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Variational Autoencoder

Markov Chain

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Boltzmann Machine

+ Diffusion Models

Slide: https://cs231n.stanford.edu/slides/2024/lecture_13.pdf




Ge@sératlve Adversarial Networks (GANSs)

Noise

z~N(u, 0)

————————————————————————————— Backpropagate

Generator » 2 L » Discriminator » Fake or
(G) (D) Real?

»

« With two competing networks, we solve the following minimax game:
mng maxV(D,G) = Ex—p,...collogD(xX)] + E,p (1) llog (1 D(G(z)))]

* Discriminator’s objective:
max V(D,G) = Exp,...collogDx)] +E,p () [log (1 — D(G(z)))]

* Generator’s objective:

m(i;n V(D,G) =E,p,(» [108 (1 - D(G(Z)))]

2024

D (x): Probability that x is real (came from data).

Adapted from: http://guimperarnau.com/blog/2017/03/Fantastic-GANs-and-where-to-find-them
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Q&"' * The generator network maps the different z (embedding/noise) values into

similar images.
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http:/guimperarnau.com/blog/2017/03/Fantastic-GANs-and-where-to-find-them
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> Unpaired Image-to-Image Translation
Q’\o using Cycle-Consistent Adversarial Networks
Jun-Yan Zhu* Taesung Park* Phillip Isola Alexei A. Efros

Berkeley Al Research (BAIR) laboratory, UC Berkeley

Summer Z_ Winter

et P K =4 -
Ukiyo-e

Cezanne

Monet
Figure 1: Given any two unordered image collections X and Y, our algorithm learns to automatically “translate” an image
from one into the other and vice versa: (left) 1074 Monet paintings and 6753 landscape photos from Flickr; (center) 1177 ze-
bras and 939 horses from ImageNet; (right) 1273 summer and 854 winter Yosemite photos from Flickr. Example application
(bortom): using a collection of paintings of a famous artist, learn to render a user’s photograph into their style.

Photograph Van Gogh

2024 https:/junyanz.github.io/Cycle GAN/

Paired Unpaired
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Q>
ogéé) Hopfield Networks

o)

s;=—l1lor+1
* Then,

+1, ZWiij = Hi
S; < % -

1, otherwise
* 0;: threshold of neuron i. Mostly we set
this to zero.
* In short:

S;i = Sgn ([z Wiij
J

.

2024



SSHopfield Networks:

o .
<& An Energy Perspective
(o)
N
\)‘9
O * We can define a scalar for the energy of the state of the
Q‘?’ network:
E:_Ezwijsisj-l_EHiSi
i j<i i
* This is called energy since when you update neurons randomly, it
either decreases or stays the same.
* Repeatedly updating the network will eventually make the
network converge to a local minimum, i.e., a stable state.
AN \w 4
\../ . minimum
2024 basin of attraction

Fig: Wikipedia
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$<>"°’Boltzmann Machines vs.

(hs)
=t

 They have the same energy definition (s = {v,,,} U {h,,}):

E(s) = —zz W;;S;Sj + 2 0;s;

i j<i i

Hopefield Networks

Differences:
* Updates are stochastic

* We have hidden neurons now

* Hidden variables = Bigger class of distributions that can be
modeled =@ In principle, we can model distributions of arbitrary
complexity



N )
FBoltzmann Machines:

S .
o Probability of a Neuron’s State
N
4\0\)9 * Turning on a neuron i (i.e., s; is changed to 1 from 0) causes change
2 AE; in energy:
Q’( i

AE; = Ei—g — Eij—q
= —kTIn(Z pi=o) — (=kT In(Z p;=1))

= —kTIn(2=2) = —kT In (2=2)

* This yields the famOLiS logistic / sigmoid function:

Pi=1 =

1+ exp (— A,Il?i)

 AE; > 0 =>Energy is reduced => High p;—4

. * AE; < 0=>Energy is increased => Low p;—4



(;@Bltzmann Machines: An Example
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Adapted from 6. Hinton

2024 total = 39.70



Today

CENG796 DEEP GENERATIVE MODELS

Course Code: 5710796
o METU Credit (Theoretical-Laboratory hours/week): 3(3-0)
* (Deep) Generative Models
( Department: Computer Engineering
. . Language of Instruction: English
o D I ffu S I O n IVI O d e | S Level of Study: Graduate
Course Coordinator: Assoc.Prof.Dr. RAMAZAN GOKBERK CINBIS
Offered Semester: Fall Semesters.

* Self-Supervised Learning

Course Objectives

{ D e e p Re i n fo rce m e nt Le a rn i n g At the end of the course, the students will be expected to:

« Comprehend a variety of deep generative models.
+ Apply deep generative models to several problems.

+ Know the open issues in learning deep generative models, and have a grasp of the current
research directions.

Course Content

Deep generative modeling with Autoregressive models; Energy-based models; Adversarial models; Variational

models.

2024



Administrative Notes

* No quiz this week

* Time plan for the projects

3. Milestone (January = 12, midnight)
* Final report (Readme file)
* Repo with all code & trained models

2024



Diffusion-based Generative Models



ELBO Recap

Why use ELBO?

Directly maximizing p(x) is very difficult:

* itinvolves either marginalizing over the entire latent space Z (intractable for complex models) OR
* Itinvolves having access to the ground truth latent encoder p(z|x)

ELBO:

log(p(x)) = Eqyz | 2) [log p(x,2) ]

e (2]x)

Question: Why does the > show up here? — With the derivation in the appendix, we see a D, (94 (z|x) | | p(z]x))
term show up which is always 2> 0.

Applying chain-rule of probabilities:

ELBO = Eq, (| x[l0gpe(x|2)] — Dy (521 x)| Ip(2))

Reconstruction Prior matching

2024
Slide: https://deeplearning.cs.cmu.edu/F23/document/slides/lec23.diffusion.updated.pdf



Variational Autoencoder Recap

p(x|z)
0 Latent variable sampling: z ~ N'(z; ug (x),a(}f, (%))
Reparameterization trick: z = ugs(x) + 04(x) O €, € ~ N(0,1)
X
Training:
* Jointly optimize 6 and ¢
¢ * Maximize ELBO
q(z|x)

Empirically, we found that two things make VAEs work really well:

1. Increasing the depth of the networks

2. Introducing a hierarchy of latent variables (latent variables of latent variables)

X « Zy « Z, « ... < zp,such that each latent is conditioned on all previous latents.

We are particularly interested in such HAVEs that where the process is a Markovian chain - MHVAE

2024
Slide: https://deeplearning.cs.cmu.edu/F23/document/slides/lec23.diffusion.updated.pdf



Markovian Hierarchical Variational Autoencoder

P(l’|31) p(,:1 \32) plzr—1 \31)

) R s
®© © © © - — :Z
bl bl | i N— 1

Joint probability: p(x,zy.7) = p(zr)pe(x | z1) Th=, Po (Ze—1120) ? ...............

Posterior probability: Qe (1.1 | X) = qp(z1] %) [Ti=2 9 (2| 2e-1) b °

Inference model  Generative model
Updated ELBO: q(z|x) p(x,2)

108(P(1) = Eqyie,1 12 |I08 et

Fig: https://cs231n.stanford.edu/slides/2023/lecture_15.pdf
d¢ (ZI:T I x)

2024
Slide: https://deeplearning.cs.cmu.edu/F23/document/slides/lec23.diffusion.updated.pdf



. . P(I|31) P(~l |52) P(Z'l'—l |3'l‘)
Diffusion Models

Diffusion models are essentially MHVAEs with 3 restrictions: @ @ @ T @
N T T T

1. Latent dimension is the same as the data dimension q(z1l2) 9(z221) q(er|er-1)

2. The encoder has no parameters to be learnt. It is defined to be a linear gaussian such that the tt"gaussian is
centered around the previous latent z,_;

3. The parameters for the gaussians are scheduled such that the final latent is a standard gaussian.

Zr ~ N(ZT; 0,’)

Slide: https://deeplearning.cs.cmu.edu/F23/document/slides/lec23.diffusion.updated.pdf

Forward diffusion process (fixed)

Data Noise

Reverse denoising process (generative)

2024 Fig: https://cvpr2022-tutorial-diffusion-models.github.io/



Diffusion Models

rl2 21|22 o .[
Diffusion models are essentially MHVAEs with 3 restrictions: Q Q Q Q

1. Latent dimension is the same as the data dimension 1| q(z2]21) q( rlzr-1)
2. The encoder has no parameters to be learnt. It is defined to be a linear gaussian such that the tt*gaussian is

centered around the previous latent z;_,
3. The parameters for the gaussians are scheduled such that the final latent is a standard gaussian.

Zr ~ N(ZT,' O,I)

The first restriction allows for some mild abuse of notation:

qp (X171 | X9) = 1_[ Qo (Xelxe—1) (We are using x instead of z)

T
pCror) = pCer) | | poCreoale)
t=1

2024
Slide: https://deeplearning.cs.cmu.edu/F23/document/slides/lec23.diffusion.updated.pdf



Denoising Diffusion Models

Learning to generate by denoising

Denoising diffusion models consist of two processes:
Forward diffusion process that gradually adds noise to input

Reverse denoising process that learns to generate data by denoising

Forward diffusion process (fixed)

Data

Reverse denoising process (generative)

Sohl-Dickstein et al., Deep Unsupervised Learning using Nonequilibrium Thermodynamics, ICML 2015
Ho et al., Denoising Diffusion Probabilistic Models, NeurlPS 2020
Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021

2024

Slide: https://cvpr2022-tutorial-diffusion-models.github.io/

Noise



Forward Diffusion Process

The formal definition of the forward process in T steps:

Forward diffusion process (fixed)

Data Noise

q(xe|xi-1) = N (x5 V1 — Bixe—1, BI) =  q(X17[|%0) = Hq(xfle—1) (joint)

2024

Slide: https://cvpr2022-tutorial-diffusion-models.github.io/



Diffusion Kernel

Forward diffusion process (fixed)

Data Noise

Define oy = H(l —Bs) = q(x¢|x) = N(x¢; Varxg, (1 — ag)I))  (Diffusion Kernel)

s=1

For sampling: x; = v/ar Xg+ /(1 —ay) € where € ~ N(0,1)

3 values schedule (i.e., the noise schedule) is designed such that a — 0 and ¢(x7|xg) ~ N (x7;0,1))

20

2024

Slide: https://cvpr2022-tutorial-diffusion-models.github.io/



What happens to a distribution in the forward diffusion?

So far, we discussed the diffusion kernel ¢(x¢|X() but what about ¢(x¢)?

Diffused Data Distributions

Data Noise
q(x¢) = /Q(Xo, xt) dx = /Q(Xo) q(x¢|xq) dxq N
(SN ~— SR S——— t
Diffused Joint Input Diffusion
data dist. dist. data dist. kernel
The diffusion kernel is Gaussian convolution. Q(Xo) Q(X1) Q(XQ) Q<X3) Q(XT)

We can sample x; ~ ¢(X¢) by first sampling X( ~ q(x0) and then sampling Xt ~ q(X¢|X() (i.e., ancestral sampling).

2024

Slide: https://cvpr2022-tutorial-diffusion-models.github.io/



Generative Learning by Denoising

Recall, that the diffusion parameters are designed such that ¢(x7) ~ N (x7;0,1))
Diffused Data Distributions

Generation:
Sample x7 ~ N (x7;0,1)
lteratively sample X¢_1 ~ q(X¢_1|x¢) % X

- % X X
True Denoising Dist.

Q(Xo> Q(X1) Q(X2) Q(X‘s) Q(XT>
L S W W S S
q(%ol%4) q(x1%) q(xs/x3) q(xslxg)  q(xqpalxp)

In general, q(lxt71|xt\) X Q(Xt—1)QCXt|Xt—1) is intractable.

Can we approximate q(xt_l\xt)? Yes, we can use a Normal distribution if 3 is small in each forward diffusion step.

2024

Slide: https://cvpr2022-tutorial-diffusion-models.github.io/



Reverse Denoising Process

Formal definition of forward and reverse processes in T steps:

Reverse denoising process (generative)

<€

Data

p(XT) = N(XT; 0, I)

po(x¢—11xt) = N(x¢1; (x4, ), 071)
Hf_/
Trainable network
(U-net, Denoising Autoencoder)

2024

Slide: https://cvpr2022-tutorial-diffusion-models.github.io/

Noise

23



Learning Denoising Model

Variational upper bound

For training, we can form variational upper bound that is commonly used for training variational autoencoders:

po(Xo.r) ] =

Eqx) [— 1o %0)| < Egixo)a(xprlxo) | — 10
a( .)[ g Po(Xo)] q(x0)q(x1.7[%0) [ gQ(Xl:T‘XU)

Sohl-Dickstein et al. ICML 2015 and Ho et al. NeurlPS 2020 show that:

L =B, | Dxu(g(r|xo)llp(xr)) + > Dirq(xi-1[xt, Xo)|Ipo(xi-1%1)) = 1ogpe<><oxl>;]
Ly t>1 £ 4 g

where q(xt_llxt, X()) is the tractable posterior distribution:

Q(Xt—lyxta Xo) = N(Xt—l; ﬁt(Xt, XO), BtI)>

- N V1—05:(1—ay_ = 1 —ay_
where [i;(x¢,Xg) := A 1/3th+ Al — il 1)Xt and By := Odi 1/515
1l —ay 1 — oy 1 —ay

2024

Slide: https://cvpr2022-tutorial-diffusion-models.github.io/



Diffusion Models — Updated ELBO *Derivation in appendix!

logp(x) = log f p(xo.r)dXo.1

.k

T

= Eqe; 1 x0) [log pg (x0|x1)] — Dgy (qCxr | x0)| Ip(x7)) — Z Eqx, | xO)[DKL (Q(xt—1| Xt Xo) ||De (xt—llxt))]
t=2
Reconstruction Prior matching Denoising
*  Reconstruction: Reconstruction from least noisy version (hyperparameter choice can make this arbitrarily small)
*  Prior matching: Moving the posterior closer to the true prior on the final noisy step (0 for diffusion models)

*  Denoising: Divergence between approximate denoising (pg) and true denoising (q) steps

q(x;—1| x¢, xg) is tractable and can be calculated exactly without any approximation:

q(xe—1| x¢, %0) = N (Xe—1; i, Ze1)

o (L= a-1)x + @1 (1 — a)xo

v — (1—a)(1—agq)
lut 1 _a—t -

t 1-a

2024
Slide: https://deeplearning.cs.cmu.edu/F23/document/slides/lec23.diffusion.updated.pdf



Diffusion Models — Loss formulation

q(xi—1|x, o)  q(xt|Tis1, T0)
p(aol|xy) p(xe—1|Te) p(xe|xes1) p(xr—1|xT)
A A

q(x1|zo) q(x¢|xi—1) q(xis1|xe) q(xr|er—1)

Loss can focus on the denoising term. Decomposing for each timestep, we can have the tt" loss term:

L, = DKL(CI(xt—1| Xt) Xo) ||P9(xt—1|xt)) + G

Since both inputs of the divergence are gaussians, this further simplifies to:

B o 2
Ly = Eq Z—Zt||ﬂt — ue(x, O] [+ C

2024
Slide: https://deeplearning.cs.cmu.edu/F23/document/slides/lec23.diffusion.updated.pdf



Parameterizing the Denoising Model

Since both g(xy_1|x¢, X() and pg(Xt_l\Xt)are Normal distributions, the KL divergence has a simple form:

1
L1 = Dxr(q(x:—1|Xs, X0)| [po(x¢-1|%1)) = Eq [F‘lﬂt(xtrxﬂ) — po(Xy, t)|2] +C
t

Recall that x; = /ay X + \/(1 — ()| € | Ho et al. NeurlPS 2020 observe that:

- . 5
a0 = 7z (s~ 7

They propose to represent the mean of the denoising model using a noise-prediction network:

(Xt = ﬁt Eg(Xt, t)

1
)MU(XIL: t) — m

With this parameterization

/8/2
Lf—l — ]EXON(](X())(NJ\[(O.I) [20}2(1 _ [3{)(1 - @f)

lle — ea(vVar xo + V1 —a 1| + C
~ A
Xt

2024

Slide: https://cvpr2022-tutorial-diffusion-models.github.io/



Training Objective Weighting

Trading likelihood for perceptual quality

37 — —— ‘
Li = ExuN‘G’(xo),ENN(O.I) [203(1 . 52)(1 & @t) Il€ = 69(\/a—f X0+ V1 -y E:t)Hz

N
At
The time dependent \s ensures that the training objective is weighted properly for the maximum data likelihood training.

However, this weight is often very large for small t’s.

Ho et al. NeurlPS 2020 observe that simply setting A\; = 1 improves sample quality. So, they propose to use:

Lsimp]o = Exl)mq(x{)),emN(O,I),th/!(l:T) [| ‘E o 69( V O Xg + v 1l —ay €, t)HQ]
. /
Y

Xt

For more advanced weighting see Choi et al., Perception Prioritized Training of Diffusion Models, CYPR 2022.

2024

Slide: https://cvpr2022-tutorial-diffusion-models.github.io/



Ho et al., “Denoising Diffusion Probabilistic Models”, 2020.

The Three Terms

L =E, | Dxr(q(xr|x0)||p(x7)) + ZPKL(Q(Xt—1|Xta x0)||pa(x:—1]%¢)) — log pg(xo|x1))

3.1 Forward process and L1

Ly t>1 Ly Ly

/

We ignore the fact that the forward process variances 3, are learnable by reparameterization and

instead fix them to constants (see Section 4 for details). Thus, in our implementation, the approximate
posterior g has no learnable parameters, so Ly is a constant during training and can be ignored.

2024

the standard normal prior p(x7). To obtain discrete log likelihoods, we set the last term of the reverse
process to an independent discrete decoder derived from the Gaussian N (xo; pty(x1,1), 021):

D 5, (f) _ ,
polxolxs) =I[ [ " N(@iiy(x1,1),09) da
=1 d— (xp) (13)
00 fr=1 —00 ifer=-1
6+($)_{$+21ﬁ ifer <1 J_(m)_{:ﬁ—ﬁ if 2 > -1

Lsimplc('ﬂ) = Et,xn,-s [”E - Eﬁ(\/axﬂ + V1 — ae, t)llz] (14)



Summary
Training and Sample Generation

Algorithm 1 Training Algorithm 2 Sampling
;i repeat (x0) 1: xr ~N(0,I)
: X0~ q(Xo 2: fort=T,...,1d
3: t~ Uniform({1,...,T}) Y
4: €~ N(0,I) ’ .
5: Take gradient descent step on 4 X1 = \/L—t (xt - \}Tia%ee (xt,t)) + otz
Vo ||e—eg(\/54_tx0+\/l—dete i&)”2 5: end for
6: return xg

6: until converged

27

2024

Slide: https://cvpr2022-tutorial-diffusion-models.github.io/



Implementation Considerations
Network Architectures

Diffusion models often use U-Net architectures with ResNet blocks and self-attention layers to represent €g(x¢, t)

---> €g(x¢, 1)

e i e
B i e e

I
I
I
I
I
I
[

[(ITTT]

Time Representation

R [

Fully-connected
Layers

Time representation: sinusoidal positional embeddings or random Fourier features.

Time features are fed to the residual blocks using either simple spatial addition or using adaptive group normalization
layers. (see Dharivwal and Nichol NeurIPS 2021)

28

2024
Slide: https://cvpr2022-tutorial-diffusion-models.github.io/



Diffusion Parameters

Noise Schedule

Q(Xt|xt—1) — N(Xt; V1 — BXe-a, @I)

>

Data Noise

po(xt—1]xt) = N (x¢—1; prg(x¢, 1), 07 1)

Above, 3 and atz control the variance of the forward diffusion and reverse denoising processes respectively.

Often a linear schedule is used for 3, and 0,52 is set equal to 3¢.

Kingma et al. NeurlIPS 2022 introduce a new parameterization of diffusion models using signal-to-noise ratio (SNR), and
show how to learn the noise schedule by minimizing the variance of the training objective.

We can also train 02 while training the diffusion model by minimizing the variational bound (Improved DPM by Nichol and
Dhariwal ICML 2021t) or after training the diffusion model (Analytic-DPM by Bao et al. ICLR 2022).

29

2024
Slide: https://cvpr2022-tutorial-diffusion-models.github.io/



What happens to an image in the forward diffusion process?

Recall that sampling from ¢(X¢|X() is done using X+ = v/ X0 + /(1 — at) € where € ~ N (0,1)

Small t
ap ~ 1 . _
xt = Var xo++/(1—a) e | (x0)] ol
l Fourier Transform \§»
o = _ | F(x¢)]
F(x¢) = Vay F(xo)++/ (1 —ay) Fle) \ X
Freq.

Large t
ap ~ 0 M m i

In the forward diffusion, the high frequency content is perturbed faster.

2024
Slide: https://cvpr2022-tutorial-diffusion-models.github.io/
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Content-Detail Tradeoff

< Reverse denoising process (generative)

Data Noise

The denoising model is The denoising model is
specialized for generating the specialized for generating the

high-frequency content (i.e., low-frequency content (i.e.,
low-level details) coarse content)

The weighting of the training objective for different timesteps is important!

31

Slide: https://cvpr2022-tutorial-diffusion-models.github.io/



Latent Diffusion Models (Stable Diffusion)

Main differences:

* Use a pretrained
encoder (€£) and a
decoder (D)

* Conditioning with
cross-attention

2024

§ \ @ Latent Space ") (Conditioning)
1 . Diffusion Process emantsi
Ma
> i Denoising U-Net €g \zp Text
x(T 1) Repres
n entations
KV KV KV KV
Z  |zr— 2T
Elxal Spﬂcg_, 5 9 ) |/
M L T9
o
o -

denoising step crossattention  switch

skip connection concat

J

Figure 3. We condition LDMs either via concatenation or by a
more general cross-attention mechanism. See Sec. 3.3



Diffusion models - Summary

« Diffusion models are Markovian Hierarchical VAEs with extra restrictions
* The loss is the vanilla VAE ELBO loss with an added denoising term

* The encoder has 0 parameters

* The true denoising posterior can be exactly calculated

* The problem can be reformulated as a noise prediction problem

* There’s a ton of math underlying a rather simple intuition

2024

Slide: https://deeplearning.cs.cmu.edu/F23/document/slides/lec23.diffusion.updated.pdf



Selt-supervised learning



2024

vy

Predict any part of the input from any
other part.

Predict the future from the past.

Predict the future from the recent past.

Predict the past from the present.
Predict the top from the bottom.

Predict the occluded from the visible

Pretend there is a part of the input you
don’t know and predict that.

Q

«— Past

Present

Future —
Slide: LeCun



C . . T /7
| Objectives:

ConvNet ~ Maximize prob. ;
model F() " R |

R oF X° l Predict 0 degrees rotation (y=0) ,
otated 1mage:

|

|

> glX.y=0) —

Rotate 0 degrees

[ ConvNetr ‘ > | : Maximize prob.
™ model F('), ‘ } F'(x") ’

P —— | Predict 90 degrees rotation (y=1) ,

. | |

ConvNet | Maximize prob. [
model F(.) \ | F}(X?) J

' | Predict 180 degrees rotation (y=2) I

| |

ConvNet > ~ Maximize prob. |

model F() _ Fx) ]

| Predict e
Rotated image: X ? _PredﬂZﬂEegrtis rota:on (i—:;) J

—» g(X,y=1) ‘

Rotate 90 degrees

> g(X,y=2)

Rotate 180 degrees

Rotated image: X’

—» g(X,y=3) l

|

Rotate 270 degrees

Fig. 3. Illustration of self-supervised learning by rotating the entire input images.
The model learns to predict which rotation is applied. (Image source: Gidaris et al.

2024 From: https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-learning.html



Fig. 4. Illustration of self-supervised learning by predicting the relative position of
two random patches. (Image source: Doersch et al., 2015)

2024 From: https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-learning.html
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Fig. 8. Illustration of context encoder. (Image source: Pathak, et al., 2016)
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Siamese Networks

Image #1

ConviMet

Shared weights

Image #2

ConvMet

Image #1
Encodings

!
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Fig: https://www.pyimagesearch.com/2020/11/30/siamese-networks-with-keras-tensorflow-and-deep-learning/
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Image #1
Encodings

—

Contrastive Loss

(Chopra et al., 2005) a- - \

Image #2 ] similarity
E—» ConvMet
h(image2)
Image #2
Encodings

Fig: https://www.pyimagesearch.com/2020/11/30/siamese-networks-with-keras-
tensorflow-and-deep-learning/

y = 1 for “similar” pairs:

Leon(Xi, X5, 0) = 1[y; = yi1Ilfox:) — fo&DII3 + 1ly: # y;1max(0, € — |Ifa(x:) — fo(x;)]|2)°

2024 From: https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-learning.html



Triplet Loss (Schroff et al., 2015)

Negative f, \ Embeddings

Anchor g LEARNING i D
s [ — Negative

) —“.__ Anchor 04t anchor
Positive Positive

CNN

l

Fig. 1. Illustration of triplet loss given one positive and one negative per anchor.

(Image source: Schroff et al. 2015) Shared| - |weights

CNN

positive

Shared| [weights

E’triplcl(x: K+: I_) = E max (U! "f(I} _f(1+)“§ - ”f(K) —f(.'i_)"% + E)

pi=rd

CNN

negative

https://omoindrot.github.io/triplet-loss

2024 From: https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-learning.html



Lifted Structure Loss (Song et al., 2015)

o—O O—~0O 0O0—°0

X1 X2 X3 X4 X5 X6
(a) Contrastive embedding
O O O O O O
Let Dy; = |[f(x;) — f(%;)]|2, a structured loss function is defined as X1 X3 X3 X4 X5 X6
1 {(b) Triplet embedding
-
Loryer = W 2 max(0, E’EE'::.I{:[
(ijyeP
where £LE’;}M = D;; + max ( max e — Dy, max € — D, ]
(ik)EN (G.DEN

(c) Lifted structured embedding

Fig. 2. lllustration compares contrastive loss, triplet loss and lifted structured loss.
Red and blue edges connect similar and dissimilar sample pairs respectively. (Image
source: Song et al. 2015)

2024 From: https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-learning.html



N-pair Loss (Sohn 2016)

N—-1
Lpar(® X7, {x7}i) = log (1+ ) exp(f(®)'f(x;) — f(x)"f(x*)))

i=1

exp(f(x)' f(x™))

= —log

exp(f(X)Tf(x) + T ' exp(f(x)f(x;))

2024 From: https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-learning.html



Momentum Contrast

e Contrastive learning as
dictionary lookup:

for g). With similarity measured by dot product, a form of
a contrastive loss function, called InfoNCE [46], is consid-
ered in this paper:

exp(g-k+/7)
L, = —log (1)
! icoexp(q-ki/T)
where 7 is a temperature hyper-parameter per [61]. The sum
is over one positive and K negative samples. Intuitively,

this loss is the log loss of a (K +1)-way softmax-based clas-
sifier that tries to classify g as k. Contrastive loss functions

2024

Momentum Contrast for Unsupervised Visual Representation Learning

Kaiming He Haogi Fan  Yuxin Wu  Saining Xie Ross Girshick 2019

contrastive loss
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Figure 1. Momentum Contrast (MoCo) trains a visual represen-
tation encoder by matching an encoded query ¢ to a dictionary
of encoded keys using a contrastive loss. The dictionary keys
{ko, k1, k2, ...} are defined on-the-fly by a set of data samples.
The dictionary is built as a queue, with the current mini-batch en-
queued and the oldest mini-batch dequeued, decoupling it from
the mini-batch size. The keys are encoded by a slowly progressing
encoder, driven by a momentum update with the query encoder.
This method enables a large and consistent dictionary for learning
visual representations.



Momentum Contrast for Unsupervised Visual Representation Learning

Momentum Contrast

gradier
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it A gradient
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(a) end-to-end

contrastive loss
A

gradient
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contrastive loss

gradient T

q k
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(c) MoCo

Figure 2. Conceptual comparison of three contrastive loss mechanisms (empirical comparisons are in Figure 3 and Table 3). Here we
illustrate one pair of query and key. The three mechanisms differ in how the keys are maintained and how the key encoder is updated.
(a): The encoders for computing the query and key representations are updated end-fo-end by back-propagation (the two encoders can
be different). (b): The key representations are sampled from a memory bank [61]. (¢): MoCo encodes the new keys on-the-fly by a

momentum-updated encoder, and maintains a queue (not illustrated in this figure) of keys.
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Momentum Contrast

* Dictionary

2024

A queue of data samples

Encoded keys from immediately
preceding mini-batches

Decouples dictionary size from
batchsize

Samples are progressively
replaced: Current batch is added
and the oldest is removed.

Momentum Contrast for Unsupervised Visual Representation Learning

Kaiming He Haogi Fan  Yuxin Wu  Saining Xie Ross Girshick 2019
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Figure 1. Momentum Contrast (MoCo) trains a visual represen-
tation encoder by matching an encoded query g to a dictionary
of encoded keys using a contrastive loss. The dictionary keys
{ko, k1, k2, ...} are defined on-the-fly by a set of data samples.
The dictionary is built as a queue, with the current mini-batch en-
queued and the oldest mini-batch dequeued, decoupling it from
the mini-batch size. The keys are encoded by a slowly progressing
encoder, driven by a momentum update with the query encoder.
This method enables a large and consistent dictionary for learning
visual representations.



Momentum Contrast

* Momentum update

* Queue size can be a limiting factor especially
if we backpropagate to the samples in the
gueue as well

* Naive solution: Copy image encoder to the
gueue encoder => Does not work well.

» Effective solution: Update the queue
encoder with the image encoder with
momentum update

Formally, denoting the parameters of f; as fx and those
of f, as 4, we update 6 by:
Ox +— mbg + (1 — m)ly. (2)

Here m € [0,1) is a momentum coefficient. Only the pa-
rameters ¢, are updated by back-propagation. The momen-
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Figure 1. Momentum Contrast (MoCo) trains a visual represen-
tation encoder by matching an encoded query g to a dictionary
of encoded keys using a contrastive loss. The dictionary keys
{ko, k1, k2, ...} are defined on-the-fly by a set of data samples.
The dictionary is built as a queue, with the current mini-batch en-
queued and the oldest mini-batch dequeued, decoupling it from
the mini-batch size. The keys are encoded by a slowly progressing
encoder, driven by a momentum update with the query encoder.
This method enables a large and consistent dictionary for learning
visual representations.



Momentum Contrast

contrastive loss
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Figure 1. Momentum Contrast (MoCo) trains a visual represen-
tation encoder by matching an encoded query ¢ to a dictionary
of encoded keys using a contrastive loss. The dictionary keys
{ko, k1, k2, ...} are defined on-the-fly by a set of data samples.
The dictionary is built as a queue, with the current mini-batch en-
queued and the oldest mini-batch dequeued, decoupling it from
the mini-batch size. The keys are encoded by a slowly progressing
encoder, driven by a momentum update with the query encoder.
This method enables a large and consistent dictionary for learning
visual representations.
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Algorithm 1 Pseudocode of MoCo in a PyTorch-like style.

# f_q, f_k: encoder networks for query and key
# queue: dictionary as a queue of K keys (CxK)
# m: momentum

# t: temperature

f_k.params = f_g.params # initialize

for x in lcader: # load a minibatch x with N samples
aug (x) # a randomly augmented version

aug (x) # another randomly augmented version

WX
Fte)

f_g.forward(x_g) # queries: NxC
f_k.forward(x_k) # keys: NxC
k.detach() # no gradient to keys

#= A~ A~Q
[ |

positive logits: Nxl
1l _pos = bmm(g.view(N,1,C), k.view(N,C,1))

# negative logits: NxK
l_neg = mm(g.view(N,C), queue.view(C,K))

# logits: Nx(1+K)
logits = cat([l_pos, l_neg], dim=1)

# contrastive loss, Eqgn. (1)
labels = zercs(N) # positives are the 0-th
loss = CrossEntropyLoss(logits/t, labels)

# SGD update: query network
loss.backward ()
update (f_g.params)

# momentum update: key network
f_k.params = m*f_k.params+(l-m)*f_qg.params

# update dictionary
enqueue (queue, k) # enqueue the current minibatch
dequeue (queue) # dequeue the earliest minibatch

bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenation.



Momentum Contrast
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Figure 3. Comparison of three contrastive loss mechanisms un-
der the ImageNet linear classification protocol. We adopt the same
pretext task (Sec. 3.3) and only vary the contrastive loss mecha-
nism (Figure 2). The number of negatives is K in memory bank
and MoCo, and is K —1 in end-to-end (offset by one because the
positive key is in the same mini-batch). The network is ResNet-50.
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Figure 1. Momentum Contrast (MoCo) trains a visual represen-
tation encoder by matching an encoded query g to a dictionary
of encoded keys using a contrastive loss. The dictionary keys
{ko, k1, k2, ...} are defined on-the-fly by a set of data samples.
The dictionary is built as a queue, with the current mini-batch en-
queued and the oldest mini-batch dequeued, decoupling it from
the mini-batch size. The keys are encoded by a slowly progressing
encoder, driven by a momentum update with the query encoder.
This method enables a large and consistent dictionary for learning
visual representations.
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Momentum Contrast
pre-train AP*P AP';E APEE
random init. 65.9 86.5 717
super. IN-1M 65.8 86.9 71.9
MoCo IN-IM 66.8 (+1.0) 87.4 (+0.5) 72.5 (+0.6)
MoCo IG-1B | 669 (+11)  87.8(:09)  73.0(+L1)
COCO dense pose estimation
pre-train AP ﬁ;ng AP%'
R50-dilated-C5 R50-C4 random init. | 39.4 78.5 35.1
pre-train APsp AP AP7s APsp AP AP7s super. IN-IM | 483 85.6 50.6
end-toend | 792 | 520 566 | 804 | 546 603 Mot 101n | 206ems Broits Ay
- 6 (4-2. O (4+1.4) . .
memory bank | 79.8 529 579 80.6 54.9 60.6
LVIS v0.5 instance segmentation
Table 3. Comparison of three contrastive loss mechanisms on random init. | 22.5 34.8 238
: . . Mt
PASCAL VOC object detection, fine-tuned on trainval07+12 super. IN-IMT | 24.4 378 258
. MoCo IN-IM | 24.1(-03) 37.4(—04) 255(-03)
and evaluated on test2007 (averages over 5 trials). All models MoCo IG-1B | 249(:05  382(304) 264 (10.6
are 1mpl¢.2mented by us (Fflgure 3}!, pre-trained on IN-1M, and fine- Cityscapes instance seg. | Semantic seg. (mloU)
tuned using the same settings as in Table 2. pre-train AP APZX | Cityscapes | VOC
random init. 254 51.1 65.3 395
super. IN-1IM | 329 59.6 74.6 74.4
MoCo IN-IM | 32.3(—0.6) 593 (—0.3)| 753 (+0.7)[72.5 (—1.9)
MoCo IG-1B | 32.9( 0.0) 603 (+0.7)| 75.5 (+0.9)| 73.6 (—0.8)

2024

Table 6. MoCo vs. ImageNet supervised pre-training, fine-
tuned on various tasks. For each task, the same architecture and
schedule are used for all entries (see appendix). In the brackets are
the gaps to the ImageNet supervised pre-training counterpart. In
green are the gaps of at least +0.5 point.



Simple Contrastive Learning

as negative examples. Let sim(u,v) = u' v/||ul|/||v| de-
note the dot product between £5 normalized u and v (i.e.
cosine similarity). Then the loss function for a positive pair
of examples (i, j) is defined as

exp(sim(z;, z;)/T
)= log Rz 2)/7)

o1 L[ks2i] exp(sim(z;, 2k)/T) 1

(1)

where Ljp; € {0,1} is an indicator function evaluating to
1 iff k # ¢ and 7 denotes a temperature parameter. The fi-
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A Simple Framework for Contrastive Learning of Visual Representations

Ting Chen' Simon Kornblith! Mohammad Norouzi! Geoffrey Hinton ' 2 O 2 O

Maximize agreement
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Figure 2. A simple framework for contrastive learning of visual
representations. Two separate data augmentation operators are
sampled from the same family of augmentations (f ~ 7 and
t' ~ T) and applied to each data example to obtain two correlated
views. A base encoder network f(-) and a projection head g(-)
are trained to maximize agreement using a contrastive loss. After
training is completed, we throw away the projection head g(-) and
use encoder f(-) and representation h for downstream tasks.



Simple Contrastive Learning

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size N, constant 7, structure of f, g, 7.
for sampled minibatch {z}1_, do
forallk € {1,...,N} do

draw two augmentation functions t ~7,t'~7T

# the first augmentation

o1 = t(xy)

hok—1 = f(Zak—-1) # representation

Zok—-1 = g(hak—1) # projection

# the second augmentation

Tor = t'(xk)

hor = f(@2k) # representation

Zor = g(hok) # projection
end for
forall: € {1,...,2N}andj € {1,...,2N} do

sii =z zi/(1z:llll %] # pairwise similarity
end for

s L exp(si,j/7)
define Z(Z,J) as e(z)])_ log Ef‘zl Lip i) exp(si,k/T)

L =50 [6(2k—1,2k) + £(2k, 2k—1)]
update networks f and g to minimize £

end for

return encoder network f(-), and throw away g(-)

A Simple Framework for Contrastive Learning of Visual Representations

Ting Chen' Simon Kornblith! Mohammad Norouzi! Geoffrey Hinton ' 2 O 2 O

Maximize agreement

Zi = > <]
50| o)
h; +— Representation — h;

Figure 2. A simple framework for contrastive learning of visual
representations. Two separate data augmentation operators are
sampled from the same family of augmentations (t ~ 7 and
t' ~ T) and applied to each data example to obtain two correlated
views. A base encoder network f(-) and a projection head g(-)
are trained to maximize agreement using a contrastive loss. After
training is completed, we throw away the projection head g(-) and
use encoder f(-) and representation h for downstream tasks.
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(f) Rotate {90°,180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Figure 4. Illustrations of the studied data augmentation operators. Each augmentation can transform data stochastically with some internal
parameters (e.g. rotation degree, noise level). Note that we only test these operators in ablation, the augmentation policy used to train our
models only includes random crop (with flip and resize), color distortion, and Gaussian blur. (Original image cc-by: Von.grzanka)
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Figure 2. A simple framework for contrastive learning of visual
representations. Two separate data augmentation operators are
sampled from the same family of augmentations (t ~ T and
t' ~ T) and applied to each data example to obtain two comrelated
views. A base encoder network f(-) and a projection head g(-)
are trained to maximize agreement using a contrastive loss, After
training is completed, we throw away the projection head g(-) and
use encoder f(-) and representation h for downstream tasks.
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(f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Figure 4. NNustrations of the studied data augmentation operators. Each augmentation can transform data stochastically with some internal
parameters (e.g. rotation degree, noise level). Note that we only test these operators in ablation, the augmentation policy used to train our
models only includes random crop (with flip and resize), color distortion, and Gaussian blur. (Original image cc-by: Von.grzanka)
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Figure 5. Linear evaluation (ImageNet top-1 accuracy) under in-
dividual or composition of data augmentations, applied only to
one branch. For all columns but the last, diagonal entries corre-
spond to single transformation, and off-diagonals correspond to
composition of two transformations (applied sequentially). The
last column reflects the average over the row.
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A Simple Framework for Contrastive Learning of Visual Representations

Ting Chen! Simon Kornblith! Mohammad Norouzi' Geoffrey Hinton !

Color distortion strength
Methods /8 1/4 172 1 1 (+Blur) | AutoAug

SimCLR 596 61.0 626 632 64.5 61.1
Supervised | 77.0 76.7 76.5 75.7 75.4 77.1

Table 1. Top-1 accuracy of unsupervised ResNet-50 using linear
evaluation and supervised ResNet-50°, under varied color distor-
tion strength (see Appendix A) and other data transformations.
Strength 1 (+Blur) is our default data augmentation policy.

Food CIFAR1I0 CIFAR100 Birdsnap SUN397 Cars Aircraft VOC2007 DTD Pets Caltech-101 Flowers

Linear evaluation:

SimCLR (ours) 76.9 95.3 80.2 48.4 659 600 612 84.2 78.9 89.2 93.9 95.0
Supervised 75.2 95.7 81.2 56.4 649 688 63.8 83.8 78.7 92.3 94.1 94.2
Fine-tuned:

SimCLR (ours) 89.4 98.6 89.0 78.2 68.1 921 87.0 86.6 778 92.1 94.1 97.6
Supervised 88.7 98.3 88.7 77.8 67.0 914 88.0 86.5 78.8 93.2 94.2 98.0
Random init 88.3 96.0 81.9 77.0 537 913 8438 69.4 64.1 82.7 72.5 92.5

Table 8. Comparison of transfer learning performance of our self-supervised approach with supervised baselines across 12 natural image
classification datasets, for ResNet-50 (4x ) models pretrained on ImageNet. Results not significantly worse than the best (p > 0.05,

202: permutation test) are shown in bold. See Appendix B.8 for experimental details and results with standard ResNet-50.

2020



Simple Contrastive Learning

* Requires large batchsize
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A Simple Framework for Contrastive Learning of Visual Representations
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Figure 9. Linear evaluation models (ResNet-50) trained with differ-
ent batch size and epochs. Each bar is a single run from scratch.'”



MoCo v2

2(

Abstract

Contrastive unsupervised learning has recently shown
encouraging progress, €.g., in Momentum Contrast (MoCo)
and SimCLR. In this note, we verify the effectiveness of two
of SimCLR’s design improvements by implementing them in
the MoCo framework., With simple modifications to MoCo—
namely, using an MLP projection head and more data
augmentation—we establish stronger baselines that outper-
Jform SimCLR and do not require large training batches. We
hope this will make state-of-the-art unsupervised learning
research more accessible. Code will be made public.

unsup. pre-train ImageNet

case MLP aug+ cos epochs batch acc.
MoCo vl [6] 200 256 60.6
SimCLR [2] v v v 200 256 61.9
SimCLR [2] v v v 200 8192 66.6
MoCo v2 v v v 200 256 67.5
results of longer unsupervised training follow:

SimCLR [2] v v v 1000 4096 69.3
MoCo v2 v v v 800 256 71.1

Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy
(ResNet-50, 1-crop 224 x224), trained on features from unsuper-
vised pre-training. “aug+” in SImCLR includes blur and stronger
color distortion. SimCLR ablations are from Fig. 9 in [2] (we
thank the authors for providing the numerical results).

Improved Baselines with Momentum Contrastive Learning

Xinlei Chen Haoqi Fan Ross Girshick Kaiming He 2020
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Figure 1. A batching perspective of two optimization mechanisms
for contrastive learning. Images are encoded into a representation
space, in which pairwise affinities are computed.



An Empirical Study of Training Self-Supervised Vision Transformers

Xinlei Chen*  Saining Xie*  Kaiming He 2021

MoCo v3 = MoCo v2 with ViT

framework model params acc. (%)
linear probing:

iGPT [9] iGPT-L 1362M 69.0
iGPT [9] iGPT-XL 6801M 72.0
MoCo v3 ViT-B 86M 76.7
MoCo v3 ViT-L 304M 77.6
MoCo v3 ViT-H 632M 78.1
MoCo v3 ViT-BN-H 632M 79.1
MoCo v3 ViT-BN-L/7 304M 81.0
end-to-end fine-tuning:

masked patch pred. [16] ViT-B 86M 79.9%
MoCo v3 ViT-B 86M 83.2
MoCo v3 ViT-L 304M 84.1

Table 1. State-of-the-art Self-supervised Transformers in
ImageNet classification, evaluated by linear probing (top panel)
or end-to-end fine-tuning (bottom panel). Both iGPT [9] and
masked patch prediction [16] belong to the masked auto-encoding
paradigm. MoCo v3 is a contrastive learning method that com-
pares two (224 x224) crops. ViT-B, -L, -H are the Vision Trans-
formers proposed in [16]. ViT-BN is modified with BatchNorm,
2024 and */7” denotes a patch size of 7x7. ': pre-trained in JFT-300M.



Bootstrap Your Own Latent (BYOL — Grill et al., 2020)

* Does not use negative samples

view representation projection prediction
9o as
input S
. , . . image t v > U >z as(z) online
Given an image x, the BYOL loss is constructed as follows: \\
» Create two augmented views: v = #(x); v/ = ¢'(x) with augmentations sampled loss '.
t~T,t' ~T":
« Then they are encoded into representations, y, = fop(v), ¥ = f;(v'); o ‘ o I > o LI o ’ sg(2') ) target
« Then they are projected into latent variables, zg = go(y,), 2’ = g:(¥'); fe { J g sg
¢ The online network outputs a prediction gg(Zg);
» Both gy(zg) and z’ are L2-normalized, giving us g,4(29) = qs(2s)/||qo(Zo)|| and Z =Z/||Z|; Fig. 10. The model architecture of BYOL. After training, we only care about f; for
¢ The loss ﬂgmL is MSE between L2-normalized prediction g,(z) and Z: producing representation, y = fg(x), and everything else is discarded. sg means stop

~BYOL radient. (Image source: Grill, et al 2020
» The other symmetric loss £, can be generated by switching v’ and v; that is, feeding v’ g (mag : )

to online network and v to target network. g — T§ + (] —_ T:IH‘
¢ The final loss is EEYOL + E:ml' and only parameters @ are optimized.

2024
https://lilianweng.github.io/lil-log/2021/05/31/contrastive-representation-learning. html



Simple Siamese Representation Learning
(SimSiam — Chen et al., 2020)

e “BYOL without momentum encoder”

Algorithm 1 SimSiam Pseudocode, PyTorch-like

# £: backbone + projection mlp
# h: prediction mlp

for ®» in loader: # load a minibatch x with n samples

x1l, x2 = aug(x), aug({x) # random augmentation
z1l, z2 = f(xl), f(x2) # projections, n-by-d
pl, p2 = hizl), h{z2) # predictions, n-by-d

L =Di{pl, z2}/2 + Dip2, =z1}/2 # loss

L.backward() # back-propagate
update (£, h) # S5GD update

def D(p, z): # negative cosine similarity
z = z.detach() # stop gradient

o normalize (p, dim=1l) # lZ-normalize
z normalize(z, dim=l) # lZ-normalize
return —(p#z).sum{dim=1) .mean|)

2024 https://github.com/facebookresearch/simsiam
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Resources on SSL

* The rise of SSL, by Y. Lecun:
https://www.youtube.com/watch?v=05wUrb5Ej8Q&t=21252s

* Self-supervised representation learning:
https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-
learning.html

2024
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Deep reinforcement learning




Reinforcement Learning

The agent receives reward 73 for its actions.

2024



More formally

* An agent’s behavior is defined by a policy, m: ""I [ Agent }
m:S = P(A)
S: The space of states state | | oware action
A: The space of actions. o
S Environment ]*—

. A
* The “return” from a s;ate is usually: ﬁ"'&.

=t

r(s;, a;): the reward for action q; in state s;.
y: discount factor.

- Goal: Learn a policy that maximizes the expected return from the starting position:

Eri,si~E,ai~1r[R1]

2024 http://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html



More formally

- We can define an expected return for taking action a; at state s;:
Qn(st’ at) — IETizt,Si>t~E,ai>t~T[ [Rt | St’ at]

- This can be rewritten as (called the Bellman equation):

QW (Stﬁ a?‘») — E?‘t;StJrlNE [T(St? at) T Eat+1N7T [QW (St‘f‘l? at+1)H

2024 http://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html



Reinforcement Learning with Deep Networks

* Two general approaches:

* Value gradients
* Policy gradients

2024
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Figure 1 | Schematic illustration of the convolutional neural network. The  symbolizes sliding of each filter across input image) and two fully connected
details of the architecture are explained in the Methods. The input to the neural  layers with a single output for each valid action. Each hidden layer is followed
network consists of an 84 X 84 X 4 image produced by the preprocessing by a rectifier nonlinearity (that is, max(0,x)).

map ¢, followed by three convolutional layers (note: snaking blue line
T
LETTER -
A

doi:10.1038/nature14236
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Helen King', Dharshan Kumaran', Daan Wierstra!, Shane Legg® & Demis Hassabis'
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network. We refer to a neural network function approximator with weights () as a
Q-network. A Q-network can be trained by adjusting the parameters 0); atiteration
i to reduce the mean-squared error in the Bellman equation, where the optimal
target values r +7 max, Q" (s',a’) are substituted with approximate target values
y=r-+7 maxy Q(s’f a0 ), using parameters (). from some previous iteration.
This leads to a sequence of loss functions L;(0);) that changes at each iteration i,

Li(0;) =Ba, [(Es [yls.a] — Q(s.a; 0;))*]

LETTER

Human-level control through deep reinforcement
learning

Volodymyr Mnih', Koray Kavuke uog.‘;lul*g David Silver', Andrei A. Rusu', Joel Veness', Marc G. Bellemare!, Alex Graves!,
Martin Riedmi.llerl, Andreas K. Fidjelandl, Georg Ostro\-'skil, Stig Petersenl, Charles Beat'tiel, Amir Sadi.kl, loannis Antonoglc)ul,
Helen King!, Dharshan Kumaran', Daan Wierstra!, Shane Legg® & Demis Hassabis!

doi:10.1038/nature1l4236




Algorithm 1: deep Q-learning with experience replay.
[nitialize replay memory D to capacity N
Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 0 = 0
For episode = 1, M do
Initialize sequence s; = {x; } and preprocessed sequence ¢; =¢(s;)
Fort= 1T do
With probability ¢ select a random action a,
otherwise select a, = argmax_Q(¢(s;).a: 0)
Execute action a, in emulator and observe reward r, and image x, 4 ;
Set ;4 1==5;.07.X 41 and preprocess Pri1=0(Sr41)
Store transition (qﬁr,ar,n,qﬁr N 1) in D
Sample random minibatch of transitions ( [RUNG Y +1> from D

.
elefv |y |- B

HH

>
+
BEd

.
alrfrfefe v
sl=1=1:1:E 0=
[©] (&] (¢ (€] (] (¢] (¢)

j
ri it episode terminates at step j+ 1
2
Perform a gradient descent step on (yj — Q(¢ i»dj: U)) with respect to the
network parameters 0 LETTER
Every C steps reset Q= Q

End For learning

Human-level control through deep reinforcement

Volodymyr Mnih'*, Koray Kavukcuoglu'*, David Silver'*, Andrei A. Rusu', Joel Veness', Marc G. Bellemare', Alex Graves',

Martin Riedmiller', Andreas K. Fidjeland', Georg Ostrovski', Stig Petersen', Charles Beattie', Amir Sadik’,
cabis!

End F 0 r Helen King', Dharshan Kumaran', Daan Wierstra', Shane Legg' & Demis Hassabis
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Deep Reinforcement Learning with Double Q-learning

D O u b | e D QN Hado van Hasselt and Arthur Guez and David Silver 2015
Google DeepMind

Problem with DQN (and Q learning):

* Over-optimistic estimation owing to the max because the environment is noisy

Q-learning DQN
Q(s,a; 0;). The standard Q-learning update for the param- work, and the use of experience replay. The target network,
eters after taking action A; in state S; and observing the =~ with parameters 87, is the same as the online network ex-
immediate reward R;. 1 and resulting state S;. ; is then cept that its parameters are copied every 7 steps from the

online network, so that then 8, = 6,, and kept fixed on all
0,1 = 9t+ﬂ:(YtQ—Q(Sn A;0,))Ve,Q(S:, As;0,) . (1) other steps. The target used by DQN is then

DQN _ .
where « is a scalar step size and the target YtQ is defined as L S e Q(St+1,0; 6, ). 3)

Y = Ryp1 +7maxQ(Si+1,4;6;). 2)

This update resembles stochastic gradient descent, updating
the current value Q(St, As; 6;) towards a target value }’;Q.



Deep Reinforcement Learning with Double Q-learning

D O u b | e D QN Hado van Hasselt and Arthur Guez and David Silver 2015

Google DeepMind

Solution

e Separate action selection (actor) from action
evaluation (critic)

Double Q-learning Double DQN (DDQN)
The Double Q-learning error can then be written as to the resulting algorithm as Double DQN. Its update is the
ouble ) same as for DQN, but replacing the target Y,°" with
.Y-tD ! QE Rt+1 + TQ(St+11Mgma’xQ(St+ha;et); 9{:) . DoubleDQON ‘ _
- Y, = Ri+1+7Q(St+1, argmax Q(St+1, a3 6:),6; ).

In comparison to Double Q-learning (4), the weights of the
second network @, are replaced with the weights of the tar-
get network @, for the evaluation of the current greedy pol-
icy. The update to the target network stays unchanged from
DQN, and remains a periodic copy of the online network.

2024



Deep Reinforcement Learning with Double Q-learning

D O u b | e D QN Hado van Hasselt and Arthur Guez and David Silver 2015
Google DeepMind

~Space Invaders ~ Time Pilot - Zaxxon
2.5

DQN Double DQN Double DQN (tuned) DQN estimate
Median | 47.5% 88.4% 116.7% 2.0
Mean 122.0% 273.1% 475.2% 15

Table 2: Summary of normalized performance up to 30 minutes ouble DQN estimate

of play on 49 games with human starts. Results for DQN are from
Nair et al. (2015).
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Policy gradients

2024
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Policy gradients

upP DOWN up upP DOWN DOWN DOWN UP WIN
forward pass | bl Supervised Learning
» log probabilities : .
DOWN upP UP DOWN up upP (correct label is provided)
> @ - @ ~@ - 4 LOSE
-1.2 | -0.36
UP UP DOWN DOWN DOWN DOWN UP i i
»@ @ LOSE image block of differentiable compute gradients
(e.g. neural net)
DOWN UP upP DOWN 1.0 0
@ - -® < 4 < J WIN

f

backward pass

Vw logp(y = UP | x)

forward pass Reinforcement Learning

» log probabilities

-1.2 |-0.36 | — sample an action:

block of differentiable compute

'mage (e.g- neural net)

gradients

0 -1.0

r \

eventual reward -1.0
backward pass

A

2024
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Policy gradients

Let us start with the defined objective function J(#). We can expand the
expectation as:

T-1

J(0) =E[) _ re41|mo]
T-1

= Z P(St, a,t|7')7"t_|_1

t=1

where 7 is an arbitrary starting point in a trajectory, P(s¢, a¢|7) is the probability
of the occurrence of s;, a; given the trajectory .

2024 https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63



Policy gradients

Differentiate both sides with respect to policy parameter 6:

ving Ltgfa) = L2

T—1
VQJ 9) ZV@P St,at|7')’r‘t_|_1
t=1
Vo P (s,
_ Z P St,at|7' 2 (St at|T) Pt
P(s¢, at|T)
T—1
— Z P(s¢,a¢|T)VologP(sy, as|T)rii1
t=i
T-1

This however does not depend

= E[Z VologP (s, a¢|T)rs41] ‘ on the policy network

t=1

2024 https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63



Policy gradients

By rewriting the probability as:
P(St7 a't|7_) — P(807 ag,S1,0d2, ...y St—1, At—1, St, a't‘ﬂ-G)
= P(SQ)W@(CL1|80)P(81|SO, ao)ﬂ'g (a2|81)P(82|81, al)we(a3|52)

~-P(3t—1 |3t—27 at—2)7T0(at—1 |3t—2)P(3t|3t—1a at—1)779 (Clt|8t—1)

Taking the logarithm and the derivative:

VologP (s, at|T) = 0+ Vglogme(ai|sg) + 0+ Vlogme(az|s1) + 0+ Vglogme(as|sz)+
.. + 0+ Vyglogmg(as—1|st—2) + 0
= Vylogmg(ai|so) + Valogmg(az|s1) + Velogme(as|s2)+
.. + Vologmg(as—1|si—2) + logmg(as|si—1)

¢
= Z Vologme(ay|se)

t'=0

2024 https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63



Policy gradients

Incorporating the discount factor v € [0, 1] into our objective (in order to
weight immediate rewards more than future rewards):

J(0) = E[’Yo’rl + 4ty + ¥%rg 4+ .+ ’)’T_ITT|7T9]

We can perform a similar derivation to obtain

T-1
Vo J(0 ZVglogmg az|s)( Z 'yt —t= 1Tt
t=0 t'=t4+1

and simplifying Zgzt +1 1 to Gy,

T-1

VoJ(0) = Z Vologmg(as|s:)Gy
t=0

2024 https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63



Actor-Critic Networks

Two main components in policy gradient are the policy model and the value function. It makes a lot
of sense to learn the value function in addition to the policy, since knowing the value function can
assist the policy update, such as by reducing gradient variance in vanilla policy gradients, and that

is exactly what the Actor-Critic method does.

Actor-critic methods consist of two models, which may optionally share parameters:

» Critic updates the value function parameters w and depending on the algorithm it could be
action-value @, (a|s) or state-value V,,(s).

e Actor updates the policy parameters @ for ?rg(a.\s), in the direction suggested by the critic.

2024 https://lilianweng.github.io/posts/2018-04-08-policy-gradient/



Actor-Critic Networks

1. Initialize s, 6, w at random; sample a ~ mg(a|s).
2.Fort=1...1"
1. Sample reward 7; ~ R(s, a) and next state s’ ~ P(s'|s, a);
2. Then sample the next action a’ ~ my(a’|s’);
3. Update the policy parameters: 6 < 0 + Q. (s,a)Volnmy(als);

4. Compute the correction (TD error) for action-value at time t:

(St =T+ 7Qw(3’, a,) — Q'w(s’ a')
and use it to update the parameters of action-value function:

W — W+ @y0:V Qo (8, a)
5. Update a < a’ and s « s’.

2024 https://lilianweng.github.io/posts/2018-04-08-policy-gradient/



Actor-Critic Networks

VoJ(0) =Er, [Vologme(s,a) G REINFORCE
=E,, [Vglogmg(s,a) Q"(s, a)] Q Actor-Critic
=E,, [Vglogmg(s,a) A”(s,a)] Advantage Actor-Critic
= Er, [Vologms(s,a) d] TD Actor-Critic

From CMU CS10703 lecture slides

Introducing baseline b(s):

VoJ(6) E[T; Vo log mo(ar|se) (G — b(st))

2024 https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63



Actor-Critic Networks

VoJ(0) =E,, [Vologme(s,a)Gy REINFORCE
=E,, [Vglogmg(s,a) Q"(s, a)] Q Actor-Critic
=E,, [Vglogmg(s,a) A”(s,a)] Advantage Actor-Critic
= Er, [Vologme(s,a) d] TD Actor-Critic

From CMU CS10703 lecture slides

Sozs}

(0. ¢}

A(st, ar) = Qu(se, ar) — Vo (se) V“(s)zEm{;»mﬂ
riv1 + YV (se41) — Vao(se)

2024 https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63




Model-based vs. Model-free

Policy Execution

* Model-free
e Learn the Q values

Optimal Training
Policy Signal

® M O d e | - b ase d Policy Learning Model Update

* Learn the Qvalues and the transition
probabilities (the model of how the
environment would change)

Updated
Model

Rewards

Policy Simulation

RL Methods |Advantages Disadvantages
— Small number of interactions be-
tween robot & environment

— Faster convergence to optimal

—Depend on transition models
— Model accuracy has a big impact
on learning tasks

Model-based RL

solution.

— No need for prior knowledge of|- Slow learning convergence
Model-free RL |transitions — High wear & tear of the robot

— Easily implementable — High risk of damage

2024 Table & Fig: https://www.chenshiyu.top/blog/2019/06/12/An-Overview-of-Model-Based-Reinforcement-Learning/



On-policy vs. Off-policy

This brings us to the key difference between on-policy and off-policy learning: On-policy algorithms attempt to improve upon the
current behavior policy that is used to make decisions and therefore these algorithms learn the value of the policy carried out by the
agent, ". Off-policy algorithms learn the value of the optimal policy, ()*, and can improve upon a policy that is different from the
behavior policy. Determining if the update and behavior policy are the same or different can give us insight into whether or not the
algorithm is on-policy or off-policy. If the update policy and the behavior policy are the same, then this suggest but does not guarantee

that the learning method is on-policy. If they are different, this suggests that the learning method is off-policy.

On-Policy Off-Policy

* More likely to find optimal policy

* Learns safer strategy * Less likely to get stuck in local
e * Often converges faster minimum
* Often has better online * Can utilize experience replay
performance * Data can be collected via various
method

* May become trapped in local
minima

Disadvantages * Less likely to find optimal policy

* Data must be collected following
current policy

* Policy learned may not be as safe
* May not perform as well online

5024 Nttps://core-robotics.gatech.edu/2022/02/28/bootcamp-summer-2020-week-4-on-policy-vs-off-policy-reinforcement-learning/



Today

CENG796 DEEP GENERATIVE MODELS

Course Code: 5710796
o METU Credit (Theoretical-Laboratory hours/week): 3(3-0)
* (Deep) Generative Models
( Department: Computer Engineering
. . Language of Instruction: English
o D I ffu S I O n IVI O d e | S Level of Study: Graduate
Course Coordinator: Assoc.Prof.Dr. RAMAZAN GOKBERK CINBIS
Offered Semester: Fall Semesters.

* Self-Supervised Learning

Course Objectives

{ D e e p Re i n fo rce m e nt Le a rn i n g At the end of the course, the students will be expected to:

« Comprehend a variety of deep generative models.
+ Apply deep generative models to several problems.

+ Know the open issues in learning deep generative models, and have a grasp of the current
research directions.

Course Content

Deep generative modeling with Autoregressive models; Energy-based models; Adversarial models; Variational

models.

2024
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