
CENG501 – Deep Learning
Week 12

Fall 2024

Sinan Kalkan
Dept. of Computer Engineering, METU

Generative Modeling

• Learning the probability distribution of data

2Figure: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Generative Modeling

• Learning the probability distribution of data

3Figure: https://deepgenerativemodels.github.io/notes/introduction/

𝑝𝜃 ≡ 𝑝model

Generative Modeling

• Learning the probability distribution of data

4Figure: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

5Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

+ Diffusion Models

6Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

7Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

8Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

9Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

10Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

11Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Autoregressive Models vs
Variational Autoencoders

12Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Recap: Autoencoders

13Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Variational Autoencoders (VAEs)

14Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Variational Autoencoders (VAEs): Intractability

15Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Variational Autoencoders (VAEs)

16Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Variational Autoencoders (VAEs)

17Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Variational Autoencoders (VAEs)

18Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Variational Autoencoders (VAEs)

19Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Variational Autoencoders (VAEs)

20Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Variational Autoencoders (VAEs)

21Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

Normalizing Flow

22Figure: https://lilianweng.github.io/posts/2018-10-13-flow-models/

23

Figure: ”Variational Inference with Normalizing Flows”, 2016.

Training

Pseudo-code

1. 𝐱 ← Sample a batch
2. 𝒛0~ 𝑝𝜃 𝒛0 |𝐱
3. 𝒛𝐾 ← 𝑓𝐾 ∘ 𝑓𝐾−1 ∘ ⋯ ∘ 𝑓1 𝒛0
4. Δ𝜃 ∝ −∇𝜃 𝑑 𝐱, 𝒛𝐾

24

RealNVP (Real-valued Non-Volume Preserving; Dinh et al., 2017)

25Figure: https://lilianweng.github.io/posts/2018-10-13-flow-models/

Normalizing Flows

• Pros:
• Successful results in estimating high-dimensional densities
• Stable training compared to GANs
• Easier to converge compared to GANs & VAEs

• Cons:
• Latent space is not lower-dimensional than the input => may not be useful in

some applications (e.g., image compression)
• Fails in estimating the likelihood of out-of-distribution samples
• Invertibility may not be guaranteed in practice due to numerical imprecision
• Lower quality generation

26

Today

• (Deep) Generative Models
• Autoregressive models
• Variational AEs
• Flow Models
• Generative Adversarial Networks
• Energy-based Models
• Diffusion Models

27

Administrative Notes
• No quiz this week

• Time plan for the projects
1. Milestone (November 24, midnight):

• Github repo will be ready
• Read & understand the paper
• Download the datasets
• Prepare the Readme file excluding the results & conclusion

2. Milestone (December 8, midnight)
• The results of the first experiment

3. Milestone (January 5, midnight)
• Final report (Readme file)
• Repo with all code & trained models

28

29Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf

+ Diffusion Models

30Figure: https://lilianweng.github.io/posts/2018-10-13-flow-models/

Generative Adversarial Networks

31

Generative Adversarial Networks (GANs)
• Originally proposed by Ian Goodfellow in 2014
• Won the “Test of Time” award this year at NeurIPS2024

• https://blog.neurips.cc/2024/11/27/announcing-the-neurips-2024-test-of-
time-paper-awards/

• It all started in a pub ☺
• Full story here: https://x.com/sherjilozair/status/1864013580624113817

32

https://blog.neurips.cc/2024/11/27/announcing-the-neurips-2024-test-of-time-paper-awards/
https://blog.neurips.cc/2024/11/27/announcing-the-neurips-2024-test-of-time-paper-awards/
https://x.com/sherjilozair/status/1864013580624113817

Generative Adversarial Networks (GANs)

We have two networks:
• Generator (G): Generates a fake image given a noise (embedding) vector (z)
• Discriminator (D): Discriminates whether an image is fake or real.

http://guimperarnau.com/blog/2017/03/Fantastic-GANs-and-where-to-find-them

Generator
(G)

Discriminator
(D)

Fake or
Real?

Fake Images

Real Images

Noise
𝑧 ~ 𝒩(𝜇, 𝜎)

Backpropagate

33

Generative Adversarial Networks (GANs)

• With two competing networks, we solve the following minimax game:
min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑝data(𝑥)[log𝐷(𝑥)] + 𝐸𝑧~𝑝z 𝑧 log 1 − 𝐷 𝐺 𝑧

• Discriminator’s objective:
max
𝐷

𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑝data(𝑥)[log𝐷(𝑥)] + 𝐸𝑧~𝑝z 𝑧 log 1 − 𝐷 𝐺 𝑧

• Generator’s objective:
min
𝐺
𝑉(𝐷, 𝐺) = 𝐸𝑧~𝑝z 𝑧 log 1 − 𝐷 𝐺 𝑧

Adapted from: http://guimperarnau.com/blog/2017/03/Fantastic-GANs-and-where-to-find-them

Generator
 G

Discriminator
 D

Fa e or
 eal

Fa e Images

 eal Images

Noise
 ~ (,)

 ac ro agate

34

𝐷(𝑥): Probability that 𝑥 is real (came from data).

Fig: Goodfellow et al., 2014.
35

Al
g:

 G
oo

df
el

lo
w

 e
t a

l.,
 2

01
4.

36

Di
sc

rim
in

at
or

Ge
ne

ra
to

r

Fig: Goodfellow et al., 2014.
37

Mode collapse in GANs
• Problem:

• The generator network maps the different z (embedding/noise) values into
similar images.

Temperature

Mode
due to

Moscow
Mode
due to

Antalya

z
….

38

Mode collapse in GANs

• Solutions:
• Changing the training procedure (use batch discrimination instead of

individual discrimination)
• Experience replay (show old fake images again and again)
• Use a different loss (+ enforce diversity)
• …

• Other tips and tricks:
• https://towardsdatascience.com/gan-ways-to-improve-gan-performance-

acf37f9f59b

39

Deep Convolutional GAN
• GAN with convolutional layers
• More stable

40

Conditional GANs

http://guimperarnau.com/blog/2017/03/Fantastic-GANs-and-where-to-find-them
41

Text to image with GANs

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran,
Bernt Schiele, Honglak Lee, 2016.

(this small bird has a pink
breast and crown, and black
primaries and secondaries)

42

Cycle GAN

https://junyanz.github.io/CycleGAN/ 43

44

Cycle GAN
Winter Summer

https://junyanz.github.io/CycleGAN/ 45

Example

https://www.digitaltrends.com/cool-tech/nvidia-ai-winter-summer-car/

46

GAN -- state of the art

https://github.com/NVlabs/stylegan2

47

The zoo of GANs

• https://deephunt.in/the-gan-zoo-79597dc8c347

48

Sample from Our Work

49I. H. Kocdemir, A. Koz, A. O. Akyuz, A. Chalmers, A. Alatan, S. Kalkan, "TMO-Det: Deep Tone-mapping
Optimized with and for Object Detection", Pattern Recognition Letters, 172:230-236, 2023.

Energy-based Generative Models

50

74https://www.nobelprize.org/prizes/physics/2024/press-release/

75https://www.nobelprize.org/prizes/physics/2024/press-release/

“John Hopfield invented a network that uses a method
for saving and recreating patterns. We can imagine the
nodes as pixels. The Hopfield network utilises physics
that describes a material’s characteristics due to its
atomic spin – a property that makes each atom a tiny
magnet. The network as a whole is described in a
manner equivalent to the energy in the spin system
found in physics, and is trained by finding values for the
connections between the nodes so that the saved
images have low energy. When the Hopfield network is
fed a distorted or incomplete image, it methodically
works through the nodes and updates their values so
the networ ’s energy falls. The networ thus wor s
stepwise to find the saved image that is most like the
im erfect one it was fed with.”

J. Hopfield
(born in 1933)

76https://www.nobelprize.org/prizes/physics/2024/press-release/

“Geoffrey Hinton used the Hopfield network as the
foundation for a new network that uses a different
method: the Boltzmann machine. This can learn to
recognise characteristic elements in a given type of
data. Hinton used tools from statistical physics, the
science of systems built from many similar
components. The machine is trained by feeding it
examples that are very likely to arise when the
machine is run. The Boltzmann machine can be used
to classify images or create new examples of the type
of pattern on which it was trained. Hinton has built
upon this work, helping initiate the current explosive
development of machine learning.

G. Hinton
(born in 1947)

Hopfield Networks
(Associative Memory, Ising Model, Spin-glass System)

Neural networks and physical systems with emergent collective computational properties,
Hopfield and Tank, Proceedings of the National Academy of Sciences, 1982.

𝑠1

𝑠2

𝑠5

𝑠3

𝑠4

77

Artificial Neural Networks

78

Hidden activations:
ℎ𝑖𝑗 = 𝜎 𝐰𝑗ℎ ⋅ 𝐱𝑖 = 𝜎 𝑛𝑒𝑡𝑖𝑗ℎ

Output layer:
ො𝑦𝑖𝑐 = 𝜎 𝐰𝑐

𝑜 ⋅ 𝐡𝑖 = 𝜎 𝑛𝑒𝑡𝑖𝑐𝑜

The loss function:

𝐿 𝛉 =
1
2
𝑖=1

𝑁

𝑐∈𝐶

ො𝑦𝑖𝑐 − 𝑦𝑖𝑐 2

𝑥 1

𝑥 𝑛

𝑥 2

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝑦 1

𝑦 2

𝑦

𝐡 = 𝜎 𝐱 = 𝜎 𝐡

79

1982
Hopfield

Nets

Boltzmann
Machines /

Harmony Nets
1985

1986
Back

Propagation

2005
Restricted
Boltzmann
Machines

and
Deep
Belief
Nets

1992
Sigmoid

Belief
Networks

2009
Deep

Learning
With
Back

Propagation

Hopfield Networks

• 𝑠𝑖 = −1 or + 1
• Then,

𝑠𝑖 ←
+1,

𝑗

𝑤𝑖𝑗𝑠𝑗 ≥ 𝜃𝑖

−1, otherwise
• 𝜃𝑖: threshold of neuron . Mostly we set

this to zero.
• In short:

𝑠𝑖 = sgn
𝑗

𝑤𝑖𝑗𝑠𝑗 − 𝜃𝑖

𝑠1

𝑠2

𝑠5

𝑠3

𝑠4

80

Hopfield Networks

𝑠1

𝑠2

𝑠5

𝑠3

𝑠4

81

Hopfield Networks

• “Training” on a set
of patterns causes
them to become
attractors

• Degraded input is
mapped to nearest
attractor

82

83

Hopfield Networks as
Content-addressable Memory

Adapted from: E. Sahin

𝑠1

𝑠2

𝑠𝑛
…

𝑠1

𝑠2

𝑠5

𝑠3

𝑠4

84

Hopfield Networks as
Content-addressable Memory

• CAM can be defined as a
system whose stable points can
be set as a set of pre-defined
states.

• The stored patterns divide the
state space into locally stable
 oints, called “basins of
attraction” in dynamical
systems theory.

Adapted from: E. Sahin

Hopfield Networks:
Updating Neurons

• Three possible schemes:
• Synchronously: all units updated at each step.
• Asynchronously I: at each time step select a random unit for update.
• Asynchronously II: each unit independently chooses to update itself with

some probability per unit time.

• Use asynchronously I and keep updating until no neuron changes its
state.

Adapted from E. Sahin

𝑠1

𝑠2

𝑠5

𝑠3

𝑠4

85

Hopfield Networks:
Learning to Store a Single Pattern

• Assume that we want to store pattern 𝒫
• i.e., we want to have:

𝑠𝑖 = sgn
𝑗

𝑤𝑖𝑗 𝒫𝑗 = 𝒫𝑖

• A solution:

𝑤𝑖𝑗 =
1
𝑁
𝒫𝑖𝒫𝑗

 since
sgn

𝑗

𝑤𝑖𝑗 𝒫𝑗 = sgn
𝑗

1
𝑁𝒫𝑖𝒫𝑗𝒫𝑗 = 𝒫𝑖

• If more than half of the bits are the same as 𝒫, the network
will recall 𝒫 (it is an attractor of the system)

1

𝑠1

𝑠2

𝑠5

𝑠3

𝑠4

86

Hopfield Networks:
Learning to Store Many Patterns

• For storing K patterns:

𝑤𝑖𝑗 =
1
𝑁

𝑘=1 𝐾

𝒫𝑖𝑘𝒫𝑗𝑘

• Hebbian Learning Rule
• “Neurons that fire together wire together” –Donald Hebb

𝑠1

𝑠2

𝑠5

𝑠3

𝑠4

87

88

Hopfield Networks: Example

• Patterns:
𝒫1 = (−1,−1,−1,+1) and 𝒫2 = +1,+1,+1,+1

• Weights (using 𝑤𝑖𝑗 =
1
𝑁
σ𝑘=1,2 𝒫𝑖𝑘𝒫𝑗𝑘):

1
4

2 2 2 0
2 2 2 0
2 2 2 0
0 0 0 2

(e.g., 𝑤12 =
1
4
−1 × −1 + 1 × 1 = 2/4)

• Inputs and reconstructions (using 𝑠𝑖 = sgn σ𝑗 𝑤𝑖𝑗𝑠𝑗 − 𝜃𝑖):
• 𝒫3 = −1,−1,−1,+1 ⇒ Recall: −1,−1,−1,+1
• 𝒫4 = −1,+1,+1,+1 ⇒ Recall: +1,+1,+1,+1

Adapted from E. Sahin

Hopfield Networks:
An Energy Perspective

• We can define a scalar for the energy of the state of the
network:

𝐸 = −
𝑖

𝑗<𝑖

𝑤𝑖𝑗𝑠𝑖𝑠𝑗 +
𝑖

𝜃𝑖𝑠𝑖

• This is called energy since when you update neurons randomly, it
either decreases or stays the same.

• Repeatedly updating the network will eventually make the
network converge to a local minimum, i.e., a stable state.

89Fig: Wikipedia

𝑠𝑖 𝑠𝑗
𝑤𝑖𝑗

Hopfield Networks
• An associative memory
• Inspired many models in Machine Learning

Skipping:
• Stability conditions
• Storage capacity
• Increasing robustness
• Extension for continuous-valued patterns
• …

90

Boltzmann Machines
(Sherrington–Kirkpatrick model with external field, Stochastic Ising Model, Markov Random Field)

Hinton, G. E. and Sejnowski, T. J. (1983). Optimal Perceptual Inference. Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition, Washington DC, pp. 448-453.

𝑣1

𝑣2

ℎ2

𝑣3

ℎ1

91

92

Boltzmann Machines: Motivation

• A Hopfield net always makes decisions that reduce the
energy.

• This makes it impossible to escape from local minima.

• Add some randomness to escape from poor minima.
• Start with a lot of noise so it’s easy to cross “energy barriers”.

• This may mean we occasionally increase the energy
• Slowly reduce the noise so that the system ends up in a deep

minimum.
• This is “simulated annealing”.

A B C

Adapted from G. Hinton

Boltzmann Machines:
Boltzmann (Gibbs) Distribution

• Probability of particles in a state (𝐬) in a system:

∝ 𝑒−𝐸(𝐬)/𝑘𝑇,

where 𝐸(𝐬): the energy of the state 𝐬,

𝑘: oltzmann’s constant, 𝑇: temperature.

• The probability that a system will be in a certain state:

𝑝𝑖 = 𝑝(𝐬𝑖) =
𝑒−𝐸 𝐬𝑖 /𝑘𝑇

σ𝑗=1
𝑀 𝑒−𝐸 𝐬𝑗 /𝑘𝑇

 where 𝐸(𝐬𝑖) is the energy of state 𝐬𝑖.
93

Boltzmann Machines vs.
Hopefield Networks

• They have the same energy definition (𝐬 = 𝑣𝑚 ∪ {ℎ𝑛}):
𝐸(𝐬) = −

𝑖

𝑗<𝑖

𝑤𝑖𝑗𝑠𝑖𝑠𝑗 +
𝑖

𝜃𝑖𝑠𝑖

Differences:
• Updates are stochastic
• We have hidden neurons now

• Hidden variables ➔ Bigger class of distributions that can be
modeled ➔ In principle, we can model distributions of arbitrary
complexity

𝑣1

𝑣2

ℎ5

𝑣3

ℎ4

94

Boltzmann Machines:
Probability of a Neuron’s State

• Turning on a neuron (i.e., 𝑠𝑖 is changed to 1 from 0) causes change
Δ𝐸𝑖 in energy:
Δ𝐸𝑖 = 𝐸𝑖=0 − 𝐸𝑖=1
 = −𝑘𝑇 ln 𝑍 𝑝𝑖=0 − −𝑘𝑇 ln 𝑍 𝑝𝑖=1

 = −𝑘𝑇 ln 𝑍 𝑝𝑖=0
𝑍 𝑝𝑖=1

= −𝑘𝑇 ln 𝑝𝑖=0
𝑝𝑖=1

 = −𝑘𝑇 ln 1−𝑝𝑖=1
𝑝𝑖=1

• This yields the famous logistic / sigmoid function:

𝑝𝑖=1 =
1

1 + exp −Δ𝐸𝑖
T

Using:

𝑝𝑖 =
𝑒−𝐸𝑖/𝑘𝑇

𝑍

• Δ𝐸𝑖 > 0 => Energy is reduced => High 𝑝𝑖=1
• Δ𝐸𝑖 < 0 => Energy is increased => Low 𝑝𝑖=1 95

Boltzmann Machines:
Interpretation of a State’s Probability

𝑝𝑖=1 =
1

1 + exp −Δ𝐸𝑖
T

a. If T = 0,
• 𝑝𝑖=1 ≈ 1 if Δ𝐸𝑖 is positive (energy reduced).
• If Δ𝐸𝑖 is negative, 𝑝𝑖=1 ≈ 0.

b. If T is high, then 𝑝𝑖=1 ≈ 1/2.
• Half the chance is given to updating the neuron.

c. For a fixed T, if Δ𝐸𝑖 is zero, same as case (b).

d. For a fixed T, if Δ𝐸𝑖 is very high, same as case (a).

• When the temperature is high, the network covers the whole state
space.

• In the cooling phase, when the temperature is small, the network
converges to a minima, hopefully the global one. 96

97

Boltzmann Machines:
How temperature affects transition probabilities

A

B

1.0)(
2.0)(

=
=→

BAp
BAp

A

B

000001.0)(
001.0)(

=
=→

BAp
BAp

High temperature
transition
probabilities

Low temperature
transition
probabilities

Adapted from G. Hinton

98

-1

h1 h2

 +2 +1

v1 v2

Boltzmann Machines: An Example

1 1 1 1 2 7.39 .186
1 1 1 0 2 7.39 .186
1 1 0 1 1 2.72 .069
1 1 0 0 0 1 .025
1 0 1 1 1 2.72 .069
1 0 1 0 2 7.39 .186
1 0 0 1 0 1 .025
1 0 0 0 0 1 .025
0 1 1 1 0 1 .025
0 1 1 0 0 1 .025
0 1 0 1 1 2.72 .069
0 1 0 0 0 1 .025
0 0 1 1 -1 0.37 .009
0 0 1 0 0 1 .025
0 0 0 1 0 1 .025
0 0 0 0 0 1 .025
 total = 39.70

)(),(vhvhv ppeE E−−

0.466

0.305

0.144

0.084
Adapted from G. Hinton

Boltzmann Machines:
Thermal Equilibrium

• We select a neuron and update its state according to the following
probability:

𝑝𝑖=𝑜𝑛 =
1

1 + exp −Δ𝐸𝑖
𝑇

• If this is repeated long enough for a certain temperature, the state of the
networ will de end on the state’s energy, and not on the initial state.

• In this condition, the log probabilities of global states become linear in
their energies.

• This is called thermal equilibrium.

• Start from a high temperature, gradually decrease it until thermal
equilibrium, we may converge to a distribution where energy level is close
to the global minimum. ➔ Simulated Annealing.

99

Boltzmann Machines:
Thermal Equilibrium

• How do we understand we have reached it?
• The average activation of neurons don’t change over time.
• i.e., the probability of being in a state does not change.

• The initial state is not important!
• At low temperature:

• There is a strong bias for states with low energy
• But this makes it too slow to converge to thermal eq.

• At high temperature:
• Not a strong bias for low energy
• Equilibrium is reached faster

100

Boltzmann Machines:
Simulated Annealing

https://en.m.wikipedia.org/wiki/File:Hill_Climbing_with_Simulated_Annealing.gif
101

Boltzmann Machines:
Training

• Two sets of neurons: Visible units (𝑉) and Hidden units (𝐻)

• Two distributions
• Over the training set: 𝑃+(𝑉)

• Without the training set: 𝑃− 𝑉

• Minimize the difference between 𝑃+(𝑉) and 𝑃− 𝑉 :

𝐺 = 𝐷𝐾𝐿 𝑃+ 𝑉 ∥ 𝑃− 𝑉 =
𝑣

𝑃+ 𝑣 ln
𝑃+ 𝑣
𝑃− 𝑣

,

 a summation over all possible states of 𝑉.

• 𝐺 is a function of weights.
• We can use gradient descent on 𝐺 to update the weights to minimize it.

102

𝑣1

𝑣2

ℎ5

𝑣3

ℎ4

Boltzmann Machines:
Training

• Two phases:
• Positive phase: visible units are initialized to a sample from the

training set.
• Negative phase: the network runs freely. The units are not initialized

to external data.
• Then:

𝜕𝐺
𝜕𝑤𝑖𝑗

=
1
𝑅

𝑝𝑖𝑗+ − 𝑝𝑖𝑗−

• R: learning rate
• 𝑝𝑖𝑗+ : probability that both units are on at thermal equilibrium on the

positive phase.
• 𝑝𝑖𝑗− : probability that both units are on at thermal equilibrium on the

negative phase.

• 𝑤𝑖𝑗 = 𝑤𝑖𝑗 −
𝜕𝐺
𝜕𝑤𝑖𝑗

• Needs only local information (compare it to backprop)

103

Why Boltzmann Machines Failed
• Too slow

• loop over training epochs
 loop over training examples
 loop over 2 phases (+ and -)
 loop over annealing schedule for T
 loop until thermal equilibrium reached

• Sensitivity to annealing schedule

• Difficulty determining when equilibrium is reached

• As learning progresses, weights get larger, energy barriers get hard to
break -> becomes even slower

• Backprop was invented shortly after
• The need to erform attern com letion wasn’t necessary for most roblems

(feedforward nets sufficed)

Slide: Michael Mozer
105

Restricted Boltzmann Machines

• Invented by Smolensky (1986), improved by Hinton et
al. (2006)

• RBM: Boltzmann Machine with restricted connectivity
• Connections between hidden-visible units only!
• Smolensky called it Harmonium or Harmony networks

106

hidden

visiblei

j

Adapted from G. Hinton

Deep Belief Networks
• A stacked RBM
• First used by Hinton & Salakhutdinov

(2006)
• Models the distribution:

• Training is similar to autoencoders

From: http://deeplearning.net/tutorial/DBN.html 107

108

Wang, H., & Raj, B. (2017). On the origin of deep learning. arXiv preprint
arXiv:1702.07800.

Our Work Using
Boltzmann Machines

109

Boltzmann Machines: Our Work

110

I. Bozcan, S. Kalkan, "COSMO: Contextualized Scene Modeling with Boltzmann Machines", Robotics and Autonomous Systems journal,
113:132-148, 2019.

I. Bozcan, Y. Oymak, I. Z. Alemdar, S. Kalkan, "What is (missing or wrong) in the scene? A Hybrid Deep Boltzmann Machine For
Contextualized Scene Modeling", International Conference on Robotics and Automation (ICRA), pp. 1-6, IEEE, 2018.

Boltzmann Machines: Our Work

111

I. Bozcan, S. Kalkan, "COSMO: Contextualized Scene Modeling with Boltzmann Machines", Robotics and Autonomous Systems journal,
113:132-148, 2019.

I. Bozcan, Y. Oymak, I. Z. Alemdar, S. Kalkan, "What is (missing or wrong) in the scene? A Hybrid Deep Boltzmann Machine For
Contextualized Scene Modeling", International Conference on Robotics and Automation (ICRA), pp. 1-6, IEEE, 2018.

Boltzmann Machines: Our Work

112

𝑡3𝑡0 𝑡1 𝑡4𝑡2 𝑡5

… … … … … …

F. I. Dogan, H. Celikkanat, I. Bozcan, S. Kalkan, "Learning to Increment a Contextual Model", Continual Learning
Workshop at Neural Information Processing Systems (NIPS) Conference, Canada, 2018.

F. I. Dogan, H. Celikkanat, S. Kalkan, "A Deep Incremental Boltzmann Machine for Modeling Context in Robots",
International Conference on Robotics and Automation (ICRA), pp. 2411-2416, IEEE, 2018.

Boltzmann Machines: Our Work

113

F. I. Dogan, H. Celikkanat, I. Bozcan, S. Kalkan, "Learning to Increment a Contextual Model", Continual Learning Workshop at Neural
Information Processing Systems (NIPS) Conference, Canada, 2018.

F. I. Dogan, H. Celikkanat, S. Kalkan, "A Deep Incremental Boltzmann Machine for Modeling Context in Robots", International Conference
on Robotics and Automation (ICRA), pp. 2411-2416, IEEE, 2018.

	Slide 1: CENG501 – Deep Learning
	Slide 2: Generative Modeling
	Slide 3: Generative Modeling
	Slide 4: Generative Modeling
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Autoregressive Models vs Variational Autoencoders
	Slide 13: Recap: Autoencoders
	Slide 14: Variational Autoencoders (VAEs)
	Slide 15: Variational Autoencoders (VAEs): Intractability
	Slide 16: Variational Autoencoders (VAEs)
	Slide 17: Variational Autoencoders (VAEs)
	Slide 18: Variational Autoencoders (VAEs)
	Slide 19: Variational Autoencoders (VAEs)
	Slide 20: Variational Autoencoders (VAEs)
	Slide 21: Variational Autoencoders (VAEs)
	Slide 22: Normalizing Flow
	Slide 23
	Slide 24: Training
	Slide 25: RealNVP (Real-valued Non-Volume Preserving; Dinh et al., 2017)
	Slide 26: Normalizing Flows
	Slide 27: Today
	Slide 28: Administrative Notes
	Slide 29
	Slide 30
	Slide 31: Generative Adversarial Networks
	Slide 32: Generative Adversarial Networks (GANs)
	Slide 33: Generative Adversarial Networks (GANs)
	Slide 34: Generative Adversarial Networks (GANs)
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Mode collapse in GANs
	Slide 39: Mode collapse in GANs
	Slide 40: Deep Convolutional GAN
	Slide 41: Conditional GANs
	Slide 42: Text to image with GANs
	Slide 43: Cycle GAN
	Slide 44
	Slide 45: Cycle GAN
	Slide 46: Example
	Slide 47: GAN -- state of the art
	Slide 48: The zoo of GANs
	Slide 49: Sample from Our Work
	Slide 50: Energy-based Generative Models
	Slide 74
	Slide 75
	Slide 76
	Slide 77: Hopfield Networks
	Slide 78: Artificial Neural Networks
	Slide 79
	Slide 80: Hopfield Networks
	Slide 81: Hopfield Networks
	Slide 82: Hopfield Networks
	Slide 83: Hopfield Networks as Content-addressable Memory
	Slide 84: Hopfield Networks as Content-addressable Memory
	Slide 85: Hopfield Networks: Updating Neurons
	Slide 86: Hopfield Networks: Learning to Store a Single Pattern
	Slide 87: Hopfield Networks: Learning to Store Many Patterns
	Slide 88: Hopfield Networks: Example
	Slide 89: Hopfield Networks: An Energy Perspective
	Slide 90: Hopfield Networks
	Slide 91: Boltzmann Machines
	Slide 92: Boltzmann Machines: Motivation
	Slide 93: Boltzmann Machines: Boltzmann (Gibbs) Distribution
	Slide 94: Boltzmann Machines vs. Hopefield Networks
	Slide 95: Boltzmann Machines: Probability of a Neuron’s State
	Slide 96: Boltzmann Machines: Interpretation of a State’s Probability
	Slide 97: Boltzmann Machines: How temperature affects transition probabilities
	Slide 98: Boltzmann Machines: An Example
	Slide 99: Boltzmann Machines: Thermal Equilibrium
	Slide 100: Boltzmann Machines: Thermal Equilibrium
	Slide 101: Boltzmann Machines: Simulated Annealing
	Slide 102: Boltzmann Machines: Training
	Slide 103: Boltzmann Machines: Training
	Slide 105: Why Boltzmann Machines Failed
	Slide 106: Restricted Boltzmann Machines
	Slide 107: Deep Belief Networks
	Slide 108
	Slide 109: Our Work Using Boltzmann Machines
	Slide 110: Boltzmann Machines: Our Work
	Slide 111: Boltzmann Machines: Our Work
	Slide 112: Boltzmann Machines: Our Work
	Slide 113: Boltzmann Machines: Our Work
	Slide 124: Diffusion-based Generative Models
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138: The Three Terms
	Slide 139
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153: Latent Diffusion Models (Stable Diffusion)
	Slide 154
	Slide 155: Today

