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Generative Modeling

• Learning the probability distribution of data

2Figure: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf
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+ Diffusion Models
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Autoregressive Models vs 
Variational Autoencoders

12Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf



Recap: Autoencoders

13Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf



Variational Autoencoders (VAEs)

14Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf



Variational Autoencoders (VAEs): Intractability

15Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf



Variational Autoencoders (VAEs)
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Variational Autoencoders (VAEs)
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Variational Autoencoders (VAEs)

21Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf



Normalizing Flow

22Figure: https://lilianweng.github.io/posts/2018-10-13-flow-models/



23

Figure: ”Variational Inference with Normalizing Flows”, 2016.



Training

Pseudo-code

1. 𝐱 ← Sample a batch
2. 𝒛0~ 𝑝𝜃 𝒛0 |𝐱
3. 𝒛𝐾 ← 𝑓𝐾 ∘ 𝑓𝐾−1 ∘ ⋯ ∘  𝑓1 𝒛0
4. Δ𝜃 ∝ −∇𝜃 𝑑 𝐱, 𝒛𝐾
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RealNVP (Real-valued Non-Volume Preserving; Dinh et al., 2017)

25Figure: https://lilianweng.github.io/posts/2018-10-13-flow-models/



Normalizing Flows

• Pros:
• Successful results in estimating high-dimensional densities
• Stable training compared to GANs
• Easier to converge compared to GANs & VAEs

• Cons:
• Latent space is not lower-dimensional than the input => may not be useful in 

some applications (e.g., image compression)
• Fails in estimating the likelihood of out-of-distribution samples
• Invertibility may not be guaranteed in practice due to numerical imprecision
• Lower quality generation

26



Today

• (Deep) Generative Models
• Autoregressive models
• Variational AEs 
• Flow Models
• Generative Adversarial Networks
• Energy-based Models
• Diffusion Models

27



Administrative Notes
• No quiz this week

• Time plan for the projects
1. Milestone (November 24, midnight):

• Github repo will be ready
• Read & understand the paper
• Download the datasets
• Prepare the Readme file excluding the results & conclusion

2. Milestone (December 8, midnight)
• The results of the first experiment

3. Milestone (January 5, midnight)
• Final report (Readme file) 
• Repo with all code & trained models

28
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+ Diffusion Models



30Figure: https://lilianweng.github.io/posts/2018-10-13-flow-models/



Generative Adversarial Networks

31



Generative Adversarial Networks (GANs)
• Originally proposed by Ian Goodfellow in 2014
• Won the “Test of Time” award this year at NeurIPS2024

• https://blog.neurips.cc/2024/11/27/announcing-the-neurips-2024-test-of-
time-paper-awards/ 

• It all started in a pub ☺
• Full story here: https://x.com/sherjilozair/status/1864013580624113817 
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https://blog.neurips.cc/2024/11/27/announcing-the-neurips-2024-test-of-time-paper-awards/
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Generative Adversarial Networks (GANs)

We have two networks:
• Generator (G): Generates a fake image given a noise (embedding) vector (z)
• Discriminator (D): Discriminates whether an image is fake or real.

http://guimperarnau.com/blog/2017/03/Fantastic-GANs-and-where-to-find-them

Generator 
(G)

Discriminator 
(D)

Fake or 
Real?

Fake Images

Real Images

Noise
𝑧 ~ 𝒩(𝜇, 𝜎) 

Backpropagate
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Generative Adversarial Networks (GANs)

• With two competing networks, we solve the following minimax game:
min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑝data(𝑥)[log𝐷(𝑥)] + 𝐸𝑧~𝑝z 𝑧 log 1 − 𝐷 𝐺 𝑧

• Discriminator’s objective:
max
𝐷

𝑉(𝐷, 𝐺)  = 𝐸𝑥~𝑝data(𝑥)[log𝐷(𝑥)] + 𝐸𝑧~𝑝z 𝑧 log 1 − 𝐷 𝐺 𝑧

• Generator’s objective:
min 
𝐺
𝑉(𝐷, 𝐺) = 𝐸𝑧~𝑝z 𝑧 log 1 − 𝐷 𝐺 𝑧

Adapted from: http://guimperarnau.com/blog/2017/03/Fantastic-GANs-and-where-to-find-them

Generator 
 G 

Discriminator 
 D 

Fa e or
 eal 

Fa e Images

 eal Images

Noise
  ~  ( , ) 

 ac  ro agate
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𝐷(𝑥): Probability that 𝑥 is real (came from data).



Fig: Goodfellow et al., 2014.
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Fig: Goodfellow et al., 2014.
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Mode collapse in GANs
• Problem: 

• The generator network maps the different z (embedding/noise) values into 
similar images.

Temperature

Mode 
due to 

Moscow
Mode 
due to 

Antalya

z
….

38



Mode collapse in GANs

• Solutions:
• Changing the training procedure (use batch discrimination instead of 

individual discrimination)
• Experience replay (show old fake images again and again)
• Use a different loss (+ enforce diversity)
• …

• Other tips and tricks:
• https://towardsdatascience.com/gan-ways-to-improve-gan-performance-

acf37f9f59b
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Deep Convolutional GAN
• GAN with convolutional layers
• More stable

40



Conditional GANs

http://guimperarnau.com/blog/2017/03/Fantastic-GANs-and-where-to-find-them
41



Text to image with GANs

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, 
Bernt Schiele, Honglak Lee, 2016.

(this small bird has a pink
breast and crown, and black
primaries and secondaries)
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Cycle GAN

https://junyanz.github.io/CycleGAN/ 43
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Cycle GAN
Winter Summer

https://junyanz.github.io/CycleGAN/ 45



Example

https://www.digitaltrends.com/cool-tech/nvidia-ai-winter-summer-car/
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GAN -- state of the art

https://github.com/NVlabs/stylegan2
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The zoo of GANs

• https://deephunt.in/the-gan-zoo-79597dc8c347

48



Sample from Our Work

49I. H. Kocdemir, A. Koz, A. O. Akyuz, A. Chalmers, A. Alatan, S. Kalkan, "TMO-Det: Deep Tone-mapping 
Optimized with and for Object Detection", Pattern Recognition Letters, 172:230-236, 2023.



Energy-based Generative Models

50



74https://www.nobelprize.org/prizes/physics/2024/press-release/



75https://www.nobelprize.org/prizes/physics/2024/press-release/

“John Hopfield invented a network that uses a method 
for saving and recreating patterns. We can imagine the 
nodes as pixels. The Hopfield network utilises physics 
that describes a material’s characteristics due to its 
atomic spin – a property that makes each atom a tiny 
magnet. The network as a whole is described in a 
manner equivalent to the energy in the spin system 
found in physics, and is trained by finding values for the 
connections between the nodes so that the saved 
images have low energy. When the Hopfield network is 
fed a distorted or incomplete image, it methodically 
works through the nodes and updates their values so 
the networ ’s energy falls. The networ  thus wor s 
stepwise to find the saved image that is most like the 
im erfect one it was fed with.”

J. Hopfield
(born in 1933)



76https://www.nobelprize.org/prizes/physics/2024/press-release/

“Geoffrey Hinton used the Hopfield network as the 
foundation for a new network that uses a different 
method: the Boltzmann machine. This can learn to 
recognise characteristic elements in a given type of 
data. Hinton used tools from statistical physics, the 
science of systems built from many similar 
components. The machine is trained by feeding it 
examples that are very likely to arise when the 
machine is run. The Boltzmann machine can be used 
to classify images or create new examples of the type 
of pattern on which it was trained. Hinton has built 
upon this work, helping initiate the current explosive 
development of machine learning.

G. Hinton
(born in 1947)



Hopfield Networks
(Associative Memory, Ising Model, Spin-glass System)

Neural networks and physical systems with emergent collective computational properties, 
Hopfield and Tank, Proceedings of the National Academy of Sciences, 1982.

𝑠1

𝑠2

𝑠5

𝑠3

𝑠4
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Artificial Neural Networks

78

Hidden activations:
ℎ𝑖𝑗 = 𝜎 𝐰𝑗ℎ ⋅ 𝐱𝑖 = 𝜎 𝑛𝑒𝑡𝑖𝑗ℎ

Output layer:
ො𝑦𝑖𝑐 = 𝜎 𝐰𝑐

𝑜 ⋅ 𝐡𝑖 = 𝜎 𝑛𝑒𝑡𝑖𝑐𝑜

The loss function:

𝐿 𝛉 =
1
2
𝑖=1

𝑁


𝑐∈𝐶

ො𝑦𝑖𝑐 − 𝑦𝑖𝑐 2

𝑥 1

𝑥 𝑛

𝑥 2
 

𝜎

𝜎

𝜎

 

𝜎

𝜎

𝜎

 

𝑦 1

𝑦 2

𝑦  

𝐡 = 𝜎   𝐱   = 𝜎   𝐡 
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2005
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Boltzmann
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1992
Sigmoid

Belief
Networks

2009
Deep

Learning
With
Back

Propagation



Hopfield Networks

• 𝑠𝑖 = −1 or + 1
• Then,

𝑠𝑖 ←
+1, 

𝑗

𝑤𝑖𝑗𝑠𝑗 ≥ 𝜃𝑖

−1, otherwise
• 𝜃𝑖: threshold of neuron  . Mostly we set 

this to zero.
• In short: 

𝑠𝑖 = sgn 
𝑗

𝑤𝑖𝑗𝑠𝑗 − 𝜃𝑖

𝑠1

𝑠2

𝑠5

𝑠3

𝑠4
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Hopfield Networks

𝑠1

𝑠2

𝑠5

𝑠3

𝑠4
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Hopfield Networks

• “Training” on a set 
of patterns causes 
them to become 
attractors

• Degraded input is 
mapped to nearest 
attractor

82



83

Hopfield Networks as 
Content-addressable Memory

Adapted from: E. Sahin

𝑠1

𝑠2

𝑠𝑛
…

𝑠1

𝑠2

𝑠5

𝑠3

𝑠4
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Hopfield Networks as 
Content-addressable Memory

• CAM can be defined as a 
system whose stable points can 
be set as a set of pre-defined 
states.

• The stored patterns  divide the 
state space into locally stable 
 oints, called “basins of 
attraction” in dynamical 
systems theory.

Adapted from: E. Sahin



Hopfield Networks: 
Updating Neurons

• Three possible schemes:
• Synchronously: all units updated at each step.
• Asynchronously I: at each time step select a random unit for update.
• Asynchronously II: each unit independently chooses to update itself with

some probability per unit time.

• Use asynchronously I and keep updating until no neuron changes its
state.

Adapted from E. Sahin

𝑠1

𝑠2

𝑠5

𝑠3

𝑠4
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Hopfield Networks:
Learning to Store a Single Pattern

• Assume that we want to store pattern 𝒫
• i.e., we want to have: 

𝑠𝑖 = sgn 
𝑗

𝑤𝑖𝑗 𝒫𝑗 = 𝒫𝑖

• A solution:

𝑤𝑖𝑗 =
1
𝑁
𝒫𝑖𝒫𝑗

   since
sgn 

𝑗

𝑤𝑖𝑗 𝒫𝑗 = sgn 
𝑗

1
𝑁𝒫𝑖𝒫𝑗𝒫𝑗 = 𝒫𝑖

• If more than half of the bits are the same as 𝒫, the network 
will recall 𝒫 (it is an attractor of the system)

1

𝑠1

𝑠2

𝑠5

𝑠3

𝑠4
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Hopfield Networks:
Learning to Store Many Patterns

• For storing K patterns:

𝑤𝑖𝑗 =
1
𝑁


𝑘=1 𝐾

𝒫𝑖𝑘𝒫𝑗𝑘

• Hebbian Learning Rule
• “Neurons that fire together wire together” –Donald Hebb

𝑠1

𝑠2

𝑠5

𝑠3

𝑠4
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Hopfield Networks: Example

• Patterns:
𝒫1 = (−1,−1,−1,+1) and 𝒫2 = +1,+1,+1,+1

• Weights (using 𝑤𝑖𝑗 =
1
𝑁
σ𝑘=1,2 𝒫𝑖𝑘𝒫𝑗𝑘):

1
4

2 2 2 0
2 2 2 0
2 2 2 0
0 0 0 2

(e.g., 𝑤12 =
1
4
−1 × −1 + 1 × 1 = 2/4)

• Inputs and reconstructions (using 𝑠𝑖 = sgn σ𝑗 𝑤𝑖𝑗𝑠𝑗 − 𝜃𝑖 ):
• 𝒫3 = −1,−1,−1,+1 ⇒ Recall: −1,−1,−1,+1
• 𝒫4 = −1,+1,+1,+1 ⇒ Recall: +1,+1,+1,+1   

Adapted from E. Sahin



Hopfield Networks: 
An Energy Perspective

• We can define a scalar for the energy of the state of the 
network:

𝐸 = −
𝑖


𝑗<𝑖

𝑤𝑖𝑗𝑠𝑖𝑠𝑗 +
𝑖

𝜃𝑖𝑠𝑖

• This is called energy since when you update neurons randomly, it 
either decreases or stays the same.

• Repeatedly updating the network will eventually make the 
network converge to a local minimum, i.e., a stable state.

89Fig: Wikipedia

𝑠𝑖 𝑠𝑗
𝑤𝑖𝑗



Hopfield Networks 
• An associative memory
• Inspired many models in Machine Learning

Skipping:
• Stability conditions
• Storage capacity
• Increasing robustness
• Extension for continuous-valued patterns
• …

90



Boltzmann Machines
(Sherrington–Kirkpatrick model with external field, Stochastic Ising Model, Markov Random Field)

Hinton, G. E. and Sejnowski, T. J. (1983). Optimal Perceptual Inference. Proceedings of the IEEE 
conference on Computer Vision and Pattern Recognition, Washington DC, pp. 448-453.

𝑣1

𝑣2

ℎ2

𝑣3

ℎ1
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Boltzmann Machines: Motivation

• A Hopfield net always makes decisions that reduce the 
energy.

• This makes it impossible to escape from local minima.

• Add some randomness to escape from poor minima.
• Start with a lot of noise so it’s easy to cross “energy barriers”.

• This may mean we occasionally increase the energy
• Slowly reduce the noise so that the system ends up in a deep 

minimum. 
• This is “simulated annealing”.

A                  B                     C

Adapted from G. Hinton



Boltzmann Machines: 
Boltzmann (Gibbs) Distribution

• Probability of particles in a state (𝐬) in a system:

∝ 𝑒−𝐸(𝐬)/𝑘𝑇,

where 𝐸(𝐬): the energy of the state 𝐬, 

𝑘:  oltzmann’s constant, 𝑇: temperature.

• The probability that a system will be in a certain state:

𝑝𝑖 = 𝑝(𝐬𝑖) =
𝑒−𝐸 𝐬𝑖 /𝑘𝑇

σ𝑗=1
𝑀 𝑒−𝐸 𝐬𝑗 /𝑘𝑇

   where 𝐸(𝐬𝑖) is the energy of state 𝐬𝑖.
93



Boltzmann Machines vs. 
Hopefield Networks

• They have the same energy definition (𝐬 = 𝑣𝑚 ∪ {ℎ𝑛}):
𝐸(𝐬) = −

𝑖


𝑗<𝑖

𝑤𝑖𝑗𝑠𝑖𝑠𝑗 +
𝑖

𝜃𝑖𝑠𝑖

Differences:
• Updates are stochastic
• We have hidden neurons now

• Hidden variables ➔ Bigger class of distributions that can be 
modeled ➔ In principle, we can model distributions of arbitrary 
complexity

𝑣1

𝑣2

ℎ5

𝑣3

ℎ4
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Boltzmann Machines:
Probability of a Neuron’s State

• Turning on a neuron   (i.e., 𝑠𝑖  is changed to 1 from 0) causes change 
Δ𝐸𝑖  in energy:
Δ𝐸𝑖 = 𝐸𝑖=0 − 𝐸𝑖=1
 = −𝑘𝑇 ln 𝑍 𝑝𝑖=0 − −𝑘𝑇 ln 𝑍 𝑝𝑖=1

        = −𝑘𝑇 ln 𝑍 𝑝𝑖=0
𝑍 𝑝𝑖=1

= −𝑘𝑇 ln 𝑝𝑖=0
𝑝𝑖=1

        = −𝑘𝑇 ln 1−𝑝𝑖=1
𝑝𝑖=1

• This yields the famous logistic / sigmoid function:

𝑝𝑖=1 =
1

1 + exp −Δ𝐸𝑖
T

Using:

𝑝𝑖 =
𝑒−𝐸𝑖/𝑘𝑇

𝑍

• Δ𝐸𝑖 > 0 => Energy is reduced => High 𝑝𝑖=1
• Δ𝐸𝑖 < 0 => Energy is increased => Low 𝑝𝑖=1 95



Boltzmann Machines: 
Interpretation of a State’s Probability

𝑝𝑖=1 =
1

1 + exp −Δ𝐸𝑖
T

a. If T = 0, 
• 𝑝𝑖=1 ≈ 1 if Δ𝐸𝑖  is positive (energy reduced). 
• If Δ𝐸𝑖  is negative, 𝑝𝑖=1 ≈ 0.

b. If T is high, then 𝑝𝑖=1 ≈ 1/2. 
• Half the chance is given to updating the neuron.

c. For a fixed T, if Δ𝐸𝑖 is zero, same as case (b).

d. For a fixed T, if Δ𝐸𝑖 is very high, same as case (a).

• When the temperature is high, the network covers the whole state 
space. 

• In the cooling phase, when the temperature is small, the network 
converges to a minima, hopefully the global one. 96
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Boltzmann Machines: 
How temperature affects transition probabilities

A

B

1.0)(
2.0)(

=
=→

BAp
BAp

A

B

000001.0)(
001.0)(

=
=→

BAp
BAp

High temperature 
transition 
probabilities

Low temperature 
transition 
probabilities

Adapted from G. Hinton
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-1

h1               h2

  +2            +1

v1               v2

Boltzmann Machines: An Example

1 1   1 1       2          7.39            .186 
1 1   1 0       2          7.39            .186  
1 1   0 1       1          2.72            .069 
1 1   0 0       0          1                  .025
1 0   1 1       1          2.72            .069
1 0   1 0       2          7.39            .186
1 0   0 1       0          1                 .025
1 0   0 0       0          1                 .025
0 1   1 1       0          1                 .025
0 1   1 0       0          1                 .025
0 1   0 1       1          2.72           .069
0 1   0 0       0          1                 .025
0 0   1 1       -1         0.37           .009
0 0   1 0       0          1                 .025
0 0   0 1       0          1                 .025
0 0   0 0       0          1                 .025
                    total = 39.70

)(),( vhvhv ppeE E−−

0.466

0.305

0.144

0.084
Adapted from G. Hinton



Boltzmann Machines: 
Thermal Equilibrium

• We select a neuron and update its state according to the following 
probability:

𝑝𝑖=𝑜𝑛 =
1

1 + exp −Δ𝐸𝑖
𝑇

• If this is repeated long enough for a certain temperature, the state of the 
networ  will de end on the state’s energy, and not on the initial state.

• In this condition, the log probabilities of global states become linear in 
their energies.

• This is called thermal equilibrium.

• Start from a high temperature, gradually decrease it until thermal 
equilibrium, we may converge to a distribution where energy level is close 
to the global minimum. ➔ Simulated Annealing.

99



Boltzmann Machines: 
Thermal Equilibrium

• How do we understand we have reached it?
• The average activation of neurons don’t change over time.
• i.e., the probability of being in a state does not change.

• The initial state is not important!
• At low temperature:

• There is a strong bias for states with low energy
• But this makes it too slow to converge to thermal eq.

• At high temperature:
• Not a strong bias for low energy
• Equilibrium is reached faster

100



Boltzmann Machines: 
Simulated Annealing

https://en.m.wikipedia.org/wiki/File:Hill_Climbing_with_Simulated_Annealing.gif
101



Boltzmann Machines:
Training

• Two sets of neurons: Visible units (𝑉) and Hidden units (𝐻)

• Two distributions 
• Over the training set: 𝑃+(𝑉)

• Without the training set: 𝑃− 𝑉

• Minimize the difference between 𝑃+(𝑉) and 𝑃− 𝑉 :

𝐺 = 𝐷𝐾𝐿 𝑃+ 𝑉 ∥ 𝑃− 𝑉 =
𝑣

𝑃+ 𝑣 ln
𝑃+ 𝑣
𝑃− 𝑣

,

     a summation over all possible states of 𝑉.

• 𝐺 is a function of weights.
• We can use gradient descent on 𝐺 to update the weights to minimize it.

102

𝑣1

𝑣2

ℎ5

𝑣3

ℎ4



Boltzmann Machines:
Training

• Two phases:
• Positive phase: visible units are initialized to a sample from the 

training set.
• Negative phase: the network runs freely. The units are not initialized 

to external data.
• Then:

𝜕𝐺
𝜕𝑤𝑖𝑗

=
1
𝑅

𝑝𝑖𝑗+ − 𝑝𝑖𝑗−

• R: learning rate
• 𝑝𝑖𝑗+ : probability that both units are on at thermal equilibrium on the 

positive phase. 
• 𝑝𝑖𝑗− : probability that both units are on at thermal equilibrium on the 

negative phase.

• 𝑤𝑖𝑗 = 𝑤𝑖𝑗 −
𝜕𝐺
𝜕𝑤𝑖𝑗

• Needs only local information (compare it to backprop)
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Why Boltzmann Machines Failed
• Too slow

• loop over training epochs
   loop over training examples
      loop over 2 phases (+ and -)
         loop over annealing schedule for T
            loop until thermal equilibrium reached

• Sensitivity to annealing schedule

• Difficulty determining when equilibrium is reached

• As learning progresses, weights get larger, energy barriers get hard to 
break -> becomes even slower

• Backprop was invented shortly after
• The need to  erform  attern com letion wasn’t necessary for most  roblems 

(feedforward nets sufficed)

Slide: Michael Mozer
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Restricted Boltzmann Machines

• Invented by Smolensky (1986), improved by Hinton et 
al. (2006)

• RBM: Boltzmann Machine with restricted connectivity
• Connections between hidden-visible units only!
• Smolensky called it Harmonium or Harmony networks
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Deep Belief Networks
• A stacked RBM
• First used by Hinton & Salakhutdinov 

(2006)
• Models the distribution:

• Training is similar to autoencoders

From: http://deeplearning.net/tutorial/DBN.html 107
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Our Work Using 
Boltzmann Machines
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Boltzmann Machines: Our Work
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