
CENG 501
Deep Learning:

Sinan Kalkan

© AlchemyAPI

Today

• Loss Functions

• Activation Functions

• Optimization Perspective

• Challenges of the Loss Surface

• Setting the Learning Rate

• Representational Capacity

CENG501

Administrative Notes

• Reading assignment
• CH1-7 of the Hundred-Page Machine Learning Book by Andriy Burkov.

https://themlbook.com/

• Quiz
• Next week during the lecture [since registrations are still ongoing]

• Paper Selection
• https://forms.gle/2wB7ELE1BFVU4jJv7
• Deadline next week (13th of October, midnight)

CENG501

https://themlbook.com/
https://forms.gle/2wB7ELE1BFVU4jJv7

More on loss functions

Sinan Kalkan 4

Softmax or Logistic CLASSIFIERS

Sinan Kalkan 5

Information Entropy

• Number of bits to represent a coin-pair:
log2 4 = 2

• In fact, this is:

log2

1

𝑝𝑐𝑜𝑖𝑛
= log2

1

0.25
= 2

• Optimal number of bits to represent an event
with probability 𝑝:

log2

1

𝑝

Sinan Kalkan 6

Claude Elwood Shannon
(1916-2001)

(“A Mathematical Theory
of Communication”, 1948)

H H

H T

T H

T T

Information Entropy

• Problem:
• Transmit information about the

labels of cars to another person
with least the number of bits

• Assume that each bit is
expensive
• So, we are interested in the

minimal/optimal coding

Sinan Kalkan 8

Example from: https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/

1 : Tesla
01 : Mazda
10111: Fiat

Information Entropy

• For an optimal setting, we can assign bits to code
information based on their probabilities

• The smallest number of bits on avg. to represent an
event with probability 𝑝: log2 1/𝑝

• Optimal # of bits to represent Fiat cars:

𝑏fiat = log2

1

𝑝fiat

• The optimal encoding then requires:

Sinan Kalkan 9

Car Probability

Fiat 0.80

Mazda 0.15

Tesla 0.05

𝐻 𝑝 = 𝐸𝑝 log2

1

𝑝
 =

𝑖

𝑝𝑖 log2

1

𝑝𝑖
= −

𝑖

𝑝𝑖 log2 𝑝𝑖
Entropy

Example from: https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/

of bits

0.32

2.74

4.32

Cross-entropy, Entropy

• Entropy assumes that the data follows
the «correct» distribution.

• If the estimated/current distribution (call
it 𝑞) is somewhat “wrong”, how can we
quantify the number of bits required?

Sinan Kalkan 10

Entropy:

𝐻 𝑝 =

𝑖

𝑝𝑖 log2

1

𝑝𝑖
= −

𝑖

𝑝𝑖 log2 𝑝𝑖

𝐻 𝑝, 𝑞 = 𝐸𝑝 log2

1

𝑞
 =

𝑖

𝑝𝑖 log2

1

𝑞𝑖
= −

𝑖

𝑝𝑖 log2 𝑞𝑖 Cross-
Entropy

Example from: https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/

Kullback-Leibler Divergence

• Difference between cross-entropy and entropy (this is zero when 𝑝𝑖
equals 𝑞𝑖):

𝐾𝐿(𝑝 | 𝑞 =

𝑖

𝑝𝑖 log
1

𝑞𝑖
−

𝑖

𝑝𝑖 log
1

𝑝𝑖

=

𝑖

𝑝𝑖 log
𝑝𝑖

𝑞𝑖

Sinan Kalkan 11

More on xentropy, entropy and KL-divergence

https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/

https://www.youtube.com/watch?v=ErfnhcEV1O8

Sinan Kalkan 12

https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/
https://www.youtube.com/watch?v=ErfnhcEV1O8

Softmax classifier – Cross-entropy loss

• Cross-entropy:

• In our case,
• 𝑝 denotes the correct probabilities of the categories. In other words, 𝑝𝑗 = 1 for the correct label

and 𝑝𝑗 = 0 for other categories.

• 𝑞 denotes the estimated probabilities of the categories

• But, our scores are not probabilities!

• One solution: Softmax function: 𝑠𝑚 𝑠𝑖 =
𝑒𝑠𝑖

σ𝑗 𝑒
𝑠𝑗

• It maps arbitrary ranges to probabilities

• Using the normalized values, we can define the cross-entropy loss for classification
problem now:

ℒ𝑖 = − log𝑒

𝑒𝑠𝑦𝑖

σ𝑗 𝑒𝑠𝑗
= −𝑠𝑦𝑖

+ log𝑒

𝑗

𝑒𝑠𝑗

Sinan Kalkan 14http://cs231n.github.io/

𝐻 𝑝, 𝑞 = 𝐸𝑝 log2

1

𝑞
 =

𝑖

𝑝𝑖 log2

1

𝑞𝑖
= −

𝑖

𝑝𝑖 log2 𝑞𝑖

Derive the gradients of NLL loss
𝜕ℒ𝑖

𝜕𝑤𝑗𝑘
= ?

If 𝒋 ≠ 𝒚𝒊:
𝜕ℒ𝑖

𝜕𝑤𝑗𝑘
=

𝜕ℒ𝑖

𝜕𝑝𝑦𝑖

𝜕𝑝𝑦𝑖

𝜕𝑠𝑗

𝜕𝑠𝑗

𝜕𝑤𝑗𝑘

𝜕ℒ𝑖

𝜕𝑤𝑗𝑘
= 𝑝𝑗𝑥𝑖𝑘

Sinan Kalkan 15

𝑥𝑖1

𝑥𝑖𝑛

𝑥𝑖𝑘

…

𝑤𝑗1

𝑤𝑗𝑘

𝑤𝑛

𝑠𝑗 = 𝐰𝑗𝐱𝑖

=

𝑘

𝑤𝑗𝑘 𝑥𝑖𝑘

…

ℒ𝑖 = − log𝑒 𝑝𝑦𝑖

𝑝𝑦𝑖
=

𝑒𝑠𝑦𝑖

σ𝑚 𝑒𝑠𝑚

−
1

𝑝𝑦𝑖 −𝑝𝑦𝑖
𝑝𝑗

𝑥𝑖𝑘

𝐱𝑖
THE MODEL

This assumed that 𝑗 ≠ 𝑦𝑖.
What happens if that’s not the case?
See the next page.

Derive the gradients of NLL loss
𝜕ℒ𝑖

𝜕𝑤𝑗𝑘
= ?

If 𝒋 = 𝒚𝒊:
𝜕ℒ𝑖

𝜕𝑤𝑦𝑖𝑘
=

𝜕ℒ𝑖

𝜕𝑝𝑦𝑖

𝜕𝑝𝑦𝑖

𝜕𝑠𝑦𝑖

𝜕𝑠𝑦𝑖

𝜕𝑤𝑦𝑖𝑘

𝜕ℒ𝑖

𝜕𝑤𝑦𝑖𝑘
= (𝑝𝑦𝑖

− 1)𝑥𝑖𝑘

Sinan Kalkan 16

𝑥𝑖1

𝑥𝑖𝑛

𝑥𝑖𝑘

…

𝑤𝑗1

𝑤𝑗𝑘

𝑤𝑗𝑛

𝑠𝑗 = 𝐰𝑗𝐱𝑖

=

𝑘

𝑤𝑗𝑘 𝑥𝑖𝑘

…

ℒ𝑖 = − log𝑒 𝑝𝑦𝑖

𝑝𝑦𝑖
=

𝑒𝑠𝑦𝑖

σ𝑚 𝑒𝑠𝑚

−
1

𝑝𝑦𝑖
𝑝𝑦𝑖

(1 − 𝑝𝑦𝑖
) 𝑥𝑖𝑘

𝐱𝑖 THE MODEL

logistic loss

• A special case of cross-entropy for binary classification:

𝐻 𝑝, 𝑞 = −

𝑗

𝑝𝑗 log 𝑞𝑗 = −𝑝 log 𝑞 − 1 − 𝑝 log 1 − 𝑞

• Softmax function reduces to the logistic function (see [1] for the derivation):
1

1 + 𝑒−𝑥

Sinan Kalkan 17

[1] http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/

Softmax classifier:
One interpretation

• Information theory
• Cross-entropy between a true distribution and an

estimated one:

𝐻 𝑝, 𝑞 = −

𝑥

𝑝 𝑥 log 𝑞 𝑥 .

• In our case, 𝑝 = [0, … , 1,0, . . 0], containing only one
1, at the correct label.

• Since 𝐻 𝑝, 𝑞 = 𝐻 𝑝 + 𝐷𝐾𝐿(𝑝||𝑞), we are
minimizing the Kullback-Leibler divergence.

Sinan Kalkan 22

http://cs231n.github.io/

Softmax classifier:
Another interpretation

• Probabilistic view

𝑃 𝑦𝑖 𝑥𝑖; 𝑊) =
𝑒𝑠𝑦𝑖

σ𝑗 𝑒𝑠𝑗
.

• In our case, we are minimizing the negative log likelihood.

• This corresponds to Maximum Likelihood Estimation (MLE).

Sinan Kalkan 23

http://cs231n.github.io/

Maximum Likelihood Estimation (MLE) vs
Maximum A Posteriori Estimation (MAP)

𝜃𝑀𝐿𝐸 ← arg max 𝑝(𝑌|𝜃)

 ← arg max Π𝑖 𝑝(𝑦𝑖|𝜃)

Taking the logarithm for numerical stability:

𝜃𝑀𝐿𝐸 ← arg max log 𝑝(𝑌|𝜃)

 ← arg max log Π𝑖 𝑝(𝑦𝑖|𝜃)

 ← arg max σ𝑖 log 𝑝 𝑦𝑖 𝜃)

Sinan Kalkan 24

Since 𝑝(𝑌) is constant:
𝑝 𝜃 𝑌 ∝ 𝑝 𝑌 𝜃 𝑝 𝜃

𝜃𝑀𝐴𝑃 ← arg max log 𝑝(𝜃|𝑌)

 ← arg max log 𝑝 𝑌 𝜃 𝑝 𝜃

 ← arg max log 𝑝 𝑌 𝜃 + log 𝑝 𝜃

 ← arg max log Π𝑖 𝑝(𝑦𝑖|𝜃) + log 𝑝 𝜃

 ← arg max σ𝑖 log 𝑝 𝑦𝑖 𝜃) + log 𝑝 𝜃

Baye’s Theorem:

𝑝 𝜃 𝑌 =
𝑝 𝑌 𝜃 𝑝 𝜃

𝑝(𝑌)

Likelihood

Maximum Likelihood Estimation (MLE)

Posterior

Maximum A Posteriori Estimation (MAP)

For more details and derivations, see e.g.: https://wiseodd.github.io/techblog/2017/01/01/mle-vs-map/

Hinge loss vs. cross-entropy loss

• Hinge loss is “happy” (= zero) when the classification satisfies the
margin
• Ex: if score values = [10, 9, 9] or [10, -10, -10]

• Hinge loss is “happy” if the margin is 1

• Cross-entropy is more ambitious: it wants more than a margin

Sinan Kalkan 26

More on softmax

• Softmax is a smooth version of arg max:
arg max (𝑠1, 𝑠2, … , 𝑠𝑛) = 𝑦1, 𝑦2, … , 𝑦𝑛 = (0,0, . . , 0,1,0. . 0)

• The base in softmax can be changed to have more “peaky” (or distributed) values
for the largest input (e𝛽 = 𝑏):

𝑠𝑚𝛽 𝑠𝑖 =
𝑒𝛽𝑠𝑖

σ𝑗 𝑒𝛽𝑠𝑗

• When 𝛽 → ∞, softmax converges to arg max.

 e.g.
𝑠𝑚𝛽=1 1, 1.1 = [0.475 0.524]

𝑠𝑚𝛽=2 1, 1.1 = [0.451 0.550]

𝑠𝑚𝛽=5 1, 1.1 = [0.378 0.622]

𝑠𝑚𝛽=100 1, 1.1 = [4.5e−05 9.9e−01]

Sinan Kalkan 27

More on softmax

• Softmax with temperature is softmax with 𝛽 = 1/𝑇:

𝑠𝑚1/𝑇 𝑠𝑖 =
𝑒𝑠𝑖/𝑇

σ𝑗 𝑒𝑠𝑗/𝑇

• Interpretation:
• Increase 𝑇 => decrease 𝛽 => decrease the peak around the largest value.

• Lower 𝑇 yields more confident (may be over confident) probability
distribution.

• Especially in training sequence models where we perform sampling
from the output distribution, in order to allow diversity, we can
increase 𝑇.

Sinan Kalkan 28

More on softmax

• Exponentials may become very large. A trick:

• Set log 𝐶 = − max
𝑗

𝑓𝑗.

Sinan Kalkan 29

http://cs231n.github.io/

See the following link for more information:

http://www.nowozin.net/sebastian/blog/streaming-log-sum-exp-computation.html

Classification Loss functions

• A single correct label case (classification):
• Hinge loss:

• ℒ𝑖 = σ𝑗≠𝑦𝑖
max 0, 𝑠𝑗 − 𝑠𝑦𝑖

+ 1

• Cross-entropy (negative log-likelihood) loss:

• ℒ𝑖 = − log
𝑒

𝑠𝑦𝑖

σ𝑗 𝑒
𝑠𝑗

Sinan Kalkan 32

Classification Loss functions

• Many correct labels case:
• Binary prediction for each label, independently:

• ℒ𝑖 = σ𝑗 max 0, 1 − 𝑦𝑖𝑗𝑠𝑗

• 𝑦𝑖𝑗 = +1 if example 𝑖 is labeled with label 𝑗; otherwise 𝑦𝑖𝑗 = −1.

• Alternatively, train binary Cross Entropy (logistic) loss for each label (0 or 1):

ℒ𝑖 =

𝑗

𝑦𝑖𝑗 log 𝜎 𝑠𝑗 + 1 − 𝑦𝑖𝑗 log 1 − 𝜎 𝑠𝑗

Sinan Kalkan 33

0-1 Loss

• Minimize the # of cases where the prediction is wrong:

ℒ =

𝒊

𝕀 𝑓 𝐱𝑖; 𝑊, 𝑏 𝑦𝑖
≠ 𝑦𝑖

Or equivalently,

ℒ =

𝒊

𝕀 𝑦𝑖𝑓 𝐱𝑖; 𝑊, 𝑏 𝑦𝑖
< 0

Sinan Kalkan 34
Figure source: https://fa.bianp.net/talks/trento_may_2015/#/step-6

𝑡 = 𝑦𝑖𝑓 𝐱𝑖; 𝑊, 𝑏 𝑦𝑖

Absolute Value Loss, Squared Error Loss

ℒ𝑖 =

𝑗

𝑠𝑗 − 𝑦𝑗
𝑞

• 𝑞 = 1: absolute value or L1 loss.

• 𝑞 = 2: square error or L2 loss.

Bishop

Sinan Kalkan 35

Structured Loss functions

• What if we want to predict a graph, tree etc.? Something
that has structure.
• Structured loss: formulate loss such that you minimize the distance

to a correct structure

36Sinan Kalkan

Visualizing Loss Functions

• If you look at one of the example loss functions:

ℒ𝑖 =

𝑗≠𝑦𝑖

max(0, 𝐰𝑗
𝑇𝐱𝑖 − 𝐰𝑦𝑖

𝑇 𝐱𝑖 + 1)

• Since 𝑊 has too many dimensions, this is difficult to plot.

• We can visualize this for one weight direction though, which can give
us some intuition about the shape of the function.
• E.g., start from an arbitrary 𝑊0, choose a direction 𝑊1 and plot ℒ(𝑊0 + 𝛼𝑊1)

for different values of 𝛼.

http://cs231n.github.io/
Sinan Kalkan 42

Visualizing Loss Functions

• You see that this is a convex function.
• Nice and easy for optimization

• When you combine many of them in a neural network, it becomes
non-convex.

Loss along one direction Loss along two directions Loss along two directions
(averaged over many samples)

http://cs231n.github.io/ Sinan Kalkan 44

• 0-1 loss:
ℒ = 𝕀(𝑓 𝑥 ≠ 𝑦)

 or equivalently as:
ℒ = 𝕀(𝑦𝑓 𝑥 < 0)

• Square loss:
ℒ = 𝑓 𝑥 − 𝑦 2

 in binary case:

ℒ = 1 − 𝑦𝑓 𝑥
2

• Hinge-loss
ℒ = max(1 − 𝑦𝑓 𝑥 , 0)

• Logistic loss (binary Cross Entropy Loss):

ℒ = − log2

1

1 + 𝑒−𝑦𝑓(𝑥)

Another approach for visualizing loss functions

Rosacco et al., 2003

Sinan Kalkan 45
https://web.mit.edu/lrosasco/www/publications/loss.pdf

All losses approximate 0-1 loss

Sinan Kalkan 46

Rosacco et al., 2003

Loss Functions: Sum up

• 0-1 loss is not differentiable/helpful at training
• It is used in testing

• Other losses try to cover the “weakness” of 0-1 loss

• Hinge-loss imposes weaker constraint compared to cross-entropy

• For classification: use hinge-loss or cross-entropy loss

• For regression: use squared-error loss, or absolute difference loss

Sinan Kalkan 47

Activation Functions

Activation function: Sigmoid/logistic

𝜎 𝑥 =
1

1 + 𝑒−𝑥

• Output is in range (0,1)

• Since it maps a large domain to
(0,1) it is also called squashing
function

• Simple derivative
𝑑𝜎 𝑥

𝑑𝑥
= 𝜎 𝑥 ⋅ 1 − 𝜎 𝑥

61

Fig: https://medium.com/@omkar.nallagoni/activation-functions-with-derivative-
and-python-code-sigmoid-vs-tanh-vs-relu-44d23915c1f4

Sinan Kalkan

Activation function: tanh

tanh 𝑥 =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
=

𝑒2𝑥 − 1

𝑒2𝑥 + 1

• Output is in range (-1,1)

• A squashing function

• Simple derivative
𝑑tanh 𝑥

𝑑𝑥
= 1 − tanh2 𝑥

64

Fig: https://medium.com/@omkar.nallagoni/activation-functions-with-derivative-
and-python-code-sigmoid-vs-tanh-vs-relu-44d23915c1f4

Sinan Kalkan

Activation Functions: Sigmoid vs. tanh

65
http://cs231n.github.io/neural-networks-1/

Fig: https://medium.com/@omkar.nallagoni/activation-
functions-with-derivative-and-python-code-sigmoid-vs-tanh-vs-
relu-44d23915c1f4

• Sigmoid is a historically important activation function
• But nowadays, rarely used

• Drawbacks:

1. It gets saturated, if the activation is close to zero or one

• This leads to very small gradient, which affects the feedback
to earlier layers

• Initialization is also very important for this reason

2. It is not zero-centered (not very severe)

• Tanh
• Similar to the sigmoid, it saturates

• However, it is zero-centered.

• Tanh is generally preferred over sigmod

• Note: tanh 𝑥 = 2𝜎 2𝑥 − 1

They are both non-convex!

Sinan Kalkan

Activation Functions: Rectified Linear Units (ReLU)

66

[Krizhevsky et al., NIPS12]

𝑓 𝑥 = max(0, 𝑥)

Derivative: 𝟏(𝑥 > 0)

Vinod Nair and Geoffrey Hinton (2010). Rectified linear units improve
restricted Boltzmann machines, ICML.

Sinan Kalkan

Activation Functions:
ReLU – biological motivation

67

Glorot et al., “Deep Sparse Rectifier Neural Networks”, 2011.

Sinan Kalkan

Hinton argues that this is a form of model averaging

68

Activation Functions:
ReLU – biological motivation

Sinan Kalkan

Activation Functions:
ReLU: Pros and Cons
• Pros:

• It converges much faster (claimed to be 6x faster than sigmoid/tanh)
• It overfits very fast and when used with e.g. dropout, this leads to very fast convergence

• It is simpler and faster to compute as it performs a simple comparison with zero

• Cons:
• A ReLU neuron may “die” during training
• A large gradient may update the weights such that the ReLU neuron may never

activate again
• Avoid large learning rate

• See also:
http://www.jefkine.com/general/2016/08/24/formulating-the-relu/

69Sinan Kalkan

Activation Functions:
Leaky ReLU

• 𝑓 𝑥 = 𝟏 𝑥 < 0 𝛼𝑥 + 𝟏(𝑥 ≥ 0)(𝑥)
• When 𝑥 is negative, Leaky ReLU has a non-zero slope (𝛼)

• If you learn 𝛼 during training, this is called parametric ReLU
(PReLU)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun (2015) Delving
Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification

Andrew L. Maas, Awni Y. Hannun, Andrew Y. Ng
(2014). Rectifier Nonlinearities Improve Neural
Network Acoustic Models

70Sinan Kalkan

Activation Functions:
maxout

• max(𝑤1
𝑇𝑥 + 𝑏1, 𝑤2

𝑇𝑥 + 𝑏2)

• ReLU, Leaky ReLU and PReLU are special cases of this

• Drawback: More parameters to learn!

“Maxout Networks” by Ian J. Goodfellow, David
Warde-Farley, Mehdi Mirza, Aaron Courville,
Yoshua Bengio, 2013.

71Sinan Kalkan

Activation Functions: Softplus

• A smooth approximation to the
ReLU unit:

𝑓 𝑥 = ln 1 + 𝑒𝑥

• Its derivative is the sigmoid
function:

𝑓′ 𝑥 = 1/(1 + 𝑒−𝑥)

72Sinan Kalkan

Activation Functions:
Swish: A Self-Gated Activation Function

“The choice of activation functions in deep networks has a significant
effect on the training dynamics and task performance. Currently, the
most successful and widely-used activation function is the Rectified
Linear Unit (ReLU). Although various alternatives to ReLU have been
proposed, none have managed to replace it due to inconsistent gains.
In this work, we propose a new activation function, named Swish,
which is simply f(x)=x⋅sigmoid(x). Our experiments show that Swish
tends to work better than ReLU on deeper models across a number of
challenging datasets. For example, simply replacing ReLUs with Swish
units improves top-1 classification accuracy on ImageNet by 0.9% for
Mobile NASNet-A and 0.6% for Inception-ResNet-v2. The simplicity of
Swish and its similarity to ReLU make it easy for practitioners to
replace ReLUs with Swish units in any neural network.”

73Sinan Kalkan

Activation Functions:
Exponential Linear Unit

• Similar to the Swish function

74Sinan Kalkan

Fig: https://medium.com/@krishnakalyan3/introduction-to-exponential-linear-unit-d3e2904b366c

Activation Functions: To sum up

• Don’t use sigmoid

• If you really want to, use tanh but it is worse than ReLU and its
variants

• ReLU: be careful about dying neurons

• Leaky ReLU and Maxout: Worth trying

78Sinan Kalkan

DEMO 1

Sinan Kalkan 79

https://cs.stanford.edu/people/karpathy/convnetjs/demo/regression.html

DEMO 2

http://playground.tensorflow.org/#activation=tanh®ularization=L2&batchSize=10&dataset=circle®Dataset=reg-
plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=4,2&seed=0.24725&showTestData=false&discretize=fal
se&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=f
alse&collectStats=false&problem=classification

80Sinan Kalkan

Interactive introductory tutorial

https://jalammar.github.io/visual-interactive-guide-basics-neural-
networks/

81Sinan Kalkan

A General Look at Optimization

Sinan Kalkan 82

Courses/tutorials:

• METU IAM771: Optimization Methods for Machine Learning
https://catalog.metu.edu.tr/course.php?course_code=9700771

• EPFL: Optimization for Machine Learning:
https://github.com/epfml/OptML_course

• Optimization Algorithms in Machine Learning:
http://videolectures.net/nips2010_wright_oaml/

https://catalog.metu.edu.tr/course.php?course_code=9700771
https://github.com/epfml/OptML_course
http://videolectures.net/nips2010_wright_oaml/

Mathematical Optimization

Convex Optimization

Least-squares LP

Nonlinear Optimization

Rong Jin
Sinan Kalkan 84

Mathematical Optimization

Rong JinSinan Kalkan 85

Convex Optimization

Rong JinSinan Kalkan 86

Interpretation

• Function’s value is below the line connecting two points

Mark SchmidtSinan Kalkan 87

Another interpretation

Mark SchmidtSinan Kalkan 88

Convex vs. Non-convex Ex.

Sinan Kalkan 89

Convex => Easy to minimize

Convex vs. Non-convex Ex.

Sinan Kalkan 90

• Non-convex => Local minima => Easy to get stuck in a local min.

• Can’t rely on only local search techniques

Example convex functions

Mark SchmidtSinan Kalkan 92

Operations that conserve convexity

Rong JinSinan Kalkan 93

Deep learning functions

• Wx - convex

• ReLU – convex

• Softmax – non-convex
• Log-sum-exp (normalization of softmax) – convex

• Sigmoid, tanh – non-convex

• Loss functions (cross-entropy, max-margin, squared-error loss) are convex

• How about NNs?
• NNs without non-linearities are convex. The parameters just model a hyper-plane.

• NNs with non-linearities are NOT convex.

Sinan Kalkan 95

Why convex optimization?

• Can’t solve most OPs
• E.g. NP Hard, too slow

• Convex OPs
• (Generally) No analytic solution

• Efficient iterative algorithms to find (global) solution

• Easy to see why convexity allows for efficient solution
• Just “slide” down the objective function as far as possible and will reach a

minimum

Sinan Kalkan 96

Non-convex Problems

• Some non-convex problems highly multi-modal, or NP hard

• Could be forced to search all solutions, or hope stochastic search is
successful

• Cannot guarantee best solution, inefficient

• Harder to make performance guarantees with approximate solutions

Sinan Kalkan 97

• Analytical solution
• Good algorithms and software
• High accuracy and high reliability

Mathematical Optimization

Convex Optimization

Least-squares LP

Nonlinear Optimization

A mature technology!

Rong JinSinan Kalkan 98

• No analytical solution
• Algorithms and software
• Reliable and efficient

Mathematical Optimization

Convex Optimization

Least-squares LP

Nonlinear Optimization

Also a mature technology!

Rong JinSinan Kalkan 99

Mathematical Optimization

Convex Optimization

Nonlinear Optimization

Almost a mature technology!

Least-squares LP

• No analytical solution
• Algorithms and software
• Reliable and efficient

Rong JinSinan Kalkan 100

Mathematical Optimization

Convex Optimization

Nonlinear Optimization

Far from a technology! (something to avoid)

Least-squares LP

• Sadly, no effective methods to solve
• Only approaches with some compromise
• Local optimization: “more art than technology”
• Global optimization: greatly compromised efficiency
• Help from convex optimization

1) Initialization 2) Heuristics 3) Bounds

Rong JinSinan Kalkan 101

Why Study Convex Optimization

If not, …… ☺

-- Section 1.3.2, p8, Convex Optimization

there is little chance you can solve it.

Rong JinSinan Kalkan 102

Gradient DESCENT strategies

115

Recommended:

Course on Neural Net Training Dynamics
https://www.cs.toronto.edu/~rgrosse/courses/csc2541_2021/

Sinan Kalkan

Schemes of training

• True/Stochastic/Batch Gradient Descent

• Effect of batch size

• Second-order Methods

• Steepest/Conjugate Gradient Descent

• Momentum Gradient Descent

116Sinan Kalkan

118Jonathan Richard Shewchuk Sinan Kalkan

119

Stochastic Gradient Descent

Batch Gradient Descent

Sinan Kalkan

Large vs. small
batch sizes

120

ICLR, 2017

Sinan Kalkan

Large vs. small batch sizes

• Stability [1]:
• Large batch sizes introduce stability in terms of gradient directions. But this

increases the changes of getting stuck in local minima.
• Small batch sizes introduce noisy gradients which make it difficult to get stuck in

local minima.

• Local convergence & width of the minima [2]:
• Small batch sizes tend to converge to solutions that are farther away from the

initial position whereas large batch sizes lead to solutions close to the initial
position.

Sinan Kalkan 121

[1] Takase et al., “Why Does Large Batch Training Result in Poor Generalization? A Comprehensive Explanation and a Better
Strategy from the Viewpoint of Stochastic Optimization”, Neural Computation, 2018.

[2] Keskar et al., “On large batch training for deep learning: Generalization gap and sharp minima”, ICLR 2017.

Gradient descent

122
https://en.wikipedia.org/wiki/Gradient_descent

Sinan Kalkan

Second order methods
• Newton’s method for optimization:

• 𝑥 ← 𝑥 − 𝐻𝑓 𝑥 −1𝛻𝑓 𝑥

• where 𝐻𝑓 𝑥 is the Hessian

• Hessian gives a better feeling about the surface
• It gives information about the curvature of surface

124Sinan Kalkan

Eq: https://en.wikipedia.org/wiki/Hessian_matrix

Intuition behind Newton’s
method

• Newton’s method assumes that the function (𝑓(𝑥)) we are trying to minimize is
quadratic, and aims to find the minimum (𝑥 + 𝛿), where 𝑓′ 𝑥 + 𝛿 = 0.

• From Taylor expansion:

𝑓 𝑥 + 𝛿 ≅ 𝑓 𝑥 + 𝑓′ 𝑥 𝛿 +
1

2
𝑓′′ 𝑥 𝛿2

• Solving for 𝛿 using 𝑓′ 𝑥 + 𝛿 = 0:
𝑑

𝑑𝛿
𝑓 𝑥 + 𝑓′ 𝑥 𝛿 +

1

2
𝑓′′ 𝑥 𝛿2 = 0

 which yields:
𝛿 ≅ −𝑓′(𝑥)/𝑓′′(𝑥)

• In high-dimensional cases, 𝑓′(𝑥) is replaced by 𝛻𝑓(𝑥) and 𝑓′′(𝑥) by 𝐻𝑓(𝑥).

125Sinan Kalkan

Fig:
https://math.stackexchange.com/questions
/609680/newtons-method-intuition

Compare this to Newton’s method
for finding the roots

• To find a root 𝑟 of a function (𝑓(𝑥)), i.e., 𝑓 𝑟 = 0:

𝑥𝑘+1 = 𝑥𝑘 −
𝑓 𝑥𝑘

𝑓′ 𝑥𝑘

• In optimization, we wish to end up with 𝑓′ 𝑥 = 0 with:

𝑥𝑘+1 = 𝑥𝑘 −
𝑓′ 𝑥𝑘

𝑓′′ 𝑥𝑘

126Sinan Kalkan

Newton’s method for optimization
• 𝑥 ← 𝑥 − 𝐻𝑓 𝑥 −1𝛻𝑓 𝑥

• Makes bigger steps in shallow curvature

• Smaller steps in steep curvature

• Note that there is no (learning rate) hyper-parameter! (if you wish you
can add a step size, but this is not necessary)

• Disadvantage:
• Too much memory requirement

• For 1 million parameters, this means a matrix of 1 million x 1 million ➔ ~ 3725 GB
RAM

• Alternatives exist to get around the memory problem (quasi-Newton methods,
Limited-memory BFGS -- short for Broyden–Fletcher–Goldfarb–Shanno)

130Sinan Kalkan

RPROP (Resilience Propagation)

• Instead of the magnitude, use the sign of the gradients

• Motivation: If the sign of a gradient has changed, that means
we have “overshot” a minima

• Advantage: Faster to run/converge

• Disadvantage: More complex to implement

131
1993

Sinan Kalkan

Gradient Descent with Line Search

• Gradient descent:
𝑤𝑖𝑗

𝑡 = 𝑤𝑖𝑗
𝑡−1 + 𝑠 𝑑𝑖𝑟𝑖𝑗

𝑡−1

 where 𝑑𝑖𝑟𝑖𝑗
𝑡−1 = −𝜕𝐿/𝜕𝑤𝑖𝑗

• Gradient descent with line search:
• Choose 𝑠 such that 𝐿 is minimized along

𝑑𝑖𝑟𝑖𝑗
𝑡−1.

• Set
𝑑𝐿 𝑤𝑖𝑗

𝑡

𝑑𝑠
= 0 to find the optimal 𝑠.

133

Jonathan Richard Shewchuk

Sinan Kalkan

134Jonathan Richard Shewchuk Sinan Kalkan

Gradient Descent with Line Search

𝑤𝑖𝑗
𝑡 = 𝑤𝑖𝑗

𝑡−1 + 𝑠 𝑑𝑖𝑟𝑖𝑗
𝑡−1

• Set
𝑑𝐿 𝑤𝑖𝑗

𝑡

𝑑𝑠
= 0 to find the optimal 𝑠.

•
𝑑𝐿 𝑤𝑖𝑗

𝑡 =𝑤𝑖𝑗
𝑡−1+𝑠 𝑑𝑖𝑟𝑖𝑗

𝑡−1

𝑑𝑠
=

𝑑𝐿

𝑑𝑤𝑖𝑗
𝑡

𝑑𝑤𝑖𝑗
𝑡

𝑑𝑠
=

𝑑𝐿

𝑑𝑤𝑖𝑗
𝑡 𝑑𝑖𝑟𝑖𝑗

𝑡−1 = 0

𝑑𝐿

𝑑𝑤𝑖𝑗
𝑡

𝑑𝑤𝑖𝑗
𝑡

𝑑𝑠
=

𝑑𝐿

𝑑𝑤𝑖𝑗
𝑡 𝑑𝑖𝑟𝑖𝑗

𝑡−1 = 0

• Interpretation:
• Choose 𝑠 such that: the gradient direction at the new position is orthogonal to the current direction

• This is called steepest gradient descent

• Problem: makes zig-zag

135Sinan Kalkan

136Jonathan Richard Shewchuk Sinan Kalkan

Conjugate Gradient Descent

• Motivation

137
Jonathan Richard Shewchuk

Sinan Kalkan

Conjugate Gradient Descent
• Two vectors are conjugate (A-orthogonal) if:

𝑢𝑇𝐴𝑣 = 0

• We assume that the error surface has the quadratic form:

𝑓 𝑥 =
1

2
𝑥𝑇𝐴𝑥 − 𝑏𝑇𝑥 + 𝑐

138

Jonathan Richard Shewchuk
Sinan Kalkan

Conjugate Gradient Descent

𝑑𝑖𝑟𝑖𝑗
𝑡 = −

𝜕𝐸 𝑤𝑖𝑗
𝑡

𝜕𝑤𝑖𝑗
𝑡 + 𝛽 𝑑𝑖𝑟𝑖𝑗

𝑡−1

• By assuming quadratic form etc.:

139
Jonathan Richard Shewchuk

Sinan Kalkan

Conjugate Gradient Descent
• Or simply as:

• Interpretation:
• Rewrite this as:

𝛽 =
𝛻𝐸𝑛𝑒𝑤

2

𝛻𝐸𝑜𝑙𝑑
2 −

𝛻𝐸𝑜𝑙𝑑 . 𝛻𝐸𝑛𝑒𝑤

𝛻𝐸𝑜𝑙𝑑
2

• For more detailed motivation and derivations, see:
• Jonathan Richard Shewchuk, “An Introduction to the Conjugate Gradient

Method Without the Agonizing Pain”, 1994.

• Jan A. Snyman, Practical Mathematical Optimization: An Introduction
to Basic Optimization Theory and Classical and New Gradient-Based
Algorithms, CH2, 2005.

140Sinan Kalkan

Steepest and Conjugate Gradient Descent:
Cons and Pros

• Pros:
• Faster to converge than, e.g.,

stochastic gradient descent (even
mini-batch)

• Cons:
• They don’t work well on saddle

points

• Computationally more expensive

• In 2D:
• Steepest descent is 𝑂 𝑛2

• Conjugate descent is 𝑂(𝑛3/2)

144

Le et al., “On optimization methods
for deep learning”, 2011.

Jonathan Richard Shewchuk, “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain”, 1994.Sinan Kalkan

Online Interactive Tutorial

http://www.benfrederickson.com/numerical-optimization/

145Sinan Kalkan

• http://bair.berkeley.edu/blog/2017/09/12/learning-to-optimize-with-rl

146Sinan Kalkan

Sinan Kalkan 148

Challenges of the Loss surface
and How to Avoid Them

149Sinan Kalkan

Challenges

• Local minima

• Saddle points

• Cliffs

• Valleys

150Sinan Kalkan

Local minima

• Solutions
• Large training data

• Stochastic gradient descent

• Momentum

• Adaptive learning rate

• Good initialization

• Different minimization strategies

151Sinan Kalkan

• For smaller networks, local minima are more problematic

152

2014

Sinan Kalkan

I. Goodfellow
154Sinan Kalkan

155
I. Goodfellow

Sinan Kalkan

Valleys, Cliffs and Exploding Gradients

156Sinan Kalkan

Valleys, Cliffs and Exploding Gradients

157Sinan Kalkan

Valleys, Cliffs and Exploding Gradients

158Sinan Kalkan

Using momentum
to improve steps

159Sinan Kalkan

Momentum

• Maintain a “memory”
Δ𝜃𝑡 ← 𝜇 Δ𝜃𝑡−1 + (−𝜂 𝛻𝜃𝑡−1

ℒ)

 where 𝜇 is called the momentum weight/coefficient

• Momentum filters oscillations on gradients (i.e., oscillatory
movements on the error surface)

• 𝜇 is typically initialized to 0.9.
• It is better if it anneals from 0.5 to 0.99 over multiple epochs

160

Update at 𝑡 − 1 Update recommended
by the gradient at 𝑡

Sinan Kalkan

Momentum

161Sinan Kalkan

Nesterov Momentum

• Use a “lookahead” step to update:
𝜃ahead ← 𝜃𝑡 + 𝜇 Δ𝜃𝑡−1
Δ𝜃𝑡 ← 𝜇 Δ𝜃𝑡−1 − 𝜂 𝛻𝜃ahead

ℒahead

𝜃𝑡+1 ← 𝜃𝑡 + Δ𝜃𝑡

http://cs231n.github.io/neural-networks-3/
162Sinan Kalkan

Nesterov Momentum
(alternative formulation)

163

Nesterov’s MomentumClassical Momentum

Y. Nesterov. A method of solving a convex programming problem with convergence rate O(1/k2). In Soviet

Mathematics Doklady, volume 27, pages 372–376, 1983.

• Uses smoothed weights
• Uses future gradient to update
• Guaranteed optimal convergence rate

for convex functions (if first-order
gradient based methods are used)

Equations from: Botev, A., Lever, G., & Barber, D.
(2017). Nesterov's accelerated gradient and
momentum as approximations to regularised update
descent. IJCNN.

Sinan Kalkan

Momentum vs. Nesterov Momentum

• When the learning rate is very small, they are equivalent.

• When the learning rate is sufficiently large, Nesterov Momentum
performs better (it is more responsive).

• See for an in-depth comparison:

164Sinan Kalkan

Demo (and further reading)

http://distill.pub/2017/momentum/

165Sinan Kalkan

Setting the learning rate

166Sinan Kalkan

167Sinan Kalkan

Alternatives

• Single global learning rate
• Constant Learning Rate

• Scheduling Learning Rate

• Per-parameter learning rate
• AdaGrad

• RMSprop

• Adam

• AdaDelta

168Sinan Kalkan

Global Methods: Scheduling the learning rate

• Step decay
• 𝜂′ ← 𝜂 × 𝑐, where 𝑐 could be 0.5, 0.4, 0.3,

0.2, 0.1 etc.

• Exponential decay:
• 𝜂 = 𝜂0𝑒−𝑘𝑡, where 𝑡 is iteration number

• 𝜂0, 𝑘: hyperparameters

• 1/t decay:
• 𝜂 = 𝜂0/(1 + 𝑘𝑡)

• If you have time, keep decay small and
train longer

169Sinan Kalkan

Global Methods: warm-up

• Start with a small learning rate [1]
• Constant learning rate

• Gradually increasing

• Why? The first steps of learning appear to be very critical [2]

Sinan Kalkan 170

[1] Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., ... & He, K. (2017). Accurate, large
minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677. (this is not the first paper to do so)

[2] Achille, A., Rovere, M., & Soatto, S. (2018). Critical learning periods in deep networks. In International
Conference on Learning Representations.

Global Methods: Cyclic Learning Rates

171

Smith, L. N. (2017). Cyclical learning rates for
training neural networks. In 2017 IEEE winter
conference on applications of computer vision
(WACV) (pp. 464-472). IEEE.

Sinan Kalkan

Global Methods: Cosine Scheduling

172

https://paperswithcode.com/method/cosine-annealing
Sinan Kalkan

Global Methods: learning rate & the batch size

• Bigger batch size, bigger learning rate

• Increase batch size => increase learning rate
• If you increase batch size from N to kN, learning rate should be scaled by:

• sqrt(k) [1]
• k [2]

• Two interpretations:
• Bigger batch means more stable gradient => Safer to make large steps.
• Bigger batch means less number of update steps => increase learning rate to

compensate.

Sinan Kalkan 173

[1] Krizhevsky, A. (2014). One weird trick for parallelizing convolutional neural networks. arXiv preprint
arXiv:1404.5997.

[2] Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., ... & He, K. (2017).
Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677.

Global Methods: learning rate & the batch size

Sinan Kalkan 174
https://miguel-data-sc.github.io/2017-11-05-first/

	Slide 1: CENG 501 Deep Learning:
	Slide 2: Today
	Slide 3: Administrative Notes
	Slide 4: More on loss functions
	Slide 5: Softmax or Logistic CLASSIFIERS
	Slide 6: Information Entropy
	Slide 8: Information Entropy
	Slide 9: Information Entropy
	Slide 10: Cross-entropy, Entropy
	Slide 11: Kullback-Leibler Divergence
	Slide 12: More on xentropy, entropy and KL-divergence
	Slide 14: Softmax classifier – Cross-entropy loss
	Slide 15: Derive the gradients of NLL loss
	Slide 16: Derive the gradients of NLL loss
	Slide 17: logistic loss
	Slide 22: Softmax classifier: One interpretation
	Slide 23: Softmax classifier: Another interpretation
	Slide 24: Maximum Likelihood Estimation (MLE) vs Maximum A Posteriori Estimation (MAP)
	Slide 26: Hinge loss vs. cross-entropy loss
	Slide 27: More on softmax
	Slide 28: More on softmax
	Slide 29: More on softmax
	Slide 32: Classification Loss functions
	Slide 33: Classification Loss functions
	Slide 34: 0-1 Loss
	Slide 35: Absolute Value Loss, Squared Error Loss
	Slide 36: Structured Loss functions
	Slide 42: Visualizing Loss Functions
	Slide 44: Visualizing Loss Functions
	Slide 45: Another approach for visualizing loss functions
	Slide 46: All losses approximate 0-1 loss
	Slide 47: Loss Functions: Sum up
	Slide 60: Activation Functions
	Slide 61: Activation function: Sigmoid/logistic
	Slide 64: Activation function: tanh
	Slide 65: Activation Functions: Sigmoid vs. tanh
	Slide 66: Activation Functions: Rectified Linear Units (ReLU)
	Slide 67: Activation Functions: ReLU – biological motivation
	Slide 68: Activation Functions: ReLU – biological motivation
	Slide 69: Activation Functions: ReLU: Pros and Cons
	Slide 70: Activation Functions: Leaky ReLU
	Slide 71: Activation Functions: maxout
	Slide 72: Activation Functions: Softplus
	Slide 73: Activation Functions: Swish: A Self-Gated Activation Function
	Slide 74: Activation Functions: Exponential Linear Unit
	Slide 78: Activation Functions: To sum up
	Slide 79: DEMO 1
	Slide 80: DEMO 2
	Slide 81: Interactive introductory tutorial
	Slide 82: A General Look at Optimization
	Slide 84
	Slide 85: Mathematical Optimization
	Slide 86: Convex Optimization
	Slide 87: Interpretation
	Slide 88: Another interpretation
	Slide 89: Convex vs. Non-convex Ex.
	Slide 90: Convex vs. Non-convex Ex.
	Slide 92: Example convex functions
	Slide 93: Operations that conserve convexity
	Slide 95: Deep learning functions
	Slide 96: Why convex optimization?
	Slide 97: Non-convex Problems
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102: Why Study Convex Optimization
	Slide 115: Gradient DESCENT strategies
	Slide 116: Schemes of training
	Slide 118
	Slide 119
	Slide 120: Large vs. small batch sizes
	Slide 121: Large vs. small batch sizes
	Slide 122: Gradient descent
	Slide 124: Second order methods
	Slide 125: Intuition behind Newton’s method
	Slide 126: Compare this to Newton’s method for finding the roots
	Slide 130: Newton’s method for optimization
	Slide 131: RPROP (Resilience Propagation)
	Slide 133: Gradient Descent with Line Search
	Slide 134
	Slide 135: Gradient Descent with Line Search
	Slide 136
	Slide 137: Conjugate Gradient Descent
	Slide 138: Conjugate Gradient Descent
	Slide 139: Conjugate Gradient Descent
	Slide 140: Conjugate Gradient Descent
	Slide 144: Steepest and Conjugate Gradient Descent: Cons and Pros
	Slide 145: Online Interactive Tutorial
	Slide 146
	Slide 148
	Slide 149: Challenges of the Loss surface
	Slide 150: Challenges
	Slide 151: Local minima
	Slide 152
	Slide 154
	Slide 155
	Slide 156: Valleys, Cliffs and Exploding Gradients
	Slide 157: Valleys, Cliffs and Exploding Gradients
	Slide 158: Valleys, Cliffs and Exploding Gradients
	Slide 159: Using momentum to improve steps
	Slide 160: Momentum
	Slide 161: Momentum
	Slide 162: Nesterov Momentum
	Slide 163: Nesterov Momentum (alternative formulation)
	Slide 164: Momentum vs. Nesterov Momentum
	Slide 165: Demo (and further reading)
	Slide 166: Setting the learning rate
	Slide 167
	Slide 168: Alternatives
	Slide 169: Global Methods: Scheduling the learning rate
	Slide 170: Global Methods: warm-up
	Slide 171: Global Methods: Cyclic Learning Rates
	Slide 172: Global Methods: Cosine Scheduling
	Slide 173: Global Methods: learning rate & the batch size
	Slide 174: Global Methods: learning rate & the batch size

