(x) =logmk(zx) = logmg_1(2x—1) — log |det dszl
dfi_ d
=log i _o(zZxg_2) — log |det JE-1 — log |det fx
dzi_» dzg_1
K
dfi
=1 - 1
og 7o (2o) ; og |det p—

Figure: https://lilianweng.github.io/posts/2018-10-13-flow-models/ 110

The path traversed by the random variables z; = ft-(zt-_.l) is the flow and the full chain formed by
the successive distributions 7r; is called a normalizing flow. Required by the computation in the
equation, a transformation function f; should satisfy two properties:

1. It is easily invertible.

2. Its Jacobian determinant is easy to compute.

Figure: https://lilianweng.github.io/posts/2018-10-13-flow-models/ 111

Training

Minimize the divergence between estimated distribution and real distribution:

Dgr|p™ (z)|[po(2)] = —Epr(2) [log(po ()] + Ep(2) [log(p" (2))]

/ \

A 1 < Constant for the dataset
~Epi(z) [log(pe ()] = N ;bg(pg (1)) & does not depend on 6

argmin Dgr[p*(z)||po(z)] mmm) a,rggnax Zlog(pg(:ci))

6

112

Training

N
argmax > log(py(x:))
1=0

Pseudo-code fl(zw @ fz-(z“) Fora ())

1. x < Sample a batch A AA A‘J’L
2' ZON p@ (ZO |X) 20 ~ Po(20) z; ~ pi(2z;) Zx ~ Pk (2K)
3. Zy (—fKOfK_lo---o fl(ZO)

4, A < —Vqy d(x,zg)

113

RealNVP

The RealNVP (Real-valued Non-Volume Preserving; Dinh et al., 2017) model implements a

normalizing flow by stacking a sequence of invertible bijective transformation functions. In each
bijection f : x — y, known as affine coupling layer, the input dimensions are split into two parts:

e The first d dimensions stay same;

e The second part, d + 1 to D dimensions, undergo an affine transformation (“scale-and-shift")
and both the scale and shift parameters are functions of the first d dimensions.

Yi.d — X1.d
Yd+1:D = Xd+1:p0 © exp(s8(x1.4)) + t(X1.4)

where s(.) and (.) are scale and translation functions and both map R¢ — RP~4 The ®
operation is the element-wise product.

Figure: https://lilianweng.github.io/posts/2018-10-13-flow-models/

114

RealNVP

Now let's check whether this transformation satisfy two basic properties for a flow transformation.
Condition 1: "It is easily invertible."

Yes and it is fairly straightforward.

{.Yl:d — X1.d o {xl:d = ¥Yid
Yii1:p = Xdi1:.0 © exp(8(x1.q)) + t(x1.q) Xg+1:p0 = (Ya+1:p0 — t(¥y1:4)) © exp(—s(y1.4))

Figure: https://lilianweng.github.io/posts/2018-10-13-flow-models/ 115

RealNVP

Condition 2: “Its Jacobian determinant is easy to compute.”

Yes. It is not hard to get the Jacobian matrix and determinant of this transformation. The Jacobian
is a lower triangular matrix.

I4 04x(D-a)
J= By
et diag(exp(s(x1.4)))

Hence the determinant is simply the product of terms on the diagonal.

w

—d
det(J) = HexP s(x1.4)); = exp() _ s(x1.4);)
J

Il
Pk

Figure: https://lilianweng.github.io/posts/2018-10-13-flow-models/ 116

Normalizing Flows

* Pros:
e Successful results in estimating high-dimensional densities
 Stable training compared to GANs
e Easier to converge compared to GANs & VAEs

e Cons:

* Latent space is not lower-dimensional than the input => may not be useful in
some applications (e.g., image compression)

* Fails in estimating the likelihood of out-of-distribution samples

* |Invertibility may not be guaranteed in practice due to numerical imprecision

* Lower quality generation

Next Week

* (Deep) Generative Models
e Autoregressive models
 Variational AEs
* Flow Models
* Generative Adversarial Networks
* Energy-based Models
 Diffusion Models

121

	Slide 1: CENG501 – Deep Learning
	Slide 2: Masked Autoencoders
	Slide 3: SimMIM
	Slide 4
	Slide 5: DINO v1 & v2 (ICCV’21 & TMLR’24)
	Slide 6: VideoMAE
	Slide 7: Vision-Language Models: Overview
	Slide 8: Earlier Attempts:
	Slide 9: Earlier Attempts:
	Slide 10: Overview
	Slide 11: CLIP
	Slide 12: CLIP: Results
	Slide 13: FLAVA
	Slide 14: CoCa
	Slide 15: Chameleon
	Slide 16: Chameleon
	Slide 17: Frozen
	Slide 18: Flamingo
	Slide 19: BLIP-2
	Slide 20: BLIP-2
	Slide 21: Segment Anything Model (SAM)
	Slide 22: Segment Anything Model (SAM) v2
	Slide 23: Today
	Slide 24: Administrative Notes
	Slide 26: Overview & Problem Formulation
	Slide 27
	Slide 28
	Slide 29: Unsupervised Learning via Density Estimation
	Slide 31: Generative Modeling
	Slide 32: Generative Modeling
	Slide 33: Why Generative Modeling?
	Slide 34: Generative Modeling: State of the Art
	Slide 35: Generative Modeling
	Slide 36
	Slide 37: Autoregressive Models
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50: Variational Autoencoders
	Slide 51: Autoregressive Models vs Variational Autoencoders
	Slide 52: Disentangled Representation Learning
	Slide 53: Recap: Autoencoders
	Slide 54: Recap: Autoencoders
	Slide 55: Recap: Autoencoders
	Slide 56: Recap: Autoencoders
	Slide 57: Recap: Autoencoders
	Slide 58: Recap: Autoencoders
	Slide 59: Recap: Autoencoders
	Slide 60: Recap: Autoencoders
	Slide 61: Variational Autoencoders (VAEs)
	Slide 62: Variational Autoencoders (VAEs)
	Slide 63: Variational Autoencoders (VAEs)
	Slide 64: Variational Autoencoders (VAEs)
	Slide 65: Variational Autoencoders (VAEs)
	Slide 66: Variational Autoencoders (VAEs)
	Slide 67: Variational Autoencoders (VAEs)
	Slide 68: Variational Autoencoders (VAEs): Intractability
	Slide 69: Variational Autoencoders (VAEs): Intractability
	Slide 70: Variational Autoencoders (VAEs): Intractability
	Slide 71: Variational Autoencoders (VAEs): Intractability
	Slide 72: Variational Autoencoders (VAEs): Intractability
	Slide 73: Variational Autoencoders (VAEs)
	Slide 74: Variational Autoencoders (VAEs)
	Slide 75: Variational Autoencoders (VAEs)
	Slide 76: Variational Autoencoders (VAEs)
	Slide 77: Variational Autoencoders (VAEs)
	Slide 78: Variational Autoencoders (VAEs)
	Slide 79: Variational Autoencoders (VAEs)
	Slide 80: Variational Autoencoders (VAEs)
	Slide 81: Variational Autoencoders (VAEs)
	Slide 82: Variational Autoencoders (VAEs)
	Slide 83: Variational Autoencoders (VAEs)
	Slide 84: Variational Autoencoders (VAEs)
	Slide 85: Variational Autoencoders (VAEs)
	Slide 86: Variational Autoencoders (VAEs)
	Slide 87: Variational Autoencoders (VAEs)
	Slide 88: Variational Autoencoders (VAEs)
	Slide 89: Variational Autoencoders (VAEs)
	Slide 90: Variational Autoencoders (VAEs)
	Slide 91: Variational Autoencoders (VAEs)
	Slide 92: Variational Autoencoders (VAEs)
	Slide 93: Variational Autoencoders (VAEs)
	Slide 94: Variational Autoencoders (VAEs)
	Slide 95: Disentangled Representation Learning
	Slide 96: Variational Auto-Encoders and its Variations
	Slide 97: β-VAE (Higgins et al., 2016)
	Slide 98: Our Work (Mogultay, Kalkan, Vural, 2024)
	Slide 99: Our Work (Mogultay, Kalkan, Vural, 2024)
	Slide 100: Flow-based Models
	Slide 101
	Slide 102: Background
	Slide 103: Background
	Slide 104
	Slide 106: Normalizing Flow
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112: Training
	Slide 113: Training
	Slide 114: RealNVP (Real-valued Non-Volume Preserving; Dinh et al., 2017)
	Slide 115: RealNVP (Real-valued Non-Volume Preserving; Dinh et al., 2017)
	Slide 116: RealNVP (Real-valued Non-Volume Preserving; Dinh et al., 2017)
	Slide 120: Normalizing Flows
	Slide 121: Next Week

