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Today

• Loss Functions

• Activation Functions

• Optimization Perspective

• Challenges of the Loss Surface

• Setting the Learning Rate

• Representational Capacity
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Administrative Notes

• Reading assignment
• CH1-7 of the Hundred-Page Machine Learning Book by Andriy Burkov. 

https://themlbook.com/ 

• Quiz
• Next week during the lecture [since registrations are still ongoing]

• Paper Selection
• https://forms.gle/2wB7ELE1BFVU4jJv7 
• Deadline next week (13th of October, midnight)

CENG501

https://themlbook.com/
https://forms.gle/2wB7ELE1BFVU4jJv7


More on loss functions
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Softmax or Logistic CLASSIFIERS
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Information Entropy

• Number of bits to represent a coin-pair:
log2 4 = 2

• In fact, this is:

log2

1

𝑝𝑐𝑜𝑖𝑛
= log2

1

0.25
= 2

• Optimal number of bits to represent an event 
with probability 𝑝:

log2

1

𝑝
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Claude Elwood Shannon
(1916-2001)

(“A Mathematical Theory 
of Communication”, 1948)
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Information Entropy

• Problem: 
• Transmit information about the

labels of cars to another person
with least the number of bits

• Assume that each bit is 
expensive
• So, we are interested in the 

minimal/optimal coding
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Example from: https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/

1 : Tesla
01 : Mazda
10111: Fiat



Information Entropy

• For an optimal setting, we can assign bits to code 
information based on their probabilities

• The smallest number of bits on avg. to represent an 
event with probability 𝑝: log2 1/𝑝

• Optimal # of bits to represent Fiat cars: 

𝑏fiat = log2

1

𝑝fiat

• The optimal encoding then requires:
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Car Probability

Fiat 0.80

Mazda 0.15

Tesla 0.05

𝐻 𝑝 = 𝐸𝑝 log2

1

𝑝
 = ෍

𝑖

𝑝𝑖 log2

1

𝑝𝑖
= − ෍

𝑖

𝑝𝑖 log2 𝑝𝑖
Entropy

Example from: https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/

# of bits

0.32

2.74

4.32



Cross-entropy, Entropy

• Entropy assumes that the data follows 
the «correct» distribution.

• If the estimated/current distribution (call 
it 𝑞) is somewhat “wrong”, how can we 
quantify the number of bits required?
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Entropy:

𝐻 𝑝 = ෍

𝑖

𝑝𝑖 log2

1

𝑝𝑖
= − ෍

𝑖

𝑝𝑖 log2 𝑝𝑖

𝐻 𝑝, 𝑞 = 𝐸𝑝 log2

1

𝑞
 = ෍

𝑖

𝑝𝑖 log2

1

𝑞𝑖
= − ෍

𝑖

𝑝𝑖 log2 𝑞𝑖 Cross-
Entropy

Example from: https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/



Kullback-Leibler Divergence

• Difference between cross-entropy and entropy (this is zero when 𝑝𝑖 
equals 𝑞𝑖):

𝐾𝐿(𝑝 |  𝑞 = ෍

𝑖

𝑝𝑖 log
1

𝑞𝑖
− ෍

𝑖

𝑝𝑖 log
1

𝑝𝑖

= ෍

𝑖

𝑝𝑖 log
𝑝𝑖

𝑞𝑖
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More on xentropy, entropy and KL-divergence

https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/

https://www.youtube.com/watch?v=ErfnhcEV1O8
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https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/
https://www.youtube.com/watch?v=ErfnhcEV1O8


Softmax classifier – Cross-entropy loss

• Cross-entropy:

• In our case, 
• 𝑝 denotes the correct probabilities of the categories. In other words, 𝑝𝑗 = 1 for the correct label 

and 𝑝𝑗 = 0 for other categories.

• 𝑞 denotes the estimated probabilities of the categories

• But, our scores are not probabilities!

• One solution: Softmax function: 𝑠𝑚 𝑠𝑖 =
𝑒𝑠𝑖

σ𝑗 𝑒
𝑠𝑗

• It maps arbitrary ranges to probabilities

• Using the normalized values, we can define the cross-entropy loss for classification 
problem now:

ℒ𝑖 = − log𝑒

𝑒𝑠𝑦𝑖

σ𝑗 𝑒𝑠𝑗
= −𝑠𝑦𝑖

+ log𝑒 ෍

𝑗

𝑒𝑠𝑗
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𝐻 𝑝, 𝑞 = 𝐸𝑝 log2

1

𝑞
 = ෍

𝑖

𝑝𝑖 log2

1

𝑞𝑖
= − ෍

𝑖

𝑝𝑖 log2 𝑞𝑖



Derive the gradients of NLL loss
𝜕ℒ𝑖

𝜕𝑤𝑗𝑘
= ?

If 𝒋 ≠ 𝒚𝒊:
𝜕ℒ𝑖

𝜕𝑤𝑗𝑘
=

𝜕ℒ𝑖

𝜕𝑝𝑦𝑖

𝜕𝑝𝑦𝑖

𝜕𝑠𝑗

𝜕𝑠𝑗

𝜕𝑤𝑗𝑘
 

         

𝜕ℒ𝑖

𝜕𝑤𝑗𝑘
= 𝑝𝑗𝑥𝑖𝑘 
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𝑥𝑖1

𝑥𝑖𝑛

𝑥𝑖𝑘

…

𝑤𝑗1

𝑤𝑗𝑘

𝑤𝑛

𝑠𝑗 = 𝐰𝑗𝐱𝑖

= ෍

𝑘

𝑤𝑗𝑘 𝑥𝑖𝑘

…

ℒ𝑖 = − log𝑒 𝑝𝑦𝑖

𝑝𝑦𝑖
=

𝑒𝑠𝑦𝑖

σ𝑚 𝑒𝑠𝑚

−
1

𝑝𝑦𝑖 −𝑝𝑦𝑖
𝑝𝑗

𝑥𝑖𝑘

𝐱𝑖
THE MODEL

This assumed that 𝑗 ≠ 𝑦𝑖.
What happens if that’s not the case?
See the next page.



Derive the gradients of NLL loss
𝜕ℒ𝑖

𝜕𝑤𝑗𝑘
= ?

If 𝒋 = 𝒚𝒊:
𝜕ℒ𝑖

𝜕𝑤𝑦𝑖𝑘
=

𝜕ℒ𝑖

𝜕𝑝𝑦𝑖

𝜕𝑝𝑦𝑖

𝜕𝑠𝑦𝑖

𝜕𝑠𝑦𝑖

𝜕𝑤𝑦𝑖𝑘
 

         

𝜕ℒ𝑖

𝜕𝑤𝑦𝑖𝑘
= (𝑝𝑦𝑖

− 1)𝑥𝑖𝑘 
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𝑥𝑖1

𝑥𝑖𝑛

𝑥𝑖𝑘

…

𝑤𝑗1

𝑤𝑗𝑘

𝑤𝑗𝑛

𝑠𝑗 = 𝐰𝑗𝐱𝑖

= ෍

𝑘

𝑤𝑗𝑘 𝑥𝑖𝑘

…

ℒ𝑖 = − log𝑒 𝑝𝑦𝑖

𝑝𝑦𝑖
=

𝑒𝑠𝑦𝑖

σ𝑚 𝑒𝑠𝑚

−
1

𝑝𝑦𝑖
𝑝𝑦𝑖

(1 − 𝑝𝑦𝑖
) 𝑥𝑖𝑘

𝐱𝑖 THE MODEL



logistic loss

• A special case of cross-entropy for binary classification:

𝐻 𝑝, 𝑞 = − ෍

𝑗

𝑝𝑗 log 𝑞𝑗 = −𝑝 log 𝑞 − 1 − 𝑝 log 1 − 𝑞

• Softmax function reduces to the logistic function (see [1] for the derivation):
1

1 + 𝑒−𝑥
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[1] http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/



Softmax classifier: 
One interpretation

• Information theory
• Cross-entropy between a true distribution and an 

estimated one:

𝐻 𝑝, 𝑞 = − ෍

𝑥

𝑝 𝑥 log 𝑞 𝑥 .

• In our case, 𝑝 = [0, … , 1,0, . . 0], containing only one 
1, at the correct label.

• Since 𝐻 𝑝, 𝑞 = 𝐻 𝑝 + 𝐷𝐾𝐿(𝑝||𝑞), we are 
minimizing the Kullback-Leibler divergence.

Sinan Kalkan 22

http://cs231n.github.io/



Softmax classifier: 
Another interpretation

• Probabilistic view

𝑃 𝑦𝑖 𝑥𝑖; 𝑊) =
𝑒𝑠𝑦𝑖

σ𝑗 𝑒𝑠𝑗
.

• In our case, we are minimizing the negative log likelihood.

• This corresponds to Maximum Likelihood Estimation (MLE).

Sinan Kalkan 23

http://cs231n.github.io/



Maximum Likelihood Estimation (MLE) vs 
Maximum A Posteriori Estimation (MAP)

𝜃𝑀𝐿𝐸 ← arg max 𝑝(𝑌|𝜃)

          ← arg max Π𝑖 𝑝(𝑦𝑖|𝜃)

Taking the logarithm for numerical stability:

𝜃𝑀𝐿𝐸 ← arg max log 𝑝(𝑌|𝜃)

          ← arg max log Π𝑖 𝑝(𝑦𝑖|𝜃)

          ← arg max σ𝑖 log 𝑝 𝑦𝑖 𝜃)

Sinan Kalkan 24

Since 𝑝(𝑌) is constant: 
𝑝 𝜃 𝑌 ∝ 𝑝 𝑌 𝜃 𝑝 𝜃

𝜃𝑀𝐴𝑃 ← arg max log 𝑝(𝜃|𝑌)

          ← arg max log 𝑝 𝑌 𝜃 𝑝 𝜃

          ← arg max log 𝑝 𝑌 𝜃 + log 𝑝 𝜃

          ← arg max log Π𝑖  𝑝(𝑦𝑖|𝜃) + log 𝑝 𝜃

          ← arg max σ𝑖 log 𝑝 𝑦𝑖  𝜃) + log 𝑝 𝜃

Baye’s Theorem:

𝑝 𝜃 𝑌 =
𝑝 𝑌 𝜃 𝑝 𝜃

𝑝(𝑌)

Likelihood

Maximum Likelihood Estimation (MLE)

Posterior

Maximum A Posteriori Estimation (MAP)

For more details and derivations, see e.g.: https://wiseodd.github.io/techblog/2017/01/01/mle-vs-map/ 



Hinge loss vs. cross-entropy loss

• Hinge loss is “happy” (= zero) when the classification satisfies the 
margin
• Ex: if score values = [10, 9, 9] or [10, -10, -10]

• Hinge loss is “happy” if the margin is 1

• Cross-entropy is more ambitious: it wants more than a margin

Sinan Kalkan 26



More on softmax

• Softmax is a smooth version of arg max:
arg max  (𝑠1, 𝑠2, … , 𝑠𝑛) = 𝑦1, 𝑦2, … , 𝑦𝑛 = (0,0, . . , 0,1,0. . 0)

• The base in softmax can be changed to have more “peaky” (or distributed) values 
for the largest input (e𝛽 = 𝑏):

𝑠𝑚𝛽 𝑠𝑖 =
𝑒𝛽𝑠𝑖

σ𝑗 𝑒𝛽𝑠𝑗

• When 𝛽 → ∞, softmax converges to arg max.

  e.g.
𝑠𝑚𝛽=1 1, 1.1  = [0.475 0.524]

𝑠𝑚𝛽=2 1, 1.1  = [0.451 0.550]

𝑠𝑚𝛽=5 1, 1.1  = [0.378 0.622]

𝑠𝑚𝛽=100 1, 1.1 = [4.5e−05 9.9e−01]

Sinan Kalkan 27



More on softmax

• Softmax with temperature is softmax with 𝛽 = 1/𝑇:

𝑠𝑚1/𝑇 𝑠𝑖 =
𝑒𝑠𝑖/𝑇

σ𝑗 𝑒𝑠𝑗/𝑇

• Interpretation:
• Increase 𝑇 => decrease 𝛽 => decrease the peak around the largest value.

• Lower 𝑇 yields more confident (may be over confident) probability 
distribution. 

• Especially in training sequence models where we perform sampling 
from the output distribution, in order to allow diversity, we can 
increase 𝑇.
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More on softmax

• Exponentials may become very large. A trick:

• Set log 𝐶 = − max
𝑗

𝑓𝑗.

Sinan Kalkan 29

http://cs231n.github.io/

See the following link for more information: 

http://www.nowozin.net/sebastian/blog/streaming-log-sum-exp-computation.html



Classification Loss functions

• A single correct label case (classification):
• Hinge loss:

• ℒ𝑖 = σ𝑗≠𝑦𝑖
max 0, 𝑠𝑗 − 𝑠𝑦𝑖

+ 1

• Cross-entropy (negative log-likelihood) loss:

• ℒ𝑖 = − log
𝑒

𝑠𝑦𝑖

σ𝑗 𝑒
𝑠𝑗

Sinan Kalkan 32



Classification Loss functions

• Many correct labels case:
• Binary prediction for each label, independently:

• ℒ𝑖 = σ𝑗 max 0, 1 − 𝑦𝑖𝑗𝑠𝑗

• 𝑦𝑖𝑗 = +1 if example 𝑖 is labeled with label 𝑗; otherwise 𝑦𝑖𝑗 = −1.

• Alternatively, train binary Cross Entropy (logistic) loss for each label (0 or 1):

ℒ𝑖 = ෍

𝑗

𝑦𝑖𝑗 log 𝜎 𝑠𝑗 + 1 − 𝑦𝑖𝑗 log 1 − 𝜎 𝑠𝑗  

Sinan Kalkan 33



0-1 Loss

• Minimize the # of cases where the prediction is wrong:

ℒ = ෍

𝒊

𝕀 𝑓 𝐱𝑖; 𝑊, 𝑏 𝑦𝑖
≠ 𝑦𝑖

Or equivalently,

ℒ = ෍

𝒊

𝕀 𝑦𝑖𝑓 𝐱𝑖; 𝑊, 𝑏 𝑦𝑖
< 0

Sinan Kalkan 34
Figure source: https://fa.bianp.net/talks/trento_may_2015/#/step-6

𝑡 = 𝑦𝑖𝑓 𝐱𝑖; 𝑊, 𝑏 𝑦𝑖



Absolute Value Loss, Squared Error Loss

ℒ𝑖 = ෍

𝑗

𝑠𝑗 − 𝑦𝑗
𝑞

• 𝑞 = 1: absolute value or L1 loss.

• 𝑞 = 2: square error or L2 loss.

Bishop

Sinan Kalkan 35



Structured Loss functions

• What if we want to predict a graph, tree etc.? Something 
that has structure.
• Structured loss: formulate loss such that you minimize the distance 

to a correct structure

36Sinan Kalkan



Visualizing Loss Functions

• If you look at one of the example loss functions:

ℒ𝑖 = ෍

𝑗≠𝑦𝑖

max(0, 𝐰𝑗
𝑇𝐱𝑖 − 𝐰𝑦𝑖

𝑇 𝐱𝑖 + 1)

• Since 𝑊 has too many dimensions, this is difficult to plot. 

• We can visualize this for one weight direction though, which can give 
us some intuition about the shape of the function.
• E.g., start from an arbitrary 𝑊0, choose a direction 𝑊1 and plot ℒ(𝑊0 + 𝛼𝑊1) 

for different values of 𝛼.

http://cs231n.github.io/
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Visualizing Loss Functions

• You see that this is a convex function.
• Nice and easy for optimization

• When you combine many of them in a neural network, it becomes 
non-convex.

Loss along one direction Loss along two directions Loss along two directions
(averaged over many samples)

http://cs231n.github.io/ Sinan Kalkan 44



• 0-1 loss:
ℒ = 𝕀(𝑓 𝑥 ≠ 𝑦)

    or equivalently as:
ℒ = 𝕀(𝑦𝑓 𝑥 < 0)

• Square loss:
ℒ = 𝑓 𝑥 − 𝑦 2

      in binary case:

ℒ = 1 − 𝑦𝑓 𝑥
2

• Hinge-loss
ℒ = max(1 − 𝑦𝑓 𝑥 , 0)

• Logistic loss (binary Cross Entropy Loss):

ℒ = − log2

1

1 + 𝑒−𝑦𝑓(𝑥)

Another approach for visualizing loss functions

Rosacco et al., 2003

Sinan Kalkan 45
https://web.mit.edu/lrosasco/www/publications/loss.pdf



All losses approximate 0-1 loss

Sinan Kalkan 46

Rosacco et al., 2003



Loss Functions: Sum up

• 0-1 loss is not differentiable/helpful at training
• It is used in testing

• Other losses try to cover the “weakness” of 0-1 loss

• Hinge-loss imposes weaker constraint compared to cross-entropy

• For classification: use hinge-loss or cross-entropy loss

• For regression: use squared-error loss, or absolute difference loss

Sinan Kalkan 47



Activation Functions



Activation function: Sigmoid/logistic

𝜎 𝑥 =
1

1 + 𝑒−𝑥

• Output is in range (0,1)

• Since it maps a large domain to 
(0,1) it is also called squashing 
function

• Simple derivative
𝑑𝜎 𝑥

𝑑𝑥
= 𝜎 𝑥 ⋅ 1 − 𝜎 𝑥

61

Fig: https://medium.com/@omkar.nallagoni/activation-functions-with-derivative-
and-python-code-sigmoid-vs-tanh-vs-relu-44d23915c1f4
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Activation function: tanh

tanh 𝑥 =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
=

𝑒2𝑥 − 1

𝑒2𝑥 + 1

• Output is in range (-1,1)

• A squashing function

• Simple derivative
𝑑tanh 𝑥

𝑑𝑥
= 1 − tanh2 𝑥

64

Fig: https://medium.com/@omkar.nallagoni/activation-functions-with-derivative-
and-python-code-sigmoid-vs-tanh-vs-relu-44d23915c1f4
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Activation Functions: Sigmoid vs. tanh

65
http://cs231n.github.io/neural-networks-1/

Fig: https://medium.com/@omkar.nallagoni/activation-
functions-with-derivative-and-python-code-sigmoid-vs-tanh-vs-
relu-44d23915c1f4

• Sigmoid is a historically important activation function
• But nowadays, rarely used

• Drawbacks:

1. It gets saturated, if the activation is close to zero or one

• This leads to very small gradient, which affects the feedback 
to earlier layers

• Initialization is also very important for this reason

2. It is not zero-centered (not very severe)

• Tanh
• Similar to the sigmoid, it saturates

• However, it is zero-centered.

• Tanh is generally preferred over sigmod

• Note: tanh 𝑥 = 2𝜎 2𝑥 − 1

They are both non-convex!
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Activation Functions: Rectified Linear Units (ReLU)

66

[Krizhevsky et al., NIPS12]

𝑓 𝑥 = max(0, 𝑥)

Derivative: 𝟏(𝑥 > 0)

Vinod Nair and Geoffrey Hinton (2010). Rectified linear units improve 
restricted Boltzmann machines, ICML.
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Activation Functions: 
ReLU – biological motivation

67

Glorot et al., “Deep Sparse Rectifier Neural Networks”, 2011.

Sinan Kalkan



Hinton argues that this is a form of model averaging

68

Activation Functions: 
ReLU – biological motivation

Sinan Kalkan



Activation Functions: 
ReLU: Pros and Cons
• Pros:

• It converges much faster (claimed to be 6x faster than sigmoid/tanh)
• It overfits very fast and when used with e.g. dropout, this leads to very fast convergence

• It is simpler and faster to compute as it performs a simple comparison with zero

• Cons:
• A ReLU neuron may “die” during training
• A large gradient may update the weights such that the ReLU neuron may never 

activate again
• Avoid large learning rate

• See also: 
http://www.jefkine.com/general/2016/08/24/formulating-the-relu/

69Sinan Kalkan



Activation Functions: 
Leaky ReLU

• 𝑓 𝑥 = 𝟏 𝑥 < 0 𝛼𝑥 + 𝟏(𝑥 ≥ 0)(𝑥)
• When 𝑥 is negative, Leaky ReLU has a non-zero slope (𝛼)

• If you learn 𝛼 during training, this is called parametric ReLU 
(PReLU)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun (2015) Delving 
Deep into Rectifiers: Surpassing Human-Level Performance on 
ImageNet Classification

Andrew L. Maas, Awni Y. Hannun, Andrew Y. Ng 
(2014). Rectifier Nonlinearities Improve Neural 
Network Acoustic Models

70Sinan Kalkan



Activation Functions: 
maxout

• max(𝑤1
𝑇𝑥 + 𝑏1, 𝑤2

𝑇𝑥 + 𝑏2)

• ReLU, Leaky ReLU and PReLU are special cases of this

• Drawback: More parameters to learn!

“Maxout Networks” by Ian J. Goodfellow, David 
Warde-Farley, Mehdi Mirza, Aaron Courville, 
Yoshua Bengio, 2013.

71Sinan Kalkan



Activation Functions: Softplus

• A smooth approximation to the 
ReLU unit:

𝑓 𝑥 = ln 1 + 𝑒𝑥

• Its derivative is the sigmoid 
function:

𝑓′ 𝑥 = 1/(1 + 𝑒−𝑥)

72Sinan Kalkan



Activation Functions: 
Swish: A Self-Gated Activation Function 

“The choice of activation functions in deep networks has a significant 
effect on the training dynamics and task performance. Currently, the 
most successful and widely-used activation function is the Rectified 
Linear Unit (ReLU). Although various alternatives to ReLU have been 
proposed, none have managed to replace it due to inconsistent gains. 
In this work, we propose a new activation function, named Swish, 
which is simply f(x)=x⋅sigmoid(x). Our experiments show that Swish 
tends to work better than ReLU on deeper models across a number of 
challenging datasets. For example, simply replacing ReLUs with Swish 
units improves top-1 classification accuracy on ImageNet by 0.9% for 
Mobile NASNet-A and 0.6% for Inception-ResNet-v2. The simplicity of 
Swish and its similarity to ReLU make it easy for practitioners to 
replace ReLUs with Swish units in any neural network.”

73Sinan Kalkan



Activation Functions: 
Exponential Linear Unit

• Similar to the Swish function

74Sinan Kalkan

Fig: https://medium.com/@krishnakalyan3/introduction-to-exponential-linear-unit-d3e2904b366c



Activation Functions: To sum up

• Don’t use sigmoid

• If you really want to, use tanh but it is worse than ReLU and its 
variants

• ReLU: be careful about dying neurons

• Leaky ReLU and Maxout: Worth trying

78Sinan Kalkan



DEMO 1

Sinan Kalkan 79

https://cs.stanford.edu/people/karpathy/convnetjs/demo/regression.html



DEMO 2

http://playground.tensorflow.org/#activation=tanh&regularization=L2&batchSize=10&dataset=circle&regDataset=reg-
plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=4,2&seed=0.24725&showTestData=false&discretize=fal
se&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=f
alse&collectStats=false&problem=classification

80Sinan Kalkan



Interactive introductory tutorial

https://jalammar.github.io/visual-interactive-guide-basics-neural-
networks/

81Sinan Kalkan



A General Look at Optimization

Sinan Kalkan 82

Courses/tutorials:

• METU IAM771: Optimization Methods for Machine Learning 
https://catalog.metu.edu.tr/course.php?course_code=9700771

• EPFL: Optimization for Machine Learning: 
https://github.com/epfml/OptML_course

• Optimization Algorithms in Machine Learning: 
http://videolectures.net/nips2010_wright_oaml/

https://catalog.metu.edu.tr/course.php?course_code=9700771
https://github.com/epfml/OptML_course
http://videolectures.net/nips2010_wright_oaml/


Mathematical Optimization

Convex Optimization

Least-squares LP

Nonlinear Optimization

Rong Jin
Sinan Kalkan 84



Mathematical Optimization

Rong JinSinan Kalkan 85



Convex Optimization

Rong JinSinan Kalkan 86



Interpretation

• Function’s value is below the line connecting two points

Mark SchmidtSinan Kalkan 87



Another interpretation

Mark SchmidtSinan Kalkan 88



Convex vs. Non-convex Ex.

Sinan Kalkan 89

Convex => Easy to minimize



Convex vs. Non-convex Ex.

Sinan Kalkan 90

• Non-convex => Local minima => Easy to get stuck in a local min. 

• Can’t rely on only local search techniques



Example convex functions

Mark SchmidtSinan Kalkan 92



Operations that conserve convexity

Rong JinSinan Kalkan 93



Deep learning functions

• Wx - convex

• ReLU – convex

• Softmax – non-convex 
• Log-sum-exp (normalization of softmax) – convex 

• Sigmoid, tanh – non-convex

• Loss functions (cross-entropy, max-margin, squared-error loss) are convex

• How about NNs?
• NNs without non-linearities are convex. The parameters just model a hyper-plane.

• NNs with non-linearities are NOT convex.

Sinan Kalkan 95



Why convex optimization?

• Can’t solve most OPs 
• E.g. NP Hard, too slow

• Convex OPs
• (Generally) No analytic solution

• Efficient iterative algorithms to find (global) solution

• Easy to see why convexity allows for efficient solution
• Just “slide” down the objective function as far as possible and will reach a 

minimum 

Sinan Kalkan 96



Non-convex Problems

• Some non-convex problems highly multi-modal, or NP hard

• Could be forced to search all solutions, or hope stochastic search is 
successful

• Cannot guarantee best solution, inefficient

• Harder to make performance guarantees with approximate solutions

Sinan Kalkan 97



• Analytical solution
• Good algorithms and software
• High accuracy and high reliability

Mathematical Optimization

Convex Optimization

Least-squares LP

Nonlinear Optimization

A mature technology!

Rong JinSinan Kalkan 98



• No analytical solution
• Algorithms and software
• Reliable and efficient

Mathematical Optimization

Convex Optimization

Least-squares LP

Nonlinear Optimization

Also a mature technology!

Rong JinSinan Kalkan 99



Mathematical Optimization

Convex Optimization

Nonlinear Optimization

Almost a mature technology!

Least-squares LP

• No analytical solution
• Algorithms and software
• Reliable and efficient

Rong JinSinan Kalkan 100



Mathematical Optimization

Convex Optimization

Nonlinear Optimization

Far from a technology! (something to avoid)

Least-squares LP

• Sadly, no effective methods to solve
• Only approaches with some compromise
• Local optimization: “more art than technology” 
• Global optimization: greatly compromised efficiency 
• Help from convex optimization

1) Initialization 2) Heuristics 3) Bounds

Rong JinSinan Kalkan 101



Why Study Convex Optimization

If not,  …… ☺

-- Section 1.3.2, p8, Convex Optimization

there is little chance you can solve it.

Rong JinSinan Kalkan 102



Gradient DESCENT strategies

115

Recommended: 

Course on Neural Net Training Dynamics
https://www.cs.toronto.edu/~rgrosse/courses/csc2541_2021/

Sinan Kalkan



Schemes of training

• True/Stochastic/Batch Gradient Descent

• Effect of batch size

• Second-order Methods

• Steepest/Conjugate Gradient Descent

• Momentum Gradient Descent

116Sinan Kalkan



118Jonathan Richard Shewchuk Sinan Kalkan



119

Stochastic Gradient Descent

Batch Gradient Descent

Sinan Kalkan



Large vs. small 
batch sizes

120

ICLR, 2017

Sinan Kalkan



Large vs. small batch sizes

• Stability [1]: 
• Large batch sizes introduce stability in terms of gradient directions. But this 

increases the changes of getting stuck in local minima.
• Small batch sizes introduce noisy gradients which make it difficult to get stuck in 

local minima.

• Local convergence & width of the minima [2]:
• Small batch sizes tend to converge to solutions that are farther away from the 

initial position whereas large batch sizes lead to solutions close to the initial 
position.

Sinan Kalkan 121

[1] Takase et al., “Why Does Large Batch Training Result in Poor Generalization? A Comprehensive Explanation and a Better 
Strategy from the Viewpoint of Stochastic Optimization”, Neural Computation, 2018.

[2] Keskar et al., “On large batch training for deep learning: Generalization gap and sharp minima”, ICLR 2017.



Gradient descent 

122
https://en.wikipedia.org/wiki/Gradient_descent
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Second order methods
• Newton’s method for optimization:

• 𝑥 ← 𝑥 − 𝐻𝑓 𝑥 −1𝛻𝑓 𝑥

• where 𝐻𝑓 𝑥  is the Hessian

• Hessian gives a better feeling about the surface
• It gives information about the curvature of surface

124Sinan Kalkan

Eq: https://en.wikipedia.org/wiki/Hessian_matrix



Intuition behind Newton’s 
method

• Newton’s method assumes that the function (𝑓(𝑥)) we are trying to minimize is 
quadratic, and aims to find the minimum (𝑥 + 𝛿), where 𝑓′ 𝑥 + 𝛿 = 0.

• From Taylor expansion: 

𝑓 𝑥 + 𝛿 ≅ 𝑓 𝑥 + 𝑓′ 𝑥 𝛿 +
1

2
𝑓′′ 𝑥 𝛿2

• Solving for 𝛿 using 𝑓′ 𝑥 + 𝛿 = 0:
𝑑

𝑑𝛿
𝑓 𝑥 + 𝑓′ 𝑥 𝛿 +

1

2
𝑓′′ 𝑥 𝛿2 = 0

    which yields:
𝛿 ≅ −𝑓′(𝑥)/𝑓′′(𝑥)

• In high-dimensional cases, 𝑓′(𝑥) is replaced by 𝛻𝑓(𝑥) and 𝑓′′(𝑥) by 𝐻𝑓(𝑥).

125Sinan Kalkan

Fig: 
https://math.stackexchange.com/questions
/609680/newtons-method-intuition



Compare this to Newton’s method 
for finding the roots

• To find a root 𝑟 of a function (𝑓(𝑥)), i.e., 𝑓 𝑟 = 0:

𝑥𝑘+1 = 𝑥𝑘 −
𝑓 𝑥𝑘

𝑓′ 𝑥𝑘

• In optimization, we wish to end up with 𝑓′ 𝑥 = 0 with:

𝑥𝑘+1 = 𝑥𝑘 −
𝑓′ 𝑥𝑘

𝑓′′ 𝑥𝑘

126Sinan Kalkan



Newton’s method for optimization
• 𝑥 ← 𝑥 − 𝐻𝑓 𝑥 −1𝛻𝑓 𝑥

• Makes bigger steps in shallow curvature

• Smaller steps in steep curvature

• Note that there is no (learning rate) hyper-parameter! (if you wish you 
can add a step size, but this is not necessary)

• Disadvantage:
• Too much memory requirement

• For 1 million parameters, this means a matrix of 1 million x 1 million ➔ ~ 3725 GB 
RAM

• Alternatives exist to get around the memory problem (quasi-Newton methods, 
Limited-memory BFGS -- short for Broyden–Fletcher–Goldfarb–Shanno)

130Sinan Kalkan



RPROP (Resilience Propagation)

• Instead of the magnitude, use the sign of the gradients

• Motivation: If the sign of a gradient has changed, that means 
we have “overshot” a minima

• Advantage: Faster to run/converge

• Disadvantage: More complex to implement

131
1993
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Gradient Descent with Line Search

• Gradient descent:
𝑤𝑖𝑗

𝑡 = 𝑤𝑖𝑗
𝑡−1 + 𝑠 𝑑𝑖𝑟𝑖𝑗

𝑡−1

    where 𝑑𝑖𝑟𝑖𝑗
𝑡−1 = −𝜕𝐿/𝜕𝑤𝑖𝑗

• Gradient descent with line search:
• Choose 𝑠 such that 𝐿 is minimized along 

𝑑𝑖𝑟𝑖𝑗
𝑡−1.

• Set 
𝑑𝐿 𝑤𝑖𝑗

𝑡

𝑑𝑠
= 0 to find the optimal 𝑠.

133

Jonathan Richard Shewchuk

Sinan Kalkan
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Gradient Descent with Line Search

𝑤𝑖𝑗
𝑡 = 𝑤𝑖𝑗

𝑡−1 + 𝑠 𝑑𝑖𝑟𝑖𝑗
𝑡−1

• Set 
𝑑𝐿 𝑤𝑖𝑗

𝑡

𝑑𝑠
= 0 to find the optimal 𝑠.

•
𝑑𝐿 𝑤𝑖𝑗

𝑡 =𝑤𝑖𝑗
𝑡−1+𝑠 𝑑𝑖𝑟𝑖𝑗

𝑡−1

𝑑𝑠
=

𝑑𝐿

𝑑𝑤𝑖𝑗
𝑡

𝑑𝑤𝑖𝑗
𝑡

𝑑𝑠
=

𝑑𝐿

𝑑𝑤𝑖𝑗
𝑡 𝑑𝑖𝑟𝑖𝑗

𝑡−1 = 0

𝑑𝐿

𝑑𝑤𝑖𝑗
𝑡

𝑑𝑤𝑖𝑗
𝑡

𝑑𝑠
=

𝑑𝐿

𝑑𝑤𝑖𝑗
𝑡 𝑑𝑖𝑟𝑖𝑗

𝑡−1 = 0

• Interpretation:
• Choose 𝑠 such that: the gradient direction at the new position is orthogonal to the current direction

• This is called steepest gradient descent

• Problem: makes zig-zag

135Sinan Kalkan
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Conjugate Gradient Descent

• Motivation

137
Jonathan Richard Shewchuk

Sinan Kalkan



Conjugate Gradient Descent
• Two vectors are conjugate (A-orthogonal) if:

𝑢𝑇𝐴𝑣 = 0

• We assume that the error surface has the quadratic form:

𝑓 𝑥 =
1

2
𝑥𝑇𝐴𝑥 − 𝑏𝑇𝑥 + 𝑐

138

Jonathan Richard Shewchuk
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Conjugate Gradient Descent

𝑑𝑖𝑟𝑖𝑗
𝑡 = −

𝜕𝐸 𝑤𝑖𝑗
𝑡

𝜕𝑤𝑖𝑗
𝑡 + 𝛽 𝑑𝑖𝑟𝑖𝑗

𝑡−1

• By assuming quadratic form etc.:

139
Jonathan Richard Shewchuk
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Conjugate Gradient Descent
• Or simply as:

• Interpretation:
• Rewrite this as:

𝛽 =
𝛻𝐸𝑛𝑒𝑤

2

𝛻𝐸𝑜𝑙𝑑
2 −

𝛻𝐸𝑜𝑙𝑑 . 𝛻𝐸𝑛𝑒𝑤

𝛻𝐸𝑜𝑙𝑑
2

• For more detailed motivation and derivations, see:
• Jonathan Richard Shewchuk, “An Introduction to the Conjugate Gradient 

Method Without the Agonizing Pain”, 1994.

• Jan A. Snyman, Practical Mathematical Optimization: An Introduction 
to Basic Optimization Theory and Classical and New Gradient-Based 
Algorithms, CH2, 2005.

140Sinan Kalkan



Steepest and Conjugate Gradient Descent: 
Cons and Pros

• Pros:
• Faster to converge than, e.g., 

stochastic gradient descent (even 
mini-batch)

• Cons:
• They don’t work well on saddle 

points

• Computationally more expensive

• In 2D: 
• Steepest descent is 𝑂 𝑛2

• Conjugate descent is 𝑂(𝑛3/2)

144

Le et al., “On optimization methods 
for deep learning”, 2011.

Jonathan Richard Shewchuk, “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain”, 1994.Sinan Kalkan



Online Interactive Tutorial

http://www.benfrederickson.com/numerical-optimization/

145Sinan Kalkan



• http://bair.berkeley.edu/blog/2017/09/12/learning-to-optimize-with-rl

146Sinan Kalkan
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Challenges of the Loss surface
and How to Avoid Them

149Sinan Kalkan



Challenges

• Local minima

• Saddle points

• Cliffs

• Valleys

150Sinan Kalkan



Local minima

• Solutions
• Large training data

• Stochastic gradient descent

• Momentum

• Adaptive learning rate

• Good initialization

• Different minimization strategies

151Sinan Kalkan



• For smaller networks, local minima are more problematic

152
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I. Goodfellow
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Valleys, Cliffs and Exploding Gradients

156Sinan Kalkan



Valleys, Cliffs and Exploding Gradients

157Sinan Kalkan



Valleys, Cliffs and Exploding Gradients

158Sinan Kalkan



Using momentum 
to improve steps

159Sinan Kalkan



Momentum

• Maintain a “memory”
Δ𝜃𝑡 ← 𝜇 Δ𝜃𝑡−1 + (−𝜂 𝛻𝜃𝑡−1

ℒ)

    where 𝜇 is called the momentum weight/coefficient 

• Momentum filters oscillations on gradients (i.e., oscillatory 
movements on the error surface)

• 𝜇 is typically initialized to 0.9.
• It is better if it anneals from 0.5 to 0.99 over multiple epochs

160

Update at 𝑡 − 1 Update recommended 
by the gradient at 𝑡

Sinan Kalkan



Momentum

161Sinan Kalkan



Nesterov Momentum

• Use a “lookahead” step to update:
𝜃ahead ← 𝜃𝑡 + 𝜇 Δ𝜃𝑡−1
Δ𝜃𝑡  ← 𝜇 Δ𝜃𝑡−1 − 𝜂 𝛻𝜃ahead

ℒahead

𝜃𝑡+1  ← 𝜃𝑡 + Δ𝜃𝑡

http://cs231n.github.io/neural-networks-3/
162Sinan Kalkan



Nesterov Momentum 
(alternative formulation)

163

Nesterov’s MomentumClassical Momentum

Y. Nesterov. A method of solving a convex programming problem with convergence rate O(1/k2). In Soviet 

Mathematics Doklady, volume 27, pages 372–376, 1983.

• Uses smoothed weights
• Uses future gradient to update
• Guaranteed optimal convergence rate 

for convex functions (if first-order 
gradient based methods are used)

Equations from: Botev, A., Lever, G., & Barber, D. 
(2017). Nesterov's accelerated gradient and 
momentum as approximations to regularised update 
descent. IJCNN.

Sinan Kalkan



Momentum vs. Nesterov Momentum

• When the learning rate is very small, they are equivalent.

• When the learning rate is sufficiently large, Nesterov Momentum 
performs better (it is more responsive).

• See for an in-depth comparison:

164Sinan Kalkan



Demo (and further reading)

http://distill.pub/2017/momentum/

165Sinan Kalkan



Setting the learning rate

166Sinan Kalkan
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Alternatives

• Single global learning rate
• Constant Learning Rate

• Scheduling Learning Rate

• Per-parameter learning rate
• AdaGrad

• RMSprop

• Adam

• AdaDelta

168Sinan Kalkan



Global Methods: Scheduling the learning rate

• Step decay
• 𝜂′ ← 𝜂 × 𝑐, where 𝑐 could be 0.5, 0.4, 0.3, 

0.2, 0.1 etc.

• Exponential decay:
• 𝜂 = 𝜂0𝑒−𝑘𝑡, where 𝑡 is iteration number

• 𝜂0, 𝑘: hyperparameters

• 1/t decay:
• 𝜂 = 𝜂0/(1 + 𝑘𝑡)

• If you have time, keep decay small and 
train longer

169Sinan Kalkan



Global Methods: warm-up

• Start with a small learning rate [1]
• Constant learning rate 

• Gradually increasing

• Why? The first steps of learning appear to be very critical [2]

Sinan Kalkan 170

[1] Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., ... & He, K. (2017). Accurate, large 
minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677. (this is not the first paper to do so)

[2] Achille, A., Rovere, M., & Soatto, S. (2018). Critical learning periods in deep networks. In International 
Conference on Learning Representations.



Global Methods: Cyclic Learning Rates

171

Smith, L. N. (2017). Cyclical learning rates for 
training neural networks. In 2017 IEEE winter 
conference on applications of computer vision 
(WACV) (pp. 464-472). IEEE.
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Global Methods: Cosine Scheduling

172

https://paperswithcode.com/method/cosine-annealing
Sinan Kalkan



Global Methods: learning rate & the batch size

• Bigger batch size, bigger learning rate

• Increase batch size => increase learning rate
• If you increase batch size from N to kN, learning rate should be scaled by:

• sqrt(k) [1]
• k [2]

• Two interpretations:
• Bigger batch means more stable gradient => Safer to make large steps.
• Bigger batch means less number of update steps => increase learning rate to 

compensate.

Sinan Kalkan 173

[1] Krizhevsky, A. (2014). One weird trick for parallelizing convolutional neural networks. arXiv preprint 
arXiv:1404.5997.

[2] Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., ... & He, K. (2017). 
Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677.



Global Methods: learning rate & the batch size

Sinan Kalkan 174
https://miguel-data-sc.github.io/2017-11-05-first/
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