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Deep Learning:

A GAME OF NEURDONS
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Today

* Loss Functions

* Activation Functions

* Optimization Perspective

* Challenges of the Loss Surface
* Setting the Learning Rate

e Representational Capacity



Administrative Notes

* Reading assignment

 CH1-7 of the Hundred-Page Machine Learning Book by Andriy Burkov.
https://themlbook.com/

* Quiz

* Next week during the lecture [since registrations are still ongoing]

* Paper Selection
e https://forms.gle/2wB7ELE1BFVU4jJv7
* Deadline next week (13t of October, midnight)

CENG501


https://themlbook.com/
https://forms.gle/2wB7ELE1BFVU4jJv7

More on loss functions



Softmax or Logistic CLASSIFIERS




Information Entropy

 Number of bits to represent a coin-pair:
log, 4 = 2

* |n fact, this is:
1 1

— ]()g S—
Pcoin ’ 0.25

e Optimal number of bits to represent an event
with probability p:

2

log,

!
Og —
p
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Claude Elwood Shannon
(1916-2001)

¥ _  (“AMathematical Theory
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Information Entropy

1: Tesla
01 : Mazda
10111: Fiat

* Problem:

* Transmit information about the
labels of cars to another person
with least the number of bits

* Assume that each bit is
expensive

* So, we are interested in the
minimal/optimal coding

Example from: https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/
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Information Entropy

For an optimal setting, we can assign bits to code
information based on their probabilities

The smallest number of bits on avg. to represent an
event with probability p: log, 1/p

Optimal # of bits to represent Fiat cars:

be .+ = lo
fiat g2 Dfint

The optimal encoding then requireS'

Hp) =E [1082 ] Zpl ogz Zpl log, p;

Fiat 0.80 0.32
Mazda 0.15 2.74
Tesla 0.05 4.32

Example from: https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/

Sinan Kalkan



Cross-entropy, Entropy

* Entropy assumes that the data follows

R . Entropy:
the «correct» distribution.

H(p) = 2 pi 10gz
* If the estimated/current distribution (call

it g) is somewhat “wrong”, how can we
guantify the number of bits required?

H(p,q) =E [1082 ] Epl ogz zpllogz qi

Example from: https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/
Sinan Kalkan
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Kullback-Leibler Divergence

* Difference between cross-entropy and entropy (this is zero when p;

equals q;):
KL(p |l q) = Z pi log— - z pi log—

z Di log_

Sinan Kalkan
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More on xentropy, entropy and KL-divergence

https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/

https://www.youtube.com/watch?v=ErfnhcEV108

Sinan Kalkan 12


https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/
https://www.youtube.com/watch?v=ErfnhcEV1O8

Softmax classifier — Cross-entropy loss

Cross-entropy: H(p,q) = [logz ] Zp‘ ogz zpl log, q;

In our case,

* p denotes the correct probabilities of the categories. In other words, p; = 1 for the correct label
and p; = 0 for other categories.

* g denotes the estimated probabilities of the categories

But, our scores are not probabilities!

* One solution: Softmax function: sm(s;) =

* It maps arbitrary ranges to probabilities

Using the normalized values, we can define the cross-entropy loss for classification

problem now:
e>Vi
L; = —log, (Zj e51'> = —s,, + log, 2 e’

J

sinan Kalkan http://cs231n.github.io/



Derive the gradients of NLL loss

oL, _
0 — X; THE MODEL
. —
Ifj + yi: X1
aLi _ aLl 0 651
ow,. dv, ds; 8 Xix — Sj = WX,
=3
- Ve k
_1 / Xik L; = —log,
Py —Dy;Dj _ esyi
- Ypesm
oL;
0 - p] xlk This assumed that j # y;.

‘ What happens if that’s not the case?
See the next page.
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Derive the gradients of NLL loss

=7
0
Ifj =y
aLi 0L apy aSy
apy asy d
Py, Py, (1- py
0L;

Xi
——
Xi1
S: =
xik— J
x z
n k
L; = —log,
eV

THE MODEL
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logistic loss

* A special case of cross-entropy for binary classification:
H(p,q) = —219,- logq; = —plogq — (1 —p) log(1 —q)
J

e Softmax function reduces to the logistic function (see [1] for the derivation):

1+e* .03'&,}\

[1] http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/

Sinan Kalkan
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Softmax classifier:
One Interpretation

* Information theory

* Cross-entropy between a true distribution and an
estimated one:

H(p,q) = — 2 p(x) logq(x).

* Inourcase,p =0, ...,1,0,..0], containing only one
1, at the correct label.

* Since H(p,q) = H(p) + Dx.(pl|q), we are
minimizing the Kullback-Leibler divergence.

Sinan Kalkan

Dia(PIQ) = 3 Pli) og o

http://cs231n.github.io/
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Softmax classifier:
Another interpretation

* Probabilistic view
e™Vi

Zjesj.

* In our case, we are minimizing the negative log likelihood.

P(y; | x; W) =

* This corresponds to Maximum Likelihood Estimation (MLE).

http://cs231n.github.io/
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Maximum Likelihood Estimation (MLE) vs
Maximum A Posteriori Estimation (MAP)

Baye’s Theorem: Hkelihood

p(Y10)p(0) Since p(Y) is constant:
p(OY) =—= p(81Y) & p(¥16)p(6)
. p(Y)
Posterior \\
Maximum Likelihood Estimation (MLE) \ —» Maximum A Posteriori Estimation (MAP) \\‘
s agmapley " Guar < argmaxlogp@) 4

< argmaxll; p(y|0) « argmaxlogp(Y|6)p(8)

« argmaxlogp(Y|8) + logp(6)

< argmaxlogIl; p(y;|6) + logp(6)

' «— ] Y|6

! « argmaxlog IT; p(y;]6)
|

, |
, |
: |
i |
|
: Taking the logarithm for numerical stability: : :
| |
, |
, |
: |
| « argmax 3;; log p(y; | 6) ! |

Sinan Kalkan 24
For more details and derivations, see e.g.: https://wiseodd.github.io/techblog/2017/01/01/mle-vs-map/



Hinge loss vs. cross-entropy loss

* Hinge loss is “happy” (= zero) when the classification satisfies the
margin
e Ex:if score values =[10, 9, 9] or [10, -10, -10]
* Hinge loss is “happy” if the marginis 1

* Cross-entropy is more ambitious: it wants more than a margin

Sinan Kalkan
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More on softmax

* Softmax is a smooth version of arg max:
arg max (Sq,Sy, ...,S,) = (¥4, V2, ..., ¥) = (0,0,..,0,1,0..0)

* The base in softmax can be changed to have more “peaky” (or distributed) values
for the largest input (ef = b):
ePsi

Y. e[)’sj Graph for exp(x), exp(5*x)
.] f'IAUU

smgp(s;) =
X:-2.04444444  y:0.129452088 @

* When f — oo, softmax converges to arg max. -

e.g.
smp=1([1,1.1]) =1[0.4750.524]
smp=>([1,1.1]) =[0.4510.550] |
SmB=5(:1, 1.1:) — [0.378 0.622] & ” ; 2_ 33— ’ 4. .7 8.0 0
smg_100([1,1.1]) = [4.5e-05 9.9e-01] |

Sinan Kalkan 27



More on softmax

* Softmax with terr)perature is softmax with f = 1/T:
eSi T

ZjeSj/T
* Interpretation:
* Increase T => decrease [ => decrease the peak around the largest value.

Sm1/T(Si) =

e Lower T yields more confident (may be over confident) probability
distribution.

* Especially in training sequence models where we perform sampling
from the output distribution, in order to allow diversity, we can
increase T.



More on softmax

* Exponentials may become very large. A trick:

elu Celv efuTlog C

S S og C
Zjeff C'Zjefi Zjef1+ -
* SetlogC = —max f;.
]

See the following link for more information:

http://www.nowozin.net/sebastian/blog/streaming-log-sum-exp-computation.html|

Sinan Kalkan

http://cs231n.github.io/
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Classification Loss functions

* A single correct label case (classification):
* Hinge loss:
* Li=Djxy, max (0, Sj — Sy, + 1)
* Cross-entropy (negative log-likelihood) loss:

e’Vi
« L; =—log > o%
J

Sinan Kalkan
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Classification Loss functions

* Many correct labels case:

 Binary prediction for each label, independently:

* L= max (0,1 — Yiij)
* yij = +1if example i is labeled with label j; otherwise y;; = —1.

 Alternatively, train binary Cross Entropy (logistic) loss for each label (0 or 1):

L; = 2 [}’ij log (U(Sj)) T (1 — yl'j) log(l — U(Sj))]

J

Sinan Kalkan
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0-1 Loss

* Minimize the # of cases where the prediction is wrong:
L= U(F(xsW,b)y, # 1)
i

Or equivalently,

L= 2 I(y:f (x;; W, b),, <0)

5

. - zero-one loss
; - |ogistic loss

2 \ hinge loss

| I
-4 -2 0 2 4

t =yif x; W, b)y,

Sinan Kalkan

Figure source: https://fa.bianp.net/talks/trento_may 2015/#/step-6
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Absolute Value Loss, Squared Error Loss

2
_ q o
Li = z|sj - ¥l )
J i
% 7 0 i >
y—t
* g = 1: absolute value or L1 loss. : .|. - )
| g=10 |

* q = 2:square error or L2 loss.

(/f_

y—t

Figure 1.29 Plots of the quantity L, = |y — ¢|? for various values of q.

Sinan Kalkan
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Structured Loss functions

 What if we want to predict a graph, tree etc.? Something
that has structure.

 Structured loss: formulate loss such that you minimize the distance
to a correct structure

Sinan Kalkan
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Visualizing Loss Functions

* If you look at one of the example loss functions:

L; = z max (0, ijxi — w;.Xi + 1)
J#Yi
* Since W has too many dimensions, this is difficult to plot.

* We can visualize this for one weight direction though, which can give
us some intuition about the shape of the function.

* E.g., start from an arbitrary W,, choose a direction W, and plot L(W, + aW;)
for different values of «.

http://cs231n.github.io/



Visualizing Loss Functions

Loss along one direction Loss along two directions Loss along two directions
(averaged over many samples)

* You see that this is a convex function.
* Nice and easy for optimization

* When you combine many of them in a neural network, it becomes
non-convex.

http://cs231n.github.io/ Sinan Kalkan 44



Another approach for visualizing loss functions

0-1 loss:
L=1((x) #y)
or equivalently as:
L=1f(x)<0)
Square loss:
L=(f(x)—y)?
in binary case:
£=(1-yf()
Hinge-loss
L =max(1—yf(x),0)

Logistic loss (binary Cross Entropy Loss): Various loss functions used in classification. Here t = y f(x).
1

14 e V) Rosacco et al., 2003

https://web.mit.edu/Irosasco/www/publications/loss.pdf
Sinan Kalkan 45
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All losses approximate 0-1 loss

Various loss functions used in classification. Here t = y f(x).

Rosacco et al., 2003

Sinan Kalkan
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Loss Functions: Sum up

* 0-1 loss is not differentiable/helpful at training
* |tis used in testing

* Other losses try to cover the “weakness” of 0-1 loss

* Hinge-loss imposes weaker constraint compared to cross-entropy
* For classification: use hinge-loss or cross-entropy loss

* For regression: use squared-error loss, or absolute difference loss



Activation Functions



Activation function: Sigmoid/logistic

1
1+e™*

o(x) =

* Qutputisin range (0,1) T
* Since it maps a large domain to

(0,1) it is also called squashing

function \
* Simple derivative e il ; : 6

do(x)
dx

=o(x) - (1 — a(x))

Fig: https://medium.com/@omkar.nallagoni/activation-functions-with-derivative-
and-python-code-sigmoid-vs-tanh-vs-relu-44d23915c1f4

Sinan Kalkan 61



Activation function: tanh

ex . e—x er —1
tanh(x) = =
2 eX +e™* e 41

e Qutputisin range (-1,1)
* A squashing function e —————
e Simple derivative
dtanh(x
&) = (1 — tanh?(x))

dx

Fig: https://medium.com/@omkar.nallagoni/activation-functions-with-derivative-
and-python-code-sigmoid-vs-tanh-vs-relu-44d23915c1f4
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Activation Functions: Sigmoid vs. tanh

» Sigmoid is a historically important activation function
* But nowadays, rarely used
* Drawbacks: They are both non-convex!
1. It gets saturated, if the activation is close to zero or one

* This leads to very small gradient, which affects the feedback
to earlier layers

1.0

* |nitialization is also very important for this reason ~— — sigmoid
= tanh
2. Itis not zero-centered (not very severe) ;}f
I 4//2// : ; :
* Tanh |
Similar to the sigmoid, it saturates
. However, it is zero-centered. -0t
. . Fig: https://medium.com/@omkar.nallagoni/activation-
* Tanh 1S genera”y preferred over Slngd functions-with-derivative-and-python-code-sigmoid-vs-tanh-vs-
Sinan Kalkan 65
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Activation Functions: Rectified Linear Units (RelLU)

Vinod Nair and Geoffrey Hinton (2010). Rectified linear units improve
restricted Boltzmann machines, ICML.

1.8

—RelLU

— Logistic S U SIS SN S,

Y S—

1.2

08

0.6

04

0.2

-1.5

Derivative: 1(x > 0)

f(x) = max(0, x)

Training error rate

Sinan Kalkan
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0

0
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Epochs

[Krizhevsky et al., NIPS12]
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Activation Functions:
RelLU — biological motivation

1 T T T T
2001 —Sigmoid ]
—Tanh
g 1507 0.5 —/—/
: 1007 Z 0
g ,
= sor 05
ﬁ 1 1 i H i T ) ]
0 2 4 ] 8 10
Input current (A) 9 -3 -2 -1 0 1 2 3
x 10 X

Figure 1: Left: Common neural activation function motivated by biological data. Right: Commonly
used activation functions in neural networks literature: logistic sigmoid and hyperbolic tangent (tanh).

Glorot et al., “Deep Sparse Rectifier Neural Networks”, 2011.
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Activation Functions:
RelLU — biological motivation

Hinton argues that this is a form of model averaging

A fast approximation

ﬂ/

N

loysm.( x+0.5-n) ~  log(l+e"
"- output = max(O input )

» Rectified linear units are much faster to compute than the
sum of many logistic units.

» They learn much faster than ordinary logistic units and they
produce sparse activity vectors.

Sinan Kalkan

68



Activation Functions:
RelLU: Pros and Cons

* Pros:

* |t converges much faster (claimed to be 6x faster than sigmoid/tanh)
* It overfits very fast and when used with e.g. dropout, this leads to very fast convergence

* It is simpler and faster to compute as it performs a simple comparison with zero

* Cons:
* A RelLU neuron may “die” during training

* A large gradient may update the weights such that the ReLU neuron may never
activate again

e Avoid large learning rate

e See also:
http://www.jefkine.com/gener_al/|2016/08/24/formulating-the-relu/

Sinah Kalkan
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ACt|Vat | on = Un Ct I ons: Andrew L. Maas, Awni Y. Hannun, Andrew Y. Ng

(2014). Rectifier Nonlinearities Improve Neural

I_e d ky Re LL Network Acoustic Models

c f(x) =1(x < 0)(ax) + 1(x = 0)(x)

 When x is negative, Leaky ReLU has a non-zero slope («)

* If you learn a during training, this is called parametric ReLU
(PReLU)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun (2015) Delving
Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification

Sinan Kalkan 70



ACt|Vat | on F UN Ct | ons: “Maxout Networks” by lan J. Goodfellow, David

Warde-Farley, Mehdi Mirza, Aaron Courville,

M axo Ut Yoshua Bengio, 2013.

e max(wi x + by, wi x + by)

* ReLU, Leaky ReLU and PRelLU are special cases of this

* Drawback: More parameters to learn!

Sinan Kalkan 71



Activation Functions: Softplus
* A smooth approximation to the
RelLU unit:
f(x) =In(1+e%)
* Its derivative is the sigmoid &
function:

ffx) =1/(1 +e™)
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Activation Functions:
Swish: A Self-Gated Activation Function

SEARCHING FOR ACTIVATION FUNCTIONS

Prajit Ramachandran? Barret Zoph. Quoc V. Le
Google Brain
{prajit, barretzoph, gvl}@google.com

“The choice of activation functions in deep networks has a significant
effect on the training dynamics and task performance. Currently, the
most successful and widely-used activation function is the Rectified
Linear Unit (ReLU). Although various alternatives to ReLU have been
proposed, none have managed to replace it due to inconsistent gains.
In this work, we propose a new activation function, named Swish,
which is simply f(x)=x-sigmoid(x). Our experiments show that Swish
tends to work better than ReLU on deeper models across a number of
challenging datasets. For example, simply replacing RelLUs with Swish
units improves top-1 classification accuracy on ImageNet by 0.9% for
Mobile NASNet-A and 0.6% for Inception-ResNet-v2. The simplicity of
Swish and its similarity to RelU make it easy for practitioners to
replace RelLUs with Swish units in any neural network.”

Sinan Kalkan 73



Activation Functions:
Exponential Linear Unit

e Similar to the Swish function

ELU
T x>0
ale®*—1) <0 - _2_ i

Fig: https://medium.com/@ krishnakalyan3/introduction-to-exponential-linear-unit-d3e2904b366¢

Sinan Kalkan
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Activation Functions: To sum up

* Don’t use sigmoid

* If you really want to, use tanh but it is worse than ReLU and its
variants

* ReLU: be careful about dying neurons
* Leaky ReLU and Maxout: Worth trying

Sinan Kalkan
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DEMO 1

average loss: 0.012535083449861551

- _
CENGEO1 - Week 5 - Fundamentals.pptx

Y

https://cs.stanford.edu/people/karpathy/convnetjs/demo/regression.html

Sinan Kalkan



DEMO 2

FEATURES + — 2 HIDDEN LAYERS OUTPUT

operties do Test loss 0.506

you want to feed in? Y — Training loss 0.513

: +
I

-
3

*p

[J Showtestdata [ Discretize output

http://playground.tensorflow.org/#activation=tanh&regularization=L2&batchSize=10&dataset=circle&regDataset=reg-
plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=4,2&seed=0.24725&showTestData=false&discretize=fal
se&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=f

alse&collectStats=false&problem=classification
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Interactive introductory tutorial

https://jalammar.github.io/visual-interactive-guide-basics-neural-
networks/

Sinan Kalkan
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Courses/tutorials:

* METU IAM771: Optimization Methods for Machine Learning
https://catalog.metu.edu.tr/course.php?course code=9700771

e EPFL: Optimization for Machine Learning:
https://github.com/epfml/OptML course

e Optimization Algorithms in Machine Learning:
http://videolectures.net/nips2010 wright oaml/

A General Look at Optimization

Sinan Kalkan
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Mathematical Optimization

Nonlinear Optimization

Convex Optimization

Sinan Kalkan

Rong Jin
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Mathematical Optimization

(mathematical) optimization problem

minimize  fo(x)

subject to  fi(x) < b;, i=1,....m

e = (ry,...,7y,): optimization variables
e fy:R" — R: objective function

e f;:R"—=R,i=1,....m: constraint functions

optimal solution 2* has smallest value of f; among all vectors that

satisfy the constraints

Sinan Kalkan

Rong Jin
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Convex Optimization

minimize  fo(x)
subject to  fi(z) <b;, i=1,...,m

e objective and constraint functions are convex:
filax + By) < afi(z) + Bfi(y)
fa+0=1a>0 3>0

e includes least-squares problems and linear programs as special cases

Sinan Kalkan Rong Jln 86



Interpretation

* Function’s value is below the line connecting two points

N
f(x) ~———__ 0.5f(x) + 0.5f(y)
@

T Oliy)

1(0.5x + 0.5y)

Not convex

Sinan Kalkan Mark SChm|dt 87




Another interpretation

A differentiable function f is convex if for all x and y we have

fy) = f(x)+ VF(x)" (y — x).

@ [he function is globally above the tangent at x.

\‘\\f(x) + VE(X)T(y-X)

Sinan Kalkan Mark SChm|dt 88



Convex vs. Non-convex EX.

Convex => Easy to minimize

Sinan Kalkan
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Convex vs. Non-convex EX.

* Non-convex => Local minima => Easy to get stuck in a local min.

* Can’t rely on only local search techniques

Sinan Kalkan
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Example convex functions

Some simple convex functions:

f(x)=c

f(x)=alx

f(x) =xTAx (for A= 0)
f(x) = exp(ax)

f(x) = xlogx (for x > 0)
f(x) = |Ix|I2

F(x) = lIxllp

f(x) = max;{x;}

Some other notable examples:

f(x,y) = log(e* + &)
f(X) = logdet X (for X positive-definite).
f(x,Y)=xTY1x (for Y positive-definite)

Sinan Kalkan
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Operations that conserve convexity

© Non-negative weighted sum:
f(x) = H1f1(x) + afa(x).
@ Composition with affine mapping:
g(x) = rf(Ax + b).
© Pointwise maximum:

f(x) = m;_ax{f}(x)}.

Sinan Kalkan Rong Jln 93



\“ _ ﬁ(:hl
» . A log,(1+e™)
Deep learning functions
* Wx - convex
— 2 3

* ReLU — convex

Various loss functions used in classification. Here t = yf(x).

e Softmax — non-convex
] . Rosacco et al., 2003
(] LO g_s u m _eX p ( n O rm a | | Zat | O n Of S Oft m aX) —_ CO nvex https://web.mit.edu/Irosasco/www/publications/loss.pdf

e Sigmoid, tanh — non-convex
* Loss functions (cross-entropy, max-margin, squared-error loss) are convex

e How about NNs?

* NNs without non-linearities are convex. The parameters just model a hyper-plane.
* NNs with non-linearities are NOT convex.

Sinan Kalkan 95



Why convex optimization?

e Can’t solve most OPs
* E.g. NP Hard, too slow

* Convex OPs
* (Generally) No analytic solution
* Efficient iterative algorithms to find (global) solution

* Easy to see why convexity allows for efficient solution

* Just “slide” down the objective function as far as possible and will reach a
minimum

Sinan Kalkan

96



Non-convex Problems

* Some non-convex problems highly multi-modal, or NP hard

* Could be forced to search all solutions, or hope stochastic search is
successful

* Cannot guarantee best solution, inefficient

* Harder to make performance guarantees with approximate solutions

Sinan Kalkan
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Mathematical Optimization

Nonlinear Optimization

Convex Optimization

e Analytical solution
e Good algorithms and software

minimize | Az — b||3 e High accuracy and high reliability

A mature technology!

Sinan Kalkan Rong Jln 98



Mathematical Optimization

Nonlinear Optimization

Convex Optimization

minimize ¢l L

subject to  alw < b,

e No analytical solution
e Algorithms and software

r=1,....m e Reliable and efficient

Also a mature technology!

Sinan Kalkan

Rong Jin
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Mathematical Optimization

Nonlinear Optimization

Convex Optimization

\

e No analytical solution
minimize  fo(x) e Algorithms and software
subject to fi(z) < b;, i=1,..., e Reliable and efficient

Almost a technology!
Sinan Kalkan Rong Jln 100



Mathematical Optimization

Nonlinear Optimization

Convex Optimization

e Sadly, no effective methods to solve

e Only approaches with some compromise
e Local optimization: “more art than technology”
e Global optimization: greatly compromised efficiency
e Help from convex optimization
1) Initialization 2) Heuristics 3) Bounds

Far from a technology! (something to avoid)

Sinan Kalkan Rong Jln 101



Why Study Convex Optimization

With only a bit of exaggeration, we can say that, if you formu-
late a practical problem as a convex optimization problem, then you have solved
the original problem. Ifnot, there is little chance you can solve it.

-- Section 1.3.2, p8, Convex Optimization

Sinan Kalkan Rong Jln 102



Recommended:

Course on Neural Net Training Dynamics
https://www.cs.toronto.edu/~rgrosse/courses/csc2541_ 2021/

Gradient DESCENT strategies

Sinan Kalkan 115



Schemes of training

* True/Stochastic/Batch Gradient Descent
* Effect of batch size

* Second-order Methods

» Steepest/Conjugate Gradient Descent

* Momentum Gradient Descent

Sinan Kalkan 116



L

i

112 7/7/ .

* r“/‘/“;/:

I

a{(!l Y 118

Jonathan Richard Shewchuk



F. Bach

Stochastic Gradient Descent

Batch Gradient Descent

Sinan Kalkan
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forth the following as possible causes for this phenomenon: (1) LB methods over-fit the model; (11)
LB methods are attracted to saddle points: (i1) LB methods lack the explorative properties of SB
methods and tend to zoom-in on the minimizer closest to the initial point; (iv) SB and LB methods

converge to qualitatively different minimizers with differing generalization properties. The data
presented in this paper supports the last two conjectures.

Large vs. small
batch sizes

The main observation of this paper is as follows:

The lack of generalization ability is due to the fact that large-batch methods tend to converge
to sharp minimizers of the traiming function. These minimizers are characterized by a signif-
icant number of large positive eigenvalues in V* f(z), and tend to generalize less well. In
contrast, small-batch methods converge to flar minimizers characterized by having numerous
small eigenvalues of VZ f(x). We have observed that the loss function landscape of deep neural
networks 15 such that large-batch methods are attracted to regions with sharp minimizers and
that, unlike small-batch methods, are unable to escape basins of attraction of these minimizers.

Training Function

| 1 | PTesting Function

On Large-Batch Training for Deep Learning:
Generalization Gap and Sharp Minima

Flat Minimum Sharp Minimum

- B
T L T

Figure 1: A Conceptual Sketch of Flat and Sharp Minima. The Y-axis indicates value of the loss
function and the X-axis the variables (parameters)

Sinan Kalkan

Nitish Shirish Keskar*
Northwestern University
Evanston, IL 60208
keskar.nitish@u.northwestern.edu

Jorge Nocedal
Northwestern University
Evanston, IL 60208

j-nocedal@northwestern. edu

Dheevatsa Mudigere
Intel Corporation
Bangalore, India
dheevatsa.mudigere@intel.com

Mikhail Smelyanskiy
Intel Corporation
Santa Clara, CA 95054

mikhail.smelyanskiy@intel.com

Ping Tak Peter Tang
Intel Corporation
Santa Clara, CA 95054
peter.tang@intel.com

ICLR, 2017

120



Large vs. small batch sizes

« Stability [1]:

e Large batch sizes introduce stability in terms of gradient directions. But this
increases the changes of getting stuck in local minima.

* Small batch sizes introduce noisy gradients which make it difficult to get stuck in
local minima.
* Local convergence & width of the minima [2]:

* Small batch sizes tend to converge to solutions that are farther away from the
initial position whereas large batch sizes lead to solutions close to the initial
position.

[1] Takase et al., “Why Does Large Batch Training Result in Poor Generalization? A Comprehensive Explanation and a Better
Strategy from the Viewpoint of Stochastic Optimization”, Neural Computation, 2018.

[2] Keskar et al., “On large batch training for deep learning: Generalization gap and sharp minima”, ICLR 2017.



Gradient descent
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Second order methods

 Newton’s method for optimization:

c x «x—[Hf )] 'Vf(x)

« where Hf (x) is the Hessian

T P f P f
dx? dxy 014
*fr  &f
H — Oxo 014 A
P f P f
|z, 0ry Oz, 019

* Hessian gives a better feeling about the surface
* |t gives information about the curvature of surface

Sinan Kalkan

Ffo

311:1 3:1:“
d*f

31:3 3:1:,_1 .

d*f

2
dzrZ |

Eq: https://en.wikipedia.org/wiki/Hessian_matrix
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Intuition behind Newton’s
method

Fig:
https://math.stackexchange.com/questions
/609680/newtons-method-intuition

Newton’s method assumes that the function (f (x)) we are trying to minimize is
quadratic, and aims to find the minimum (x + &), where f'(x + §) = 0.

From Taylor expansion: .
flx+8) = flx)+ f'(x)6 +§f”(x)62
Solving for & using f’(zcl +6) =0: .
|0+ 11008 +5 70087 | = 0

which yields:
= —f'@/f"'®)
In high-dimensional cases, f'(x) is replaced by Vf(x) and f"'(x) by Hf (x).

Sinan Kalkan 125



Compare this to Newton’s method
for finding the roots

* To find a root r of a function (f(x)), i.e., f(r) = 0:
f(x)

X = X —
TR G

* In optimization, we wish to end up vyith f'(x) = 0 with:
f(xi)

e T )

Sinan Kalkan 126



Newton’s method for optimization
¢ x  x — [Hf G717 £ (x)

* Makes bigger steps in shallow curvature
* Smaller steps in steep curvature

* Note that there is no (learning rate) hyper-parameter! (if you wish you
can add a step size, but this is not necessary)

* Disadvantage:

e Too much memory requirement

* For 1 million parameters, this means a matrix of 1 million x 1 million =» ~ 3725 GB
RAM

* Alternatives exist to get around the memory problem (quasi-Newton methods,
Limited-memory BFGS -- short for Broyden—Fletcher—Goldfarb—Shanno)

Sinan Kalkan 130



RPROP (Resilience Propagation)

* Instead of the magnitude, use the sign of the gradients

r e ALY i QEOD, 08 B4 g

’ ] Wy
— . _1
A,(-;) ={ 7« AS D _5%{;_3;(‘ ), a?ffj ® <o ()

AS;_ B else

where 0 < n” <1 < g?

* Motivation: If the sign of a gradient has changed, that means
we have “overshot” a minima

* Advantage: Faster to run/converge

* Disadvantage: More complex to implement

A Direct Adaptive Method for Faster Backpropagation Learning:
The RPROP Algorithm

Sinan Kalkan 131

1993

Martin Riedmiller Heinrich Braun



Gradient Descent with Line Search

e Gradient descent:

t _ . t—1 . t—1
wi; = wy; -~ + s diry;

where dir/ " = —0L/dw;;

axm

e Gradient descent with line search:

* Choose s such that L is minimized along .
dirf*.
 Set ——= = 0 to find the optimal s.

ds

Sinan Kalkan

Jonathan Richard Shewchuk
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Figure 6: The method of Steepest Descent. (a) Starting at [-2, — ET take a step in the direction of steepest
descent of f. (b) Find the point on the intersection of these two surfaces that minimizes f. (c) This parabola
Is the intersection of surfaces. The bottommost point is our target. (d) The gradient at the bottommost point
is orthogonal to the gradient of the previous step.
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Gradient Descent with Line Search

t — il t—1
wij = wi; ~ + s dirg;
dL(Wit-) _ ]
* Set = 0 to find the optimal s
dL( U +Sle‘t 1) _dL dwitj __dL di t—1 —0
ds Codwf; ds  dw(; iy o =
t
dL dWU _ dL dir t-1 —0
t Tij
dwl-j ds dwl-j

Interpretation:

* Choose s such that: the gradient direction at the new position is orthogonal to the current direction

This is called steepest gradient descent

Problem: makes zig-zag

Sinan Kalkan 135
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Figure 8: Here, the method of Steepest Descent starts at |2,
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Conjugate Gradient Descent

* Motivation

Jonathan Richard Shewchuk oinan Kalkan 137



Conjugate Gradient Descent

* Two vectors are conjugate (A-orthogonal) if:
uldv =0

* We assume that the error surfacle has the quadratic form:
flx) = ExTAx —bTx+c

iy iy
! < . | /4\1 ‘J
R /.‘.’ ....... L ‘._""‘:'--... R I-.l PRI I ST T S S S S S S S T R I-l
i I 2 t:\::/v = -e:\ -2 2 /4 =
(@) (b)
Figure 22: These pairs of vectors are A-orthogonal . .. because these pairs of vectors are orthogonal.
Sinan Kalkan 138
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Conjugate Gradient Descent

aE(Witj) . t—1
* By assuming quadratic form etc.:

¢ le‘lS —_—

IE(w, (1)) FE(w,, (1= 1)) FE(w, (1))

, ow;; (1) M (r-1) ow;; (1)

[ : :
> JE(w, (1 =1)) JE(w, (1 =1))
dw;(t=1)  dw;(t-1)

[.]

Jonathan Richard Shewchuk inan alkan
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Conjugate Gradient Descent

* Or simply as:
{TE;”_'U' — T}:Jf{” ) TF”{.“.
(Th‘uftf.}j

0D =

* Interpretation:

* Rewrite this as:
VETZLBW VEold- VEnew

PR, T vER,
* For more detailed motivation and derivations, see:

e Jonathan Richard Shewchuk, “An Introduction to the Conjugate Gradient
Method Without the Agonizing Pain”, 1994.

* Jan A. Snyman, Practical Mathematical Optimization: An Introduction
to Basic Optimization Theory and Classical and New Gradient-Based
Algorithms, CH2, 2005.
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Steepest and Conjugate Gradient Descent:
Cons and Pros

* Pros: as) e LBFGS arge minibatch
GG minibateh
CG large minibatch
* Faster to converge than, e.g., T ——sa
stochastic gradient descent (even |
mini-batch)
* Cons:
* They don’t work well on saddle
points
¢ COmpUtatlona”y mOre expenS|Ve OC' 10'00 20‘00 30‘00 40|00 50|00 GCIIOCI ?Olon aoloo goloo 10600
time (seconds)
* |In 2D: Le et al., “On optimization methods
° Steepest descent 1S O(nz) for deep Iearning”, 2011.

* Conjugate descent is O(ng/z)

Jonathan Richard Shewchuk, “An Introduction to the Conjugate GradientaiMeathod Without the Agonizing Pain”, 1994.
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Online Interactive Tutorial

http://www.benfrederickson.com/numerical-optimization/

Sinan Kalkan 145



* http://bair.berkeley.edu/blog/2017/09/12/learning-to-optimize-with-rl

Follow the
gradient

Gradient
Descent

I'm
oscillating...
what do | do?

Learned
Optimizer

Aha! I've seen
this before...
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Challenges of the Loss surface

and How to Avoid Them



Challenges

* Local minima
* Saddle points
* Cliffs

* Valleys

inan Kalkan
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Local minima

* Solutions
e Large training data
Stochastic gradient descent
Momentum
Adaptive learning rate
Good initialization
Different minimization strategies

Sinan Kalkan 151



* For smaller networks, local minima are more problematic

For large-size networks, most local minima are

. . . . 2014
equivalent and yield similar performance on a test
set.
The Loss Surfaces of Multilayer Networks
The probability of finding a “bad” (high value)
local minimum 1s non-zero for small-size networks AR oot ies myn fi  SUBSOSERy o EAChieaca myi i bontsvsOt oa Ry yaraGes. ayn. o

and decreases quickly with network size.

Struggling to find the global minimum on the
training set (as opposed to one of the many good
local ones) is not useful in practice and may lead
to overfitting.

Sinan Kalkan 152



Google

Do neural nets have saddle points?
Saxe et al, 2013:

neural nets
without non-

linearities have

many saddle
points

all the minima are

global

all the minima

form a connected

manifold = I

Sinan Kalkan 154
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Google

Do neural nets have saddle points?

Dauphin et al 2014: Experiments show neural nets do
have as many saddle points as random matrix theory
predicts

Choromanska et al 2015: Theoretical argument for
why this should happen

Major implication: most minima are good, and
this is more true for big models.

Minor implication: the reason that Newton’s method
works poorly for neural nets is its attraction to the

ubiquitous saddle points.

Sinan Kalkan 155
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Valleys, Clitfs and Exploding Gradients

Figure 8.1: One theory about the neural network optimization is that poorly conditioned
Hessian matrices cause much of the difficulty in training. In this view, some directions
have a high curvature (second derivative), corresponding to the quickly rising sides of the
valley (going left or right), and other directions have a low curvature, corresponding to
the smooth slope of the valley (going down, dashed arrow). Most second-order methods,
as well as momentum or gradient averaging methods are meant to address that problem,
by increasing the step size in the direction of the valley (where it pays off the most in the
long run to go) and decreasing it in the directions of steep rise, which would otherwise
lead to oscillations (blue full arrows)siBheabgjective is to smoothly go down, staying at
the bottom of the valley (green dashed arrow).
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Valleys, Clitfs and Exploding Gradients

Figure 8.2: Contrary to what is shown in Figure 8.1, the objective function for highly
non-linear deep neural networks or for recurrent neural networks is typically not made of
symmetrical sides. As shown in the figure, there are sharp non-linearities that give rise
to very high derivatives in some places. When the parameters get close to such a cliff
region, a gradient descent update can catapult the parameters very far, possibly ruining
a lot of the optimization work that had been done. Figure graciously provided by Razvan
Sinan Kalkan i 157
Pascanu (Pascanu, 2014).



Valleys, Clitfs and Exploding Gradients

Figure 8.3: To address the presence of cliffs such as shown in Figure 8.2, a useful heuristic
is to clip the magnitude of the gradient, only keeping its direction if its magnitude is above
a threshold (which is a hyperparameter, although not a very critical one). Using such a
gradient clipping heuristic (dotted arrows trajectories) helps to avoid the destructive big
moves which would happen when approaching the cliff, either from above or from below

(bold arrows trajectories). Figure graciously provided by Razvan Pascanu (Pascanu,
2014).
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Using momentum
to Improve steps




Momentum Updateatt —1

* Maintain a “memory”
AOy < 1 AOy_1 +

where 11 is called the momentum weight/coefficient

* Momentum filters oscillations on gradients (i.e., oscillatory
movements on the error surface)

e 1 is typically initialized to 0.9.
* It is better if it anneals from 0.5 to 0.99 over multiple epochs
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Momentum

—> (Gradients
—  Velocity

Figure 8.5: The effect of momentum on the progress of learning. Momentum acts to
accumulate gradient contributions over training iterations. Directions that consistently
have positive contributions to the gradiemtksiidh be augmented. 161



Nesterov Momentum

* Use a “lookahead” step to update:
Oahead < Or + U AG, 4
AG, —pAb =1 Veahead['ahead
Orr1 < 0y + A0,

Momentum update Nesterov momentum update

“lookahead” gradient
step (bit different than
original)

momentum
step

momentum

step
actual step

actual step

L

gradient
step

http:/ /c5231n.zcgithstijnf])r.]ilg]I neu ral-networks-3/ 107



Nesterov Momentum
(alternative formulation)

Classical Momentum

!
Or+1 =0t + V11

Equations from: Botev, A, Lever, G., & Barber, D.
(2017). Nesterov's accelerated gradient and
momentum as approximations to regularised update

descent. IJCNN.

Y. Nesterov. A method of solving a convex programmin
Mathematics Doklady, Vol

problem with convergence rate O(1/k2). In Soviet
7" pages 372-376, 1983.

Nesterov’s Momentum

Yt+1 — (1 =+ H-t.)ﬁt — ﬁ't'gt—l

9t+1 — Yt+1 — f-’l’tr]f (’.Ut+1)

Uses smoothed weights

Uses future gradient to update
Guaranteed optimal convergence rate
for convex functions (if first-order
gradient based methods are used)
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Momentum vs. Nesterov Momentum

* When the learning rate is very small, they are equivalent.

* When the learning rate is sufficiently large, Nesterov Momentum
performs better (it is more responsive).

* See for an in-depth comparison:

On the importance of initialization and momentum in deep learning

Ilya Sutskever!
James Martens
George Dahl

ILYASUQGOOGLE.COM

JMARTENS@QCS. TORONTO.EDU

GDAHL@QCS. TORONTO.EDU
Geoffrey Hinton HINTON@QCS. TORONTO.EDU

Sinan Kalkan
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Demo (and further reading)

http://distill.pub/2017/momentum/

Sinan Kalkan 165



Setting the learning rate




W,

Error contours

W,

Error contours

© John A. Bullinaria, 2015
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Alternatives

* Single global learning rate
* Constant Learning Rate
e Scheduling Learning Rate

* Per-parameter learning rate
* AdaGrad
* RMSprop
e Adam
* AdaDelta

Sinan Kalkan 168



Global Methods: Scheduling the learning rate

* Step decay
*n' «<n X c,where c could be 0.5, 0.4, 0.3,
0.2, 0.1 etc. Graph for 1/(1+x), e”-x
* Exponential decay: il §
* 1 =noe ", where t is iteration number - B
* Mo, k: hyperparameters

24

* 1/t decay: T
= no/(1+ kt) hk\\x

* If you have time, keep decay small and
train longer

Sinan Kalkan
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Global Methods: warm-up

 Start with a small learning rate [1]
e Constant learning rate
e Gradually increasing

* Why? The first steps of learning appear to be very critical [2]

[1] Goyal, P., Dollar, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., ... & He, K. (2017). Accurate, large
minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677. (this is not the first paper to do so)

[2] Achille, A., Rovere, M., & Soatto, S. (2018). Critical learning periods in deep networks. In International
Conference on Learning Representations.
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Global Methods: Cyclic Learning Rates

Maximum bound
(max_Ir)

Minimum bound

_ (base_Ir)
stepsize
Figure 2. Triangular learning rate policy. The blue lines represent Sm_lth' LN (2?17)' Cyckllcz?l Iggrlr; TE Erl? te,s for
learning rate values changing between bounds. The input parame- training neura networ _S' : W n't.er
ter stepsize is the number of iterations in half a cycle. conference on applications of computer vision

(WACV) (pp. 464-472). IEEE.
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Global Methods: Cosine Scheduling

Cosine Annealing is a type of learning rate schedule that has the effect of starting with a large learning
rate that is relatively rapidly decreased to a minimum value before being increased rapidly again. The
resetting of the learning rate acts like a simulated restart of the learning process and the re-use of good
weights as the starting point of the restart is referred to as a "warm restart" in contrast to a "cold restart"

where a new set of small random numbers may be used as a starting point.

TC'MT‘ T
i

Where where nfnin and n’fmm are ranges for the learning rate, and T, account for how many epochs have

N = n:nzn + E (n:na:r: - n:’mn) (1 + COS(

been performed since the last restart.

Text Source: Jason Brownlee

https://paperswithcode.com/method/cosine-annealing

Sinan Kalkan
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Global Methods: learning rate & the batch size

* Bigger batch size, bigger learning rate

* Increase batch size => increase learning rate

* If you increase batch size from N to kN, learning rate should be scaled by:
* sqrt(k) [1]
e k[2]

* Two interpretations:

* Bigger batch means more stable gradient => Safer to make large steps.

* Bigger batch means less number of update steps => increase learning rate to
compensate.

[1] Krizhevsky, A. (2014). One weird trick for parallelizing convolutional neural networks. arXiv preprint
arXiv:1404.5997.

[2] Goyal, P., Dollar, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., ... & He, K. (2017).
Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677.
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Global Methods: learning rate & the batch size

BATCH SIZE: | es=s2| [ es-1 BS =8 BS =4
)
% ,J,J,h
102 ' 10°
ing g sca

https://miguel-data-sc.github.io/2017-11-05-first/
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