CENG501 — Deep Learning

Week 12
Fall 2024

Sinan Kalkan

Dept. of Computer Engineering, METU

QY
(:)"

Geﬂéieratwe Modeling

o
O
Q&Q\ * Learning the probability distribution of data

J 4 lgé Prmodel(X) = r_yq

Training data ~ pyata(X)

Objectives:
1. Learn pq4el(X) that approximates py,¢,(X)
2. Sampling new x from pmodel(X)

Figure: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

e"c’&
Gg¥lerative Modeling
ANY

O
O
Q@Q\ * Learning the probability distribution of data

Po = Pmodel

d(paata Po)
.4_

Pdata

Po

6eM

Model family

Figure: https://deepgenerativemodels.github.io/notes/introduction/

<>°\’

Geﬂ%eratlve Modeling

\)‘9
X

Q&Q * Learning the probability distribution of data

o gy S

-

Training data ~ pyata(X)

Formulate as density estimation problems:
- Explicit density estimation: explicitly define and solve for podel(X)
- Implicit density estimation: learn model that can sample from p,0q4e1(X) Without
explicitly defining it.

Figure: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

QY
oY

'[)@fonomy of Generative Models

Direct

Generative models

Q¥ —

Implicit density

Explicit density

GAN

T

\

Tractable density

Approximate density

Markov Chain

Fully Visible Belief Nets

T~

- NADE
- MADE

GSN

Variational

- PixelRNN/CNN
- NICE /RealNVP
- Glow
- Ffjord

Variational Autoencoder

Markov Chain

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Boltzmann Machine

+ Diffusion Models

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

c)Q.\' . .
Ful(b&vlmble belief network (FVBN)

‘E}.‘gﬁﬁcit density model
o

@4\0
4

p(x) = p(x1,x2,...,2Ty)

T T

Likelihood of Joint likelihood of each
image x pixelin the image

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Q\/
FuU& V|5|ble belief network (FVBN)

@)(pllut density model

& 4‘0 Use chain rule to decompose likelihood of an image x into product of 1-d

distributions:

I

p(x) = Hp(a:z-|a:1, ooy Ti—1)
e

Likelihood of Probability of i’th pixel value
Image X given all previous pixels

Complex distribution over pixel

e . values => Express using a neural
Then maximize likelihood of training data network!

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

p($i|.’131,...,23,,;_1)

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

o

o
P |2§éﬁR N N [van der Oord et al. 2016]
(o)

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

Drawback: sequential generation is slow in
both training and inference!

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

©@ 0 © © ©

© 0 0 O O

QY

Ne)
. &
P I)@#C N N [van der Oord et al. 2016]
o(‘
,_)\A

O
P still generate image pixels starting from

XY corner

Dependency on previous pixels now modeled A~
using a CNN over context region / / /
(masked convolution)

Training is faster than PixelRNN

(can parallelize convolutions since context region
values known from training images)

Generation is still slow:
For a 32x32 image, we need to do forward passes of the
network 1024 times for a single image

Figure copyright van der Oord et al., 2016. Reproduced with permission.

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf 10

Pros:

Con:

Improving PixelCNN performance
Gated convolutional layers
Short-cut connections

Discretized logistic loss

Can explicitly compute likelihood
p(x)

Easy to optimize - Multi-scale
Good samples - Training tricks
- Etc...

Sequential generation => slow See

- Vander Oord et al. NIPS 2016
- Salimans et al. 2017 (PixelCNN++)

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

11

Aut@éégresswe Models vs
Vaqflatlonal Autoencoders

\)9
z&\o PixelRNN/CNNs define tractable density function, optimize likelihood of training data:
n

Q’(
= Hpo(fliz'lﬂvh ooy Ti—1)
i=1

Variational Autoencoders (VAEs) define intractable density function with latent z:

po(z) = / po(2)pe (z]2)dz

No dependencies among pixels, can generate all pixels at the same time!
Cannot optimize directly, derive and optimize lower bound on likelihood instead

Why latent z?

12

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

QY
(9"

R@éap Autoencoders

Reconstructed data

e =

&4\0
4

Train such that features can . Doesn’t use labels! "& .n
b dt truct L2 Loss function: :
e T TSR

1 sl < WS

I Encoder: 4-layer conv
t Decoder: 4-layer upconv

Decoder t
ut data

Features s Mﬁ _..

| Encoder .4* ‘@

Input data T !S”zn
V7 € :

mfiel < B2

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

QY
(:;"

V@F*ratmnal Autoencoders (VAEs)

\)‘9
?/4\0
Q’(

We want to estimate the true parameters §*
of this generative model given training data x.
Sample from :
?
true conditional T How to train the model?
po(z | Z(z)) Learn model parameters to maximize likelihood
Decoder of training data
network
Sample from
true prior
P Z = | po(2)po(z|2)dz

29 ~ py (2)
Q: What is the problem with this?

Intractable!
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

14

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

R

\)
3
&

<>°\’

V@F‘fatmnal Autoencoders (VAEs): Intractability
\/ v

Data likelihood: pg(x fpg 2)po(z|2)dz

Posterior density: Pg(2|T) = pg($|z)p9(z)/pfg(a:)

Intractable data likelihood

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

15

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

QY
(9"

V@F*rannaI Autoencoders (VAEs)

\)‘9

@\o
4

Data likelihood: Po fpe Po $|Z

Posterior density also intractable: pe(2|T) = po(z|2)pe(2)/po(T)

Solution: In addition to modeling pg(x|z), learn q4(z|x) that approximates the true
posterior pg(z|x).

Will see that the approximate posterior allows us to derive a lower bound on the data
likelihood that is tractable, which we can optimize.

Variational inference is to approximate the unknown posterior distribution from only
the observed data x

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

16

o

o
V@F‘%tional Autoencoders (VAES)
AN

log pg(zV) = E, g, (2]z®) [logpg(a:(i))] (pe () Does not depend on 2)
I (2)
=E. |lo po (ZE ‘ Z)(IZ)G(»’«')] (Bayes’ Ru]e) Encoder:
po(z |) make approximate
Decodir: v <. o po(zV | 2)pe(2) qp(z | @) (Multiply 5 constant) posterior distribution
reconstruc = & pe(z | x(@)) q(b(z | x(z)) Py Py close to prior

the input data (2| 20
; 7 gslz |
ngg(aj() | z)_ — E. [log p(:(z | .’Ij'(i))

—{E. [tog po(x” | 2)] ~ Dicas(= | #2510 2))|+ D asz | 2

£(zD. 9, ¢)

Tractable lower bound which we can take
gradient of and optimize! (pg(x|z) differentiable,
KL term differentiable)

(Logarithms)

[1po(z | &)

>4

(i))
>0

17

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

QY
oY

V@F‘%tional Autoencoders (VAES)
AN

O°
Q . o
© Putting it all together: maximizing the 7
likelihood lower bound / \
E. {logpe(l‘(i) | Z)] — Drr(gp(2 | 219) || po(2) M|z 21l
L(z®,0,¢) Decoder network \/
pe(z|2)
For every minibatch of input <
data: compute this forward pass, Samplezfrom 2|z ~ N(H’z|m7 Ez|x)
and then backprop! /
Hz|x 2z|:z:
Encoder network \/'
q4(2|2)
Input Data I

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

QY
oY

V@F*?ational Autoencoders (VAES)
N

\)‘a
O : : _
& . . Now given a trained VAE:
4 Our assumption about data generation use decoder network & sample z from prior!
process
Sample from T
true conditipnal ff samplexzfrom Z|z ~ N (g5, Xz)2)
po~(| Z(Z)) / \
Decoder
network Hz|z Zmlz
fampl? from Decoder network \/
rue prior
0 4 po(x|2)
2\~ py (2) 4

Samplezfrom 2z ~ N(0,1)
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

cPN’

V@F‘«fatmnal Autoencoders (VAEs)

Diagonal prioron z
=> independent

latent variables Degree of smile

A

Different dimensions \ FYryry
of zencode Vary z;
interpretable factors

of variation

Also good feature representation that 3'.; n |
can be computed using qe(z|x)! - S
Vary z, J—— Head pose

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

20

o

o
V@F‘%tional Autoencoders (VAES)
N

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:
- Principled approach to generative models

- Interpretable latent space.
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as

PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANSs)

Active areas of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal
Gaussian, e.g., Gaussian Mixture Models (GMMs), Categorical Distributions.
- Learning disentangled representations.

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

21

o
Ng¥malizing Flow

N
S
R
")
Q‘ @ fl(ZO) @ fz’(zz'—l) fz+1(zz) @
" NN pr— x
//’ N \ /,’ \\\ //’ \\\
/ \ / \ / \
/ \ / \ / \
] \ I/ \] \
| : | J\/\ z/V\IW\ :
\ ! \ | > \ | >/
\ / \ / \ /
\\\ ,// \\\ ,/, \\\ ,//
zo ~ po(zo) z; ~ pi(2;) zg ~ Pk (2K)

Fig. 2. lllustration of a normalizing flow model, transforming a simple
distribution p_0(z_0) to a complex one p_K (z_K) step by step.

Figure: https://lilianweng.github.io/posts/2018-10-13-flow-models/ 22

Unit Gaussian

Uniform

Planar Radlal

Figure 1. Effect of normalizing flow on two distributions.

Figure: ”Variational Inference with Normalizing Flows”, 2016.

23

PseUdO'COde f1(zo) fi(zi—1) fiv1(2i)
JORO = - ()

1. x « Sample a batch A 4& A“M

2, ZON pe (ZO |X) zo N-p_O(ZO) z; :;),.(z,.) zKr:l-p—K(zK)

3. Zg < fxofx—1°-° f1(2)
4, AO x —Vg d(X, ZK)

oY
ReSINVP
AN

N : : :
Q& The RealNVP (Real-valued Non-Volume Preserving; Dinh et al., 2017) model implements a

normalizing flow by stacking a sequence of invertible bijective transformation functions. In each
bijection f : x +> y, known as affine coupling layer, the input dimensions are split into two parts:

e The first d dimensions stay same;

e The second part, d + 1 to D dimensions, undergo an affine transformation (“scale-and-shift")
and both the scale and shift parameters are functions of the first d dimensions.

Yid — X144
Yd+1:D = Xd+1:p © eXP(S(xlzd)) = t(xl:d)

where s(.) and £(.) are scale and translation functions and both map R¢ — R?~%. The ®
operation is the element-wise product.

Figure: https://lilianweng.github.io/posts/2018-10-13-flow-models/

25

e Successful results in estimating high-dimensional densities
 Stable training compared to GANs
e Easier to converge compared to GANs & VAEs

e Cons:

* Latent space is not lower-dimensional than the input => may not be useful in
some applications (e.g., image compression)

* Fails in estimating the likelihood of out-of-distribution samples

* |Invertibility may not be guaranteed in practice due to numerical imprecision

* Lower quality generation

26

Today

* (Deep) Generative Models

Autoregressive models
Variational AEs

Flow Models

Generative Adversarial Networks
Energy-based Models

Diffusion Models

CENG796 DEEP GENERATIVE MODELS

Course Code: 5710796

METU Credit (Theoretical-Laboratory hours/week): 3(3-0)

ECTS Credit: 8.0

Department: Computer Engineering

Language of Instruction: English

Level of Study: Graduate

Course Coordinator: Assoc.Prof.Dr. RAMAZAN GOKBERK CINBIS
Offered Semester: Fall Semesters.

Course Objectives

At the end of the course, the students will be expected to:
« Comprehend a variety of deep generative models.
« Apply deep generative models to several problems.

« Know the open issues in learning deep generative models, and have a grasp of the current
research directions.

Course Content

Deep generative modeling with Autoregressive models; Energy-based models; Adversarial models; Variational

models.

27

Administrative Notes

* No quiz this week

* Time plan for the projects

3. Milestone (January 5, midnight)
* Final report (Readme file)
* Repo with all code & trained models

28

Taxonomy of Generative Models

Direct

Generative models

GAN

/\

Explicit density

Implicit density

T

\

Tractable density

Approximate density

Markov Chain

Fully Visible Belief Nets

T

- NADE
- MADE

GSN

Variational

- PixelRNN/CNN
- NICE /RealNVP
- Glow
- Ffjord

Variational Autoencoder

Markov Chain

Boltzmann Machine

+ Diffusion Models
Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

29

. Discriminator
GAN: minimax the ’ Generator

classification error loss. D(x) G(z)

VAE: maximize ELBO. x —» Encoder Z Decoder
99 (2[x) po(x|z)
Flow-based
generative models: e Flow ” Inverse
minimize the negative f(x) f (=)
log-likelihood

Figure: https://lilianweng.github.io/posts/2018-10-13-flow-models/

Generative Adversarial Networks

Generative Adversarial Networks (GANs)

* Originally proposed by lan Goodfellow in 2014

 Won the “Test of Time” award this year at NeurlPS2024
e https://blog.neurips.cc/2024/11/27/announcing-the-neurips-2024-test-of-

time-paper-awards/

* |t all started in a pub ©
* Full story here: https://x.com/sherjilozair/status/1864013580624113817

Generative Adversarial Nets

Ian J. Goodfellow, Jean Pouget-Abadiel Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair! Aaron Courville, Yoshua Bengio®
Département d’informatique et de recherche opérationnelle
Université¢ de Montréal
Montréal, QC H3C 3J7

32

https://blog.neurips.cc/2024/11/27/announcing-the-neurips-2024-test-of-time-paper-awards/
https://blog.neurips.cc/2024/11/27/announcing-the-neurips-2024-test-of-time-paper-awards/
https://x.com/sherjilozair/status/1864013580624113817

Generative Adversarial Networks (GANs)

————————————————————————————— Backpropagate

» Fake or
Real?

Generator 49, [» Discriminator
(G))

akh

Real Images

Noise
z~N(u o)

We have two networks:
* Generator (G): Generates a fake image given a noise (embedding) vector (z)
 Discriminator (D): Discriminates whether an image is fake or real.

33
http:/guimperarnau.com/blog/2017/03/Fantastic-GANs-and-where-to-find-them

Generative Adversarial Networks (GANs)

————————————————————————————— Backpropagate

Generator 3 » Discriminator » Fake or
(G) (D) Real?

»

Noise
z~N(u, o)

« With two competing networks, we solve the following minimax game:
main max V(D,G) = Ex—p,..collog D(x)] + E,~p () llog (1 — D(G(z)))]
* Discriminator’s objective:
max V(D,G) = Exp,...collogDx)] +E,p () [log (1 — D(G(z)))]

* Generator’s objective:

m(i;n V(D,G) =E,p,(» [108 (1 - D(G(Z)))]

D (x): Probability that x is real (came from data).

34
Adapted from: http://guimperarnau.com/blog/2017/03/Fantastic-GANs-and-where-to-find-them

.

.
8 e
v
s, X

0. 0 . I\

(a) (b) (c) (d)

LR S

Figure I: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p, from those of the generative distribution p, (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of . The upward arrows show how the mapping = G/(z) imposes the non-uniform distribution p, on
transformed samples. ' contracts in regions of high density and expands in regions of low density of py. (a)
Consider an adversarial pair near convergence: pg 1s similar to pgaw and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D*(x) =

pdilll(’gai‘;l = © After an update to G, gradient of D has guided GG(z) to flow to regions that are more likely

to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a

point at which both cannot improve because p, = pdaa. The discriminator is unable to differentiate between

the two distributions, i.e. D(x) = %

Fig: Goodfellow et al., 2014.

35

Alg: Goodfellow et al., 2014.

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, £, 1s a hyperparameter. We used & = 1, the least expensive option, in our
experiments.

for k steps do

e Sample minibatch of m noise samples {z*), ... (™)} from noise prior p,(z).
e Sample minibatch of m examples {z'"),..., (™)} from data generating distribution
Pdata(T)-

e Update the discriminator by ascending its stochastic gradient:

vgd;—li [1ogD (m(i)) + log (1 _D (G (z“))))] .

1=

end for _ __ .. -
e Sample minibatch of 1 noise samples {z(1), ..., (™)} from noise prior p,(z). :
‘e Update the generator by descending its stochastic gradient: |
| 1 — . |
I — _ (7') 1
| Vo, m Z_l log (1 b (G (Z))) ' :

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-

tum in our experiments.

Discriminator

Generator

36

Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample. in order to demonstrate that the model has not memorized the training set. Samples
are fair random draws, not cherry-picked. Unlike most other visualizations of deep generative models, these
images show actual samples from the model distributions, not conditional means given samples of hidden units.
Moreover, these samples are uncorrelated because the sampling process does not depend on Markov chain
mixing. a) MNIST b) TFD ¢) CIFAR-10 (fully connected model) d) CIFAR-10 (convolutional discriminator

d “deconvolutional” :
i b Fig: Goodfellow et al., 2014.

37

Mode collapse in GANs

* Problem:

* The generator network maps the different z (embedding/noise) values into
similar images.

Mode
Mode

due to
Moscow due to
N / Antalya

Temperature

BN

38

Mode collapse in GANSs

e Solutions:

e Changing the training procedure (use batch discrimination instead of
individual discrimination)

* Experience replay (show old fake images again and again)
* Use a different loss (+ enforce diversity)

e Other tips and tricks:

* https://towardsdatascience.com/gan-ways-to-improve-gan-performance-
acf37f9f59b

39

Under review as a conference paper at ICLR 2016

UNSUPERVISED REPRESENTATION LEARNING

. WITH DEEP CONVOLUTIONAL
e e p O nVO u I O n a GENERATIVE ADVERSARIAL NETWORKS
Alec Radford & Luke Metz
indico Research

Boston, MA
{alec, luke}@indico.io

* GAN with convolutional layers Soumith Chinl

Facebook Al Research
New York, NY
soumith@fb.com

bl Bl Mo

 More stable

Architecture guidelines for stable Deep Convolutional GANs

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

'mﬁﬁﬁﬁ@@ﬁf
" ol) EWN

Vo wrvg |
%‘ L L..A @ Y L WA 1
A AERn S
Use ReLLU activation in generator for all layers except for the output, which uses Tanh. = v _ﬂw,,, ; 7y ‘\w- |
Use LeakyReL.U activation in the discriminator for all layers. % ﬁ . m i{ Wﬁ :

Use batchnorm in both the generator and the discriminator.

Remove fully connected hidden layers for deeper architectures. f

smiling neutral neutral

smiling man
woman woman man

Conditional GANSs

Z Real images X L
—s | Fake -
¥ |

Y
male mal
black hair black hair
blonde blonde
make-up make-up
sunglasses sunglasses

Z changes

http:/guimperarnau.com/blog/2017/03/Fantastic-GANs-and-where-to-find-them

Fake?
Real?

41

Text to image with GANS

This flower has small, round violet This flower has small, round violet
petals with a dark purple center

petals with a dark purple center

7L S -
]

Generator Network

(this small bird has a pink
breast and crown, and black ‘

primaries and secondaries)

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran,
Bernt Schiele, Honglak Lee, 2016.

Cycle GAN

Unpaired Image-to-Image Translation
using Cycle-Consistent Adversarial Networks

Jun-Yan Zhu* Taesung Park* Phillip Isola Alexei A. Efros
Berkeley Al Research (BAIR) laboratory, UC Berkeley

Summer Z_ Winter

et P K =4 -
Ukiyo-e

Cezanne

Monet
Figure 1: Given any two unordered image collections X and Y, our algorithm learns to automatically “translate” an image
from one into the other and vice versa: (left) 1074 Monet paintings and 6753 landscape photos from Flickr; (center) 1177 ze-
bras and 939 horses from ImageNet; (right) 1273 summer and 854 winter Yosemite photos from Flickr. Example application
(bortom): using a collection of paintings of a famous artist, learn to render a user’s photograph into their style.

Photograph Van Gogh

https:/junyanz.github.io/Cycle GAN/

Paired Unpaired

43

v Al

l F | X } i X }’ cycle-consistency
i >@\...-1 loss
i cycle-consistency | ... i
Dx Dy e el
(a) | () f ©

Figure 3: (a) Our model contains two mapping functions G : X — Y and F' : Y — X, and associated adversarial
discriminators Dy and Dx. Dy encourages G to translate X into outputs indistinguishable from domain Y, and vice
versa for Dy, F'. and X. To further regularize the mappings, we introduce two “cycle consistency losses™ that capture the
intuition that if we translate from one domain to the other and back again we should arrive where we started: (b) forward
cycle-consistency loss: z — G(z) — F(G(z)) = z, and (c) backward cycle-consistency loss: v — F(y) = G(F(y)) = y

L(G, F,Dx, Dy) =Lcan(G, Dy, X,Y)
-+ ‘CGAN(F3 DXY~X)
+ ALy (G, F),

LGAN (G DY: X? Y) :Eprdata(y) log DY (y)]
+E s~ pgua (z) 102(1 — Dy (G(2))]
Loye(G, F) =Egnppa(a) | F(G(2)) — x|1]
FEy e () [[|G(F (v)) — yll1]-

44

Cycle GAN

Winter

Summer

7777

https:/junyanz.github.io/Cycle GAN/

45

Example

https://www.digitaltrends.com/cool-tech/nvidia-ai-winter-summer-car/

46

GAN -- state of the art

https://github.com/NVlabs/stylegan2

Latent z € Z

v

Normalize

network f

lMapping

EFC

FC

FC

FC

x; — p(X;)

+ ¥b,is

Noi
Synthesis network ¢ (Jmse

Const 4x4x512

< B

style
ty)

AdaIN

I
Conv 3x3

sl He—Bl«

AdaIN

l 4x4

Upsample
]
Conv 3x3

sl < B¢

AdalN

(
4

[
Conv 3x3

@< B |«

style
ty)

AdalN
A

\ 4
e e 47

The zoo of GANs

 https://deephunt.in/the-gan-zoo-79597dc8c347

48

Sample from Our Work

T(x) Real

. Image
Classical il -
TMO 1

........... Pipeline.,
Generator — ﬂ .- Generated
@ "'~../'r'7‘rage
G(x) P'p.?/me"" > ﬂ
T a—— Detector

F(G(x))

D(T'(x)|x)

Discriminator Fake/Real

D(G(x)|x)

Detected
Objects

Fig. 2. Overall architecture diagram for the proposed method that combines object
detection and tone-mapping objectives.

I. H. Kocdemir, A. Koz, A. O. Akyuz, A. Chalmers, A. Alatan, S. Kalkan, "7TMO-Det.: Deep Tone-mapping
Optimized with and for Object Detection”, Pattern Recognition Letters, 172:230-236, 2023.

(a) RetinaNet results on an LDR image [1].

(b) TMO-Det detection & tone-mapped LDR image output.

3204 * Il LDR
Std. LDR
31.5 Durand
Mantiuk
31.0 4 4 Reinhard
@ Fattal
30.5 A V¥V Ashikhmin
% = & TMO-GAN
€ 3001 | * TMO-Det
(€]
29.5 +
29.0 4
28.51
|

77.5 80.0 825 85.0 875 90.0 925 95.0
TMQI-Q

(¢) Detection vs. HDR quality.

Energy-based Generative Models

The Nobel Prize in Physics
2024

Summary

Laureates

John J. Hopfield
Geoffrey E. Hinton

Prize announcement
Press release
Popular information

Advanced information

Share this

B X) =

8 October 2024

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics
2024 to

John J. Hopfield
Princeton University, NJ, USA

Geoffrey E. Hinton
University of Toronto, Canada

“for foundational discoveries and inventions that enable machine learning with artificial neural
networks”

They trained artificial neural networks using
physics

This year’s two Nobel Laureates in Physics have used tools from physics to
develop methods that are the foundation of today’s powerful machine
learning. John Hopfield created an associative memory that can store and
reconstruct images and other types of patterns in data. Geoffrey Hinton

invented a method that can autonomously find properties in data, and so

perform tasks such as identifying specific elements in pictures.

https://www.nobelprize.org/prizes/physics/2024/press-release/ 74

“John Hopfield invented a network that uses a method
for saving and recreating patterns. We can imagine the
nodes as pixels. The Hopfield network utilises physics
that describes a material’s characteristics due to its
atomic spin — a property that makes each atom a tiny
magnet. The network as a whole is described in a
manner equivalent to the energy in the spin system
found in physics, and is trained by finding values for the
connections between the nodes so that the saved
images have low energy. When the Hopfield network is
fed a distorted or incomplete image, it methodically
works through the nodes and updates their values so
the network’s energy falls. The network thus works
stepwise to find the saved image that is most like the
imperfect one it was fed with.”

J. Hopfield
(bornin 1933)

https://www.nobelprize.org/prizes/physics/2024/press-release/

75

“Geoffrey Hinton used the Hopfield network as the
foundation for a new network that uses a different
method: the Boltzmann machine. This can learn to
recognise characteristic elements in a given type of
data. Hinton used tools from statistical physics, the o
science of systems built from many similar L
components. The machine is trained by feeding it
examples that are very likely to arise when the
machine is run. The Boltzmann machine can be used
to classify images or create new examples of the type
of pattern on which it was trained. Hinton has built
upon this work, helping initiate the current explosive
development of machine learning.

G. Hinton
(bornin 1947)

https://www.nobelprize.org/prizes/physics/2024/press-release/

76

Hopfield Networks

(Associative Memory, Ising Model, Spin-glass System)

Neural networks and physical systems with emergent collective computational properties,
Hopfield and Tank, Proceedings of the National Academy of Sciences, 1982.

77

Artificial Neural Networks

Hidden activations:
hj; = a(wjh - xl-) = a(netlhj)

Output layer:
Vie = o(wg - hy) = a(nety)

The loss function:

L(8) = %iZ(yw - i)’

=1 ceC

78

Boltzmann

Machines /
Harmony Nets
1985
1982 1986 1992 2005 2009
Hopfield Back Sigmoid Restricted Deep
Nets Propagation Belief Boltzmann Learning
Networks Machines With
and Back
Deep Propagation
Belief

Nets

79

Hopftield Networks

s;=—l1lor+1
* Then,

+1, ZWiij = Hi
S; < % -

1, otherwise
8;: threshold of neuron i. Mostly we set

this to zero.
0)

In short:

S;i = Sgn ([z Wiij
J

80

Hopfield Networks

Original

Degraded

Reconstruction

81

Hopfield Networks

* “Training” on a set
of patterns causes
them to become
attractors

* Degraded input is
mapped to nearest
attractor

82

Hopfield Networks as
Content-addressable Memory

(55,

Adapted from: E. Sahin

83

Hopfield Networks as

Content-addressable Memory

* CAM can be defined as a
system whose stable points can
be set as a set of pre-defined

states.

* The stored patterns divide the
state space into locally stable
points, called “basins of
attraction” in dynamical
systems theory.

——

Adapted from: E. Sahin

84

Hopfield Networks: o

Updating Neurons ‘ "
[>
s

* Three possible schemes:
* Synchronously: all units updated at each step.
* Asynchronously I: at each time step select a random unit for update.

* Asynchronously II: each unit independently chooses to update itself with
some probability per unit time.

e Use asynchronously | and keep updating until no neuron changes its
state.

Adapted from E. Sahin
85

Hopfield Networks: ©

Learning to Store a Single Pattern

* Assume that we want to store pattern P
* i.e., we want to have:

Si = Sgn (z Wij :P]> = :Pi
J

1
Wij = Pib

1
1 —4
sgn ZWL-]-SD]- = sgn ZNSDLSDJSDJ =P
J J

* If more than half of the bits are the same as P, the network
will recall P (it is an attractor of the system)

e A solution:

since

e

86

e

Hopfield Networks:
Learning to Store Many Patterns

* For storing K patterns:

1
=y), P

k=1..K

* Hebbian Learning Rule
* “Neurons that fire together wire together” —Donald Hebb

87

Hopfield Networks: Example

* Patterns:
Pl =(-1,-1,-1,+1) and P? = (+1,+1,+1,+1)

* Weights (using w;; = %Zk:m Tikij):

2 2 2 0

12 2 2 0

412 2 2 0

0 0 0 2]
mgmmzziGﬂx—l+lx1):LM)

* Inputs and reconstructions (using s; = sgn([z

e P3=(-1,-1,-1,+1) = Recall: (—-1,-1,—-1,+1
o« P*=(-1,41,+1,+1) = Recall: (+1,+1,+1,+1

{WU%]—QJM

)

Adapted from E. Sahin

88

Hopfield Networks:
An Energy Perspective

We can define a scalar for the energy of the state of the
network:

E:_Ezwijsisj-l_EHiSi
i j<i i
This is called energy since when you update neurons randomly, it
either decreases or stays the same.

Repeatedly updating the network will eventually make the
network converge to a local minimum, i.e., a stable state.

AN :
\updm /
energy \\\ / y,
. d . 7 minimum
aftractor
>
basin of attraction

Fig: Wikipedia

89

Hopftield Networks

* An associative memory
* Inspired many models in Machine Learning

Skipping:

* Stability conditions

* Storage capacity

* Increasing robustness

e Extension for continuous-valued patterns

90

Boltzmmann Machines

(Sherrington—Kirkpatrick model with external field, Stochastic Ising Model, Markov Random Field)

Hinton, G. E. and Sejnowski, T. J. (1983). Optimal Perceptual Inference. Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition, Washington DC, pp. 448-453.

91

Boltzmann Machines: Motivation

* A Hopfield net always makes decisions that reduce the
energy.

* This makes it impossible to escape from local minima.

* Add some randomness to escape from poor minima.
e Start with a lot of noise so it’s easy to cross “energy barriers”.

* This may mean we occasionally increase the energy

* Slowly reduce the noise so that the system ends up in a deep
minimum.

e This is “simulated annealing”. Adasted from 6. H
apted from G. Hinton

92

Boltzmann Machines:
Boltzmann (Gibbs) Distribution

* Probability of particles in a state (s) in a system:
oc e~ E(S)/KT
where E(s): the energy of the state s,

k: Boltzmann’s constant, T: temperature.

* The probability that a system will be in a certain state:

e —E(s;)/kT

pi = p(si) — M e—E(Sj)/kT

j=1

where E(s;) is the energy of state s;.

93

(hs)
=t

 They have the same energy definition (s = {v,,,} U {h,,}):

E(s) = —zz W;;S;Sj + 2 0;s;

i j<i i

Boltzmann Machines vs.
Hopefield Networks

Differences:
* Updates are stochastic

* We have hidden neurons now

» Hidden variables =» Bigger class of distributions that can be
modeled =@ In principle, we can model distributions of arbitrary
complexity

94

Boltzmann Machines:
Probability of a Neuron’s State

* Turning on a neuron i (i.e., s; is changed to 1 from 0) causes change
AE; in energy:

AE; = Ei—g — Eij—q
= —kTIn(Z pi=o) — (=kT In(Z p;=1))

= —kTIn (2=2) = —kT In (2=2)

* This yields the famOLiS logistic / sigmoid function:

Pi=1 = .
1+ exp (— A,Il?l)

 AE; > 0 =>Energy is reduced => High p;—4

 AE; < 0=>Energy is increased => Low p;—1

95

Boltzmann Machines:
Interpretation of a State’s Probability

1

1+ exp (—%)

Pi=1 =

a. IfT=0,
pi—1 = Lif AE; is positive (energy reduced).
* If AE; is negative, p;—; = 0.

b. If Tis high, then p;—; = 1/2.

* Half the chance is given to updating the neuron.
c. ForafixedT, if AE; is zero, same as case (b).
d. Forafixed T, if AE; is very high, same as case (a).

* When the temperature is high, the network covers the whole state
space.

* In the cooling phase, when the temperature is small, the network
converges to a minima, hopefully the global one.

96

Boltzmann Machines:
How temperature affects transition probabilities

p(A— B)=0.2
High temperature p(A<« B)=0.1
transition
probabilities
A
B
p(A— B)=0.001
Low temperature p(A <« B)=0.000001
transition
probabilities
A

Adapted from G. Hinton

Boltzmann Machines: An Example

Adapted from 6. Hinton

total = 39.70 98

Boltzmann Machines:
Thermal Equilibrium

We select a neuron and update its state according to the following

probability: 1

1+ exp (— Aﬁ)

If this is repeated long enough for a certain temperature, the state of the

Pi=on =

network will depend on the state’s energy, and not on the initial state.

In this condition, the log probabilities of global states become linear in

their energies.
This is called thermal equilibrium.

Start from a high temperature, gradually decrease it until thermal
equilibrium, we may converge to a distribution where energy level is close

to the global minimum. =» Simulated Annealing.

Boltzmann Machines:
Thermal Equilibrium

* How do we understand we have reached it?

* The average activation of neurons don’t change over time.

* j.e., the probability of being in a state does not change.
* The initial state is not important!

* At low temperature:

* There is a strong bias for states with low energy
e But this makes it too slow to converge to thermal eq.

* At high temperature:

* Not a strong bias for low energy
e Equilibrium is reached faster

100

Boltzmann Machines:
Simulated Annealing

https://en.m.wikipedia.org/wiki/File:Hill_Climbing_with_Simulated_Annealing.gif
101

Boltzmann Machines:
Training

* Two sets of neurons: Visible units (V) and Hidden units (H)

e Two distributions

* Over the training set: P*(V)
« Without the training set: P~ (V)

* Minimize the difference between P* (V) and P~ (V):
P*(v
G = D (PT(V) | P~(V)) = Z P*(v) ln(()),
v

P~(v)
a summation over all possible states of V.

* (¢ is a function of weights.

* We can use gradient descent on (to update the weights to minimize it.

102

Boltzmann Machines:
Training

 Two phases:

 Positive phase: visible units are initialized to a sample from the
training set.

* Negative phase: the network runs freely. The units are not initialized
to external data.

* Then:
G

aWij

1
= = |pij = pij]

* R:learning rate

. pl-+j: probability that both units are on at thermal equilibrium on the
positive phase.

* pij probability that both units are on at thermal equilibrium on the
negative phase.

G
aWij

* Needs only local information (compare it to backprop)

103

Why Boltzmann Machines Failed

* Too slow

* |oop over training epochs
loop over training examples
loop over 2 phases (+ and -)
loop over annealing schedule for T
loop until thermal equilibrium reached

* Sensitivity to annealing schedule
 Difficulty determining when equilibrium is reached

* Aslearning progresses, weights get larger, energy barriers get hard to
break -> becomes even slower

* Backprop was invented shortly after

* The need to perform pattern completion wasn’t necessary for most problems
(feedforward nets sufficed)

Slide: Michael Mozer o

Restricted Boltzmann Machines

* Invented by Smolensky (1986), improved by Hinton et
al. (2006)

e RBM: Boltzmann Machine with restricted connectivity
* Connections between hidden-visible units only!

* Smolensky called it Harmonium or Harmony networks

‘ ‘ hidden

visible
Adapted from 6. Hinton
106

Deep Belief Networks

e A stacked RBM

* First used by Hinton & Salakhutdinov
(2006)

* Models the distribution:

£-2
Pz, hl,....h") = (H P(hF|n**T)) P(hf71, hf)
k=0

* Training is similar to autoencoders

From: http://deeplearning.net/tutorial /DBN.html

COOOOOY) hs

RBM

@OOPOOO) h;

©OOPOOO) h

OQO00000) x

107

Deep Belief Deep Boltzmann
Network Machine

Wang, H., & Raj, B. (2017). On the origin of deep learning. arXiv preprint
arXiv:1702.07800.

108

Our Work Using
Boltzmann Machines

109

Boltzmann Machines: Our Work

left ' . behind
U) .
Table ~ Out of context 7
a \ L4 oﬁ
\ L - 7 .
A
? 7 N
7 \
s o 7 N\
Chair . 2
jacuzzi

I. Bozcan, S. Kalkan, "COSMO: Contextualized Scene Modeling with Boltzmann Machines", Robotics and Autonomous Systems journal,
113:132-148, 2019.

I. Bozcan, Y. Oymak, I. Z. Alemdar, S. Kalkan, "What is (missing or wrong) in the scene? A Hybrid Deep Boltzmann Machine For 110
Contextualized Scene Modeling", International Conference on Robotics and Automation (ICRA), pp. 1-6, IEEE, 2018.

Boltzmann Machines: Our Work

= L

S S
Q© = RN
L e I o O
() Hidden Units O Visible Units Relation Units
(visible)

I. Bozcan, S. Kalkan, "COSMO: Contextualized Scene Modeling with Boltzmann Machines", Robotics and Autonomous Systems journal,
113:132-148, 2019.

I. Bozcan, Y. Oymak, I. Z. Alemdar, S. Kalkan, "What is (missing or wrong) in the scene? A Hybrid Deep Boltzmann Machine For 111
Contextualized Scene Modeling", International Conference on Robotics and Automation (ICRA), pp. 1-6, IEEE, 2018.

Boltzmann Machines: Our Work

F. I. Dogan, H. Celikkanat, |. Bozcan, S. Kalkan, "Learning to Increment a Contextual Model", Continual Learning
Workshop at Neural Information Processing Systems (NIPS) Conference, Canada, 2018.

F. I. Dogan, H. Celikkanat, S. Kalkan, "A Deep Incremental Boltzmann Machine for Modeling Context in Robots",
International Conference on Robotics and Automation (ICRA), pp. 2411-2416, |IEEE, 2018. 112

Boltzmann Machines:

Our Work

40
35
301
251
201
15 A
10 1
54

of contexts

—— RBM
- DBM /DBM <« diBM
= (Celikkanat et al.

Yuetal
= |RBM
- diBM

0

(8]

2
1

of hidden layers

= # of hidden layers in diBM

o

L

1

L
—

entropy
O WAWUNAN

—— RBM
- DBM
= DBM < diBM

= Celikkanat et al.

Yuet al.

— iRBM
— diBM

F.1. Dogan, H. Celikkanat, I. Bozcan, S. Kalkan, "Learning to Increment a Contextual Model", Continual Learning Workshop at Neural

200 400 600 800 1000 1200
of scenes encountered

Information Processing Systems (NIPS) Conference, Canada, 2018.

F.1. Dogan, H. Celikkanat, S. Kalkan, "A Deep Incremental Boltzmann Machine for Modeling Context in Robots", International Conference

on Robotics and Automation (ICRA), pp. 2411-2416, IEEE, 2018.

1400

1600

113

	Slide 1: CENG501 – Deep Learning
	Slide 2: Generative Modeling
	Slide 3: Generative Modeling
	Slide 4: Generative Modeling
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Autoregressive Models vs Variational Autoencoders
	Slide 13: Recap: Autoencoders
	Slide 14: Variational Autoencoders (VAEs)
	Slide 15: Variational Autoencoders (VAEs): Intractability
	Slide 16: Variational Autoencoders (VAEs)
	Slide 17: Variational Autoencoders (VAEs)
	Slide 18: Variational Autoencoders (VAEs)
	Slide 19: Variational Autoencoders (VAEs)
	Slide 20: Variational Autoencoders (VAEs)
	Slide 21: Variational Autoencoders (VAEs)
	Slide 22: Normalizing Flow
	Slide 23
	Slide 24: Training
	Slide 25: RealNVP (Real-valued Non-Volume Preserving; Dinh et al., 2017)
	Slide 26: Normalizing Flows
	Slide 27: Today
	Slide 28: Administrative Notes
	Slide 29
	Slide 30
	Slide 31: Generative Adversarial Networks
	Slide 32: Generative Adversarial Networks (GANs)
	Slide 33: Generative Adversarial Networks (GANs)
	Slide 34: Generative Adversarial Networks (GANs)
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Mode collapse in GANs
	Slide 39: Mode collapse in GANs
	Slide 40: Deep Convolutional GAN
	Slide 41: Conditional GANs
	Slide 42: Text to image with GANs
	Slide 43: Cycle GAN
	Slide 44
	Slide 45: Cycle GAN
	Slide 46: Example
	Slide 47: GAN -- state of the art
	Slide 48: The zoo of GANs
	Slide 49: Sample from Our Work
	Slide 50: Energy-based Generative Models
	Slide 74
	Slide 75
	Slide 76
	Slide 77: Hopfield Networks
	Slide 78: Artificial Neural Networks
	Slide 79
	Slide 80: Hopfield Networks
	Slide 81: Hopfield Networks
	Slide 82: Hopfield Networks
	Slide 83: Hopfield Networks as Content-addressable Memory
	Slide 84: Hopfield Networks as Content-addressable Memory
	Slide 85: Hopfield Networks: Updating Neurons
	Slide 86: Hopfield Networks: Learning to Store a Single Pattern
	Slide 87: Hopfield Networks: Learning to Store Many Patterns
	Slide 88: Hopfield Networks: Example
	Slide 89: Hopfield Networks: An Energy Perspective
	Slide 90: Hopfield Networks
	Slide 91: Boltzmann Machines
	Slide 92: Boltzmann Machines: Motivation
	Slide 93: Boltzmann Machines: Boltzmann (Gibbs) Distribution
	Slide 94: Boltzmann Machines vs. Hopefield Networks
	Slide 95: Boltzmann Machines: Probability of a Neuron’s State
	Slide 96: Boltzmann Machines: Interpretation of a State’s Probability
	Slide 97: Boltzmann Machines: How temperature affects transition probabilities
	Slide 98: Boltzmann Machines: An Example
	Slide 99: Boltzmann Machines: Thermal Equilibrium
	Slide 100: Boltzmann Machines: Thermal Equilibrium
	Slide 101: Boltzmann Machines: Simulated Annealing
	Slide 102: Boltzmann Machines: Training
	Slide 103: Boltzmann Machines: Training
	Slide 105: Why Boltzmann Machines Failed
	Slide 106: Restricted Boltzmann Machines
	Slide 107: Deep Belief Networks
	Slide 108
	Slide 109: Our Work Using Boltzmann Machines
	Slide 110: Boltzmann Machines: Our Work
	Slide 111: Boltzmann Machines: Our Work
	Slide 112: Boltzmann Machines: Our Work
	Slide 113: Boltzmann Machines: Our Work
	Slide 124: Diffusion-based Generative Models
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138: The Three Terms
	Slide 139
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153: Latent Diffusion Models (Stable Diffusion)
	Slide 154
	Slide 155: Today

