
CENG501 – Deep Learning
Week 3
Fall 2024

Sinan Kalkan
Dept. of Computer Engineering, METU

Topics covered

• Loss Functions
• Activation Functions
• Optimization Perspective
• Challenges of the Loss Surface
• Setting the Learning Rate

CENG501

Previously
 on CENG501

Setting the learning rate

CENG501

Previously
 on CENG501

CENG501

Previously
 on CENG501

Alternatives

• Single global learning rate
• Constant Learning Rate
• Scheduling Learning Rate

• Per-parameter learning rate
• AdaGrad
• RMSprop
• Adam
• AdaDelta

CENG501

Previously
 on CENG501

Global Methods: Scheduling the learning rate

• Step decay
• 𝜂! ← 𝜂×𝑐, where 𝑐 could be 0.5, 0.4, 0.3,

0.2, 0.1 etc.

• Exponential decay:
• 𝜂 = 𝜂"𝑒#$%, where 𝑡 is iteration number
• 𝜂", 𝑘: hyperparameters

• 1/t decay:
• 𝜂 = 𝜂"/(1 + 𝑘𝑡)

• If you have time, keep decay small and
train longer

CENG501

Previously
 on CENG501

Global Methods: warm-up

• Start with a small learning rate [1]
• Constant learning rate
• Gradually increasing

• Why? The first steps of learning appear to be very critical [2]

CENG501

[1] Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., ... & He, K. (2017). Accurate, large
minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677. (this is not the first paper to do so)

[2] Achille, A., Rovere, M., & Soatto, S. (2018). Critical learning periods in deep networks. In International
Conference on Learning Representations.

Previously
 on CENG501

Global Methods: Cyclic Learning Rates

Smith, L. N. (2017). Cyclical learning rates for
training neural networks. In 2017 IEEE winter
conference on applications of computer vision
(WACV) (pp. 464-472). IEEE.

CENG501

Previously
 on CENG501

Global Methods: Cosine Scheduling

https://paperswithcode.com/method/cosine-annealing
CENG501

Previously
 on CENG501

Global Methods: learning rate & the batch size
• Bigger batch size, bigger learning rate
• Increase batch size => increase learning rate

• If you increase batch size from N to kN, learning rate should be scaled by:
• sqrt(k) [1]
• k [2]

• Two interpretations:
• Bigger batch means more stable gradient => Safer to make large steps.
• Bigger batch means less number of update steps => increase learning rate to

compensate.

CENG501

[1] Krizhevsky, A. (2014). One weird trick for parallelizing convolutional neural networks. arXiv preprint
arXiv:1404.5997.

[2] Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., ... & He, K. (2017).
Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677.

Previously
 on CENG501

Global Methods: learning rate & the batch size

CENG501
https://miguel-data-sc.github.io/2017-11-05-first/

Previously
 on CENG501

Today

• Setting the Learning Rate
• Representational Capacity
• Overfitting, Convergence, When to Stop Training
• Data Preprocessing
• Weight Initialization
• Concluding Remarks
• CNNs

CENG501

Administrative Notes

• Reading assignment
• CH1-7 of the Hundred-Page Machine Learning Book by Andriy Burkov.

https://themlbook.com/

• Quiz #1
• Upload the PDF on ODTUclass.

• Paper Selection
• https://forms.gle/2wB7ELE1BFVU4jJv7
• Deadline tonight

CENG501

https://themlbook.com/
https://forms.gle/2wB7ELE1BFVU4jJv7

Per-parameter Methods: Adagrad

• Higher the gradient, lower the
learning rate

• Accumulate square of gradients
elementwise (initially 𝑟 = 0):

𝑟! ← 𝑟!"# +)
$%#:'

∇(!ℒ 𝐱$; 𝜃!

)

• Update each parameter/weight
based on the gradient on that:
Δ𝜃%/0 ← −

𝜂
𝑟%

!
!"#:%

∇&!ℒ 𝐱!; 𝜃'

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for
online learning and stochastic optimization. Journal of machine learning
research, 12(7).

Algorithm taken from: Goodfellow et al., Deep Learning, 2016.
CENG501

Per-parameter Methods:
Root-Mean-Squared Propagation (RMSprop)

• Similar to Adagrad. Adagrad uses the whole history
of gradients, which can be a limitation when
training converges to a nice “basin”.

• RMSprop handles this by weighted/moving
averaging (again, elementwise):

𝑟" ← 𝜌𝑟"#$ + (1 − 𝜌))
%&$:(

∇(!ℒ 𝐱$; 𝜃!
)

• 𝜌 is typically one of: 0.9, 0.99, 0.999.

• Update each parameter/weight based on the
gradient on that:

Δ𝜃'(# ← −
𝜂
𝑟'

)
$%#:'

∇(!ℒ 𝐱$; 𝜃!
Currently, unpublished. Proposed by Hinton in one of his lectures.

Algorithm taken from: Goodfellow et al., Deep Learning, 2016.

CENG501

Per-parameter Methods:
RMSprop with Nesterov Momentum

Algorithm taken from: Goodfellow et al., Deep Learning, 2016.
CENG501

Per-parameter Methods:
Adaptive Moments (Adam)

• A variation of RMSprop +
momentum

• Incorporates first & second order
moments

• Bias correction needed to get rid of
bias towards zero at initialization

Algorithm taken from:
Goodfellow et al., Deep Learning, 2016.

CENG501

Comparison

https://twitter.com/alecrad

NAG: Nesterov’s Accelerated Gradient

CENG501

Comparison

CENG501

• When SGD+momentum is tuned for hyperparameters, it can
outperform Adam etc.
• There are methods that try to finetune the hyper-parameters:

YellowFin and the Art of Momentum Tuning
https://arxiv.org/abs/1706.03471

CENG501

To sum up

• Different problems seem to favor different per-parameter
methods
• Adam seems to perform better among per-parameter adaptive

learning rate algorithms
• SGD+Nesterov momentum seems to be a fair alternative

CENG501

Representational capacity

CENG501

Representational capacity
• Boolean functions:

• Every Boolean function can be represented exactly by a neural network
• The number of hidden layers might need to grow with the number of inputs

• Continuous functions:
• Every bounded continuous function can be approximated with small error with

two layers
• Arbitrary functions:

• Three layers can approximate any arbitrary function

Cybenko, G. (1989) "Approximations by superpositions of sigmoidal functions", Mathematics of Control, Signals, and
Systems, 2 (4), 303-314

Kurt Hornik (1991) "Approximation Capabilities of Multilayer Feedforward Networks", Neural Networks, 4(2), 251257.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. "Multilayer feedforward networks are universal approximators."
Neural networks 2.5 (1989): 359-366.

CENG501

Representational Capacity:
Why go deeper if 3 layers is sufficient?

• Going deeper helps convergence in “big” problems.
• Going deeper in “old-fashion trained” ANNs does not help much in accuracy

• However, with different training strategies or with Convolutional Networks, going deeper
matters

Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., & LeCun, Y. (2015). The loss surfaces of multilayer networks. In Artificial
Intelligence and Statistics (pp. 192-204).

CENG501

Representational Capacity
• More hidden neurons è capacity to represent more complex functions

• Problem: overfitting vs. generalization
• We will discuss the different strategies to help here (L2 regularization, dropout, input noise, using a

validation set etc.)

Figure: https://cs231n.github.io/

CENG501

Number of hidden neurons

Several rule of thumbs (Jeff Heaton)

• The number of hidden neurons should be between the size of the input
layer and the size of the output layer.

• The number of hidden neurons should be:
• 2/3 x (the size of the input layer + the size of the output layer)

• The number of hidden neurons should be less than twice the size of the
input layer.

CENG501

Number of hidden layers

• Depends on the nature of the problem
• Linear classification? è No hidden layers needed
• Non-linear classification?

CENG501

Model Complexity
• Models range in their flexibility to fit arbitrary data

complex model

unconstrained

large capacity may
allow it to memorize
data and fail to
capture regularities

simple model

constrained

small capacity may
prevent it from
representing all
structure in data

low bias

high variance

high bias

low variance

Slide Credit: Michael Mozer

https://cs231n.github.io/ https://cs231n.github.io/

CENG501

Training Vs. Test/Val Set Error

CENG501

Model Complexity

Er
ro

r
Validation

Error

Training
Error

High Bias
Low Variance

Low Bias
High Variance

Optimum
Model Complexity

Bias-Variance Trade Off

image credit: scott.fortmann-roe.com

underfit overfit

Er
ro

r o
n

Te
st

 S
et

Slide Credit: Michael Mozer
CENG501

Memorization vs. Generalization

CENG501

https://arxiv.org/pdf/1906.05271.pdf

Double Descent

CENG501

Nakkiran et al., “Deep Double Descent: Where Bigger Models and More Data Hurt”, 2019.

Double Descent

CENG501

Nakkiran et al., “Optimal Regularization Can Mitigate Double Descent”, 2020.

Grokking

CENG501

What do the layers represent?

T. Mitchell, “Machine Learning”, 1997.
CENG501

What do the layers represent?

CENG501

Trainable
Classifier

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

“car”

Similarities to the Hierarchies in Visual Cortex

Krueger, Jannsen, Kalkan, Lappe, .., “Deep Hierarchies in the Primate Visual
Cortex: What Can We Learn For Computer Vision”, IEEE PAMI, 2013.

Overfitting, Convergence, and
when to stop

CENG501

Overfitting
• Occurs when training procedure fits to not only regularities in

training data but also noise.
• Like memorizing the training examples instead of learning the statistical

regularities
• Leads to poor performance on test set
• Most of the practical issues with neural nets involve avoiding

overfitting

Adapted from Michael Mozer

Figure: https://cs231n.github.io/

CENG501

How do you spot overfitting?

CENG501

Avoiding Overfitting
• Increase training set size
• Make sure effective size is growing; redundancy doesn’t help

• Incorporate domain-appropriate bias into model
• Customize model to your problem

• Tune hyperparameters of model
• number of layers, number of hidden units per layer, connectivity, etc.

• Regularization techniques

Slide Credit: Michael Mozer
CENG501

Incorporating Domain-Appropriate
Bias Into Model

• Input representation
• Output representation
• Architecture
• # layers, connectivity
• e.g., convolutional nets, residual connections etc.

• Activation function
• Loss function

Slide Credit: Michael Mozer
CENG501

Customizing Networks

• Neural nets can be customized based on the problem domain
• choice of loss function
• choice of activation function

• Domain knowledge can be used to impose domain-appropriate bias
on model
• bias is good if it reflects properties of the data set
• bias is harmful if it conflicts with properties of data

Slide Credit: Michael Mozer
CENG501

Adding bias into a model

• Adding hidden layers or direct connections based on the problem

Slide Credit: Michael Mozer
CENG501

Adding bias into a model
• Modular architectures
• Specialized hidden units for

special problems

Slide Credit: Michael Mozer
CENG501

Adding bias into a model

• Local or specialized receptive
fields
• E.g., in CNNs

• Constraints on activities
• Constraints on weights

Slide Credit: Michael Mozer
CENG501

Adding bias into a
model

• Use different loss functions (e.g.,
cross-entropy)
• Use specialized activation

functions

Slide Credit: Michael Mozer
CENG501

Adding bias into a
model

• Introduce other parameters
• Temperature
• Saliency of input

Slide Credit: Michael Mozer
CENG501

Regularization
• Regularization strength can effect overfitting

1
2
𝜆𝑤,

Figure: https://cs231n.github.io/
CENG501

Regularization
• L2 regularization: 02𝜆𝑤

2

• Very common
• Penalizes peaky weight vector, prefers diffuse weight vectors

• L1 regularization: 𝜆|𝑤|
• Enforces sparsity (some weights become zero)
• Why? Weight decay is by a constant value if |w| is non-zero.
• Leads to input selection (makes it noise robust)
• Use it if you require sparsity / feature selection

• Can be combined: 𝜆0 𝑤 + 𝜆2𝑤2

• Regularization is not performed on the bias; it seems to make no significant
difference

CENG501

L2 regularization and weight decay

• L2 regularization

𝑤3 ← 𝑤3 − 𝜂
𝜕𝐿45%5
𝜕𝑤3

+ 𝜆𝑤3

• Weight decay

𝑤3 ← 𝑤3 − 𝜂
𝜕𝐿45%5
𝜕𝑤3

− 𝜂𝜆𝑤3

CENG501

When you add moving
avg (as in e.g. Adam),
they become different

Δ𝑤3 ← 𝜇 Δ𝑤3 + 1 − 𝜇
𝜕𝐿45%5
𝜕𝑤3

+ 𝜆𝑤3
𝑤3 ← 𝑤3 − 𝜂 Δ𝑤3

Δ𝑤3 ← 𝜇 Δ𝑤3 + (1 − 𝜇)
𝜕𝐿45%5
𝜕𝑤3

𝑤3 ← 𝑤3 − 𝜂Δ𝑤3 − 𝜂𝜆𝑤3

𝐿 = 𝐿-./. +
1
2
𝜆𝑤,

Vs.

Weight Decay

• Adam & weight decay issue:

https://www.fast.ai/2018/07/02/adam-weight-decay/

CENG501

L0 regularization
• 𝐿" = ∑3 𝑥3"

0/"

• How to compute the zeroth power and
zeroth-root?
• Mathematicians approximate this as:
• 𝐿" = # 𝑖 𝑥3 ≠ 0}
• The cardinality of non-zero elements

• This is a strong enforcement of sparsity.
• However, this is non-convex
• L1 norm is the closest convex form

CENG501

Probabilistic interpretation of regularization

• http://bjlkeng.github.io/posts/probabilistic-interpretation-of-
regularization/

• https://towardsdatascience.com/understanding-the-scaling-of-l%C2%B2-
regularization-in-the-context-of-neural-networks-e3d25f8b50db

• Adverse effects of regularization and normalization:
https://ojs.aaai.org/index.php/AAAI/article/view/6046

https://arxiv.org/abs/1911.05920

CENG501

http://bjlkeng.github.io/posts/probabilistic-interpretation-of-regularization/
https://towardsdatascience.com/understanding-the-scaling-of-l%C2%B2-regularization-in-the-context-of-neural-networks-e3d25f8b50db
https://ojs.aaai.org/index.php/AAAI/article/view/6046
https://arxiv.org/abs/1911.05920

Large-norm L2 regularization

• https://arxiv.org/pdf/1910.00359.pdf
• (section 3)

CENG501

https://arxiv.org/pdf/1910.00359.pdf

Regularization

• Enforce an upper bound on weights:
• Max norm:

• 𝑤) < 𝑐
• Helps the gradient explosion problem
• Improvements reported

• Dropout:
• At each iteration, drop a number of

neurons in the network
• Use a neuron’s activation with

probability 𝑝 (a hyperparameter)
• Adds stochasticity!

http://cs231n.github.io/neural-networks-2/

Fig: Srivastava et al., 2014

CENG501

Regularization: Dropout

• Feed-forward only on active units
• Can be trained using SGD with mini-batch
• Back propagate only “active” units.

• One issue:
• Expected output 𝑥 with dropout:
• 𝐸 𝑥′ = 0

7
∑3 𝑝𝑥3 + 1 − 𝑝 0 = 𝑝 0

7
∑3 𝑥3 = 𝑝𝐸[𝑥]

• To have the same scale at testing time (no dropout), multiply test-
time activations with 𝑝.

Fig: Srivastava et al., 2014

Fig: Srivastava et al., 2014

CENG501

Regularization: Dropout

Test-time: All neurons receive their normal input (𝑥) so we should scale by 𝑝 to have 𝐸 𝑥 = 𝑝𝑥.

Training-time:

http://cs231n.github.io/neural-networks-2/
CENG501

Regularization: Inverted Dropout

Test-time:

Training-time: Correct the expected expected output from 𝑝𝑥 to 𝑥.

http://cs231n.github.io/neural-networks-2/

Perform scaling while dropping at training time!

CENG501

CENG501

Garipov et al., “Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs”, 2018.

See also: Kuditipudi et al., “Explaining Landscape Connectivity of Low-cost Solutions for Multilayer Nets”, 2020.
- Explains this with noise stability, dropout stability.

CENG501

https://openreview.net/pdf?id=9ZpciCOunFb

14 November 2018

CENG501

Dropout as Ensemble Training Method

“Dropout performs gradient
descent on-line with respect to
both the training examples and
the ensemble of all possible
subnetworks.”

CENG501

Pierre Baldi and Peter J Sadowski. Understanding dropout. In Advances in neural information
processing systems, pp. 2814–2822, 2013.

Fig: Srivastava et al., 2014

CENG501

Lottery Ticket Hypothesis

CENG501

Frankle & Carbin, “The Lottery Ticket Hypothesis: Finding Sparse, Trainable
Neural networks”, 2019. Figure: https://herbiebradley.com/The-Lottery-Ticket-Hypothesis

Data Augmentation

http://blcv.pl/static//2018/02/27/demystifying-face-recognition-v-
data-augmentation/ CENG501

Regularization Summary

• L2 regularization
• Inverted dropout with 𝑝 = 0.5 (tunable)
• Data augmentation

CENG501

When To Stop Training

• 1. Train n epochs; lower learning rate; train m epochs
• bad idea: can’t assume one-size-fits-all approach

• 2. Loss-change criterion
• stop when loss isn’t dropping
• recommendation: criterion based on % drop over a window of, say, 10

epochs
• 1 epoch is too noisy
• absolute error criterion is too problem dependent

• Another idea: train for a fixed number of epochs after criterion is reached
(possibly with lower learning rate)

Slide Credit: Michael Mozer
CENG501

When To Stop Training
• 3. Weight-change criterion
• Compare weights at epochs (𝑡 − 10) and 𝑡 and test:

• Don’t base on length of overall weight change vector
• Possibly express as a percentage of the weight
• Be cautious: small weight changes at critical points can result in

rapid drop in error

maxi wi
t −wi

t−10 <θ

Slide Credit: Michael Mozer
CENG501

Training Vs. Val Set Error

Slide Credit: Michael Mozer

Val Set

Training Set

CENG501

Data Preprocessing and weight
initialization

CENG501

Data Preprocessing

• Mean subtraction
• Normalization
• PCA and whitening

CENG501

Data Preprocessing: Mean subtraction
• Compute the mean of each dimension, 𝜇!, over the training set:

𝜇! =
1
𝑁
!
)

𝑥)!

• Subtract the mean for each dimension:
𝑥′)! ← 𝑥)! − 𝜇!

• Effect: Move the data center (mean) to coordinate center

http://cs231n.github.io/neural-networks-2/

Mean image of CIFAR10
(from PA1)

CENG501

Data Preprocessing:
Normalization (or conditioning)
• Necessary if you believe that your dimensions have different scales

• Might need to reduce this to give equal importance to each dimension

• Normalize each dimension by its std. dev. after mean subtraction:
𝑥)!* = 𝑥)! − 𝜇!
𝑥)!** = 𝑥)!* /𝜎!

• Effect: Make the dimensions have the same scale

http://cs231n.github.io/neural-networks-2/
CENG501

Data Preprocessing:
Principle Component Analysis
• First center the data
• Find the eigenvectors 𝑒-, … , 𝑒.
• Project the data onto the eigenvectors:

• 𝑥!" = 𝑥! ⋅ [𝑒#, … , 𝑒$]
• This corresponds to rotating the data to have the eigenvectors as the axes
• If you take the first 𝑀 eigenvectors, it corresponds to dimensionality reduction

http://cs231n.github.io/neural-networks-2/
CENG501

Data Preprocessing: Whitening
• Normalize the scale with the norm of the eigenvalue:

𝑥3< = 𝑥3=/(𝜆3 + 𝜖)
• 𝜖: a very small number to avoid division by zero
• This stretches each dimension to have the same scale.
• Side effect: this may exaggerate noise.

http://cs231n.github.io/neural-networks-2/
CENG501

Data Preprocessing: Example

http://cs231n.github.io/neural-networks-2/
CENG501

Data Preprocessing: Summary

• We mostly don’t use PCA or whitening
• They are computationally very expensive
• Whitening has side effects

• It is quite crucial and common to zero-center the data
• Most of the time, we see normalization with the std. deviation

CENG501

Weight Initialization
• Zero weights
• Wrong!
• Leads to updating weights by the same amounts for every input
• Symmetry!

• Initialize the weights randomly to small values:
• Sample from a small range, e.g., Normal(0,0.01)
• Don’t initialize too small

• The bias may be initialized to zero
• For ReLU units, this may be a small number like 0.01.

Note: None of these provide guarantees. Moreover, there is no guarantee that one of these
will always be better. CENG501

Initial Weight Normalization

• Problem: Variance of the output changes with the number of inputs
• If 𝑠 = ∑9𝑤9𝑥9 (note that 𝑉𝑎𝑟(𝑋) = 𝐸 𝑋 − 𝜇 ,):

Eqn: https://cs231n.github.io/neural-networks-2/#init
CENG501

Initial Weight
Normalization

• Solution:
• Get	rid	of	𝑛 in	𝑉𝑎𝑟 𝑠 = (𝑛
Var(w))Var(x)

• How?	
• Scale the initial weights by 𝑛
• Why? Because: 𝑉𝑎𝑟 𝑎𝑋 = 𝑎)𝑉𝑎𝑟 𝑋

• Standard Initialization (top plots in Figure
6 & 7):

𝑤$ ∼ 𝑈 −
1
𝑛
,
1
𝑛

which yields 𝑛 𝑉𝑎𝑟 𝑤 = #
*

because variance of 𝑈[−𝑟, 𝑟] is +
"

*
[1].

Figures: Glorot & Bengio, “Understanding the difficulty of training deep feedforward neural networks”, 2010.

Xavier initialization for symmetric activation functions (Glorot & Bengio):

𝑤$ ∼ 𝑁 0,
2

𝑛$, + 𝑛-.!

With Uniform distribution:

𝑤$ ∼ 𝑈 −
6

𝑛$, + 𝑛-.!
,

6
𝑛$, + 𝑛-.![1] https://proofwiki.org/wiki/Variance_of_Continuous_Uniform_Distribution CENG501

Initial Weight
Normalization
• He et al. shows that Xavier initialization

does not work well for ReLUs.

He et al., “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet
Classification”, 2015.

CENG501

More on Weight Initialization

Tutorial and Demo:
https://www.deeplearning.ai/ai-notes/initialization/index.html

Tutorial:
https://mmuratarat.github.io/2019-02-25/xavier-glorot-he-weight-init

CENG501

https://www.deeplearning.ai/ai-notes/initialization/index.html
https://mmuratarat.github.io/2019-02-25/xavier-glorot-he-weight-init

Alternative: Batch Normalization
• Normalization is differentiable

• So, make it part of the model (not only at the
beginning)

• I.e., perform normalization during every step
of processing

• More robust to initialization
• Shown to also regularize the network in some

cases (dropping the need for dropout)
• Issue: How to normalize at test time?

1. Store means and variances during training,
or

2. Calculate mean & variance over your test
data

• PyTorch: use model.eval() in test time.
Ioffe & Szegedy, “Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift”, 2015.

CENG501

Alternative: Batch Normalization

• Before or after non-linearity?
• Proposers

• “If, however, we could ensure that the distribution of nonlinearity inputs remains more stable as
the network trains, then the optimizer would be less likely to get stuck in the saturated regime,
and the training would accelerate.”

• “As each layer observes the inputs produced by the layers below, it would be advantageous to
achieve the same whitening of the inputs of each layer. By whitening the inputs to each layer, we
would take a step towards achieving the fixed distributions of inputs that would remove the ill
effects of the internal covariate shift.”

• “We add the BN transform immediately before the nonlinearity, by normalizing x = Wu+b. We
could have also normalized the layer inputs u, but since u is likely the output of another
nonlinearity, the shape of its distribution is likely to change during training, and constraining its
first and second moments would not eliminate the covariate shift. In contrast, Wu + b is more likely
to have a symmetric, non-sparse distribution, that is “more Gaussian” (Hyv¨arinen & Oja, 2000);
normalizing it is likely to produce activations with a stable distribution.”

CENG501

BatchNorm introduces scale invariance

• https://www.inference.vc/exponentially-growing-learning-rate-
implications-of-scale-invariance-induced-by-batchnorm/

CENG501

Alternative Normalizations

https://medium.com/syncedreview/facebook-ai-proposes-group-normalization-alternative-to-
batch-normalization-fb0699bffae7

CENG501

2018

CENG501

How critical are BatchNorm parameters?

CENG501

Frankle et al., “Training BatchNorm and Only BatchNorm: On the Expressive Power of Random Features in CNNs”, 2020.

To sum up

• Initialization and normalization are crucial
• Different initialization & normalization strategies may be

needed for different deep learning methods
• E.g., in CNNs, normalization might be performed only on convolution

etc.

CENG501

Issues & Practical advices

CENG501

Issues & tricks
• Vanishing gradient
• Saturated units block gradient propagation (why?)
• A problem especially present in recurrent networks or networks with

a lot of layers
• Overfitting
• Drop-out, regularization and other tricks.

• Tricks:
• Unsupervised pretraining

• Batch normalization (each unit’s preactivation is normalized)
• Helps keeping the preactivation non-saturated
• Do this for mini-batches (adds stochasticity)
• Backprop needs to be updated

CENG501

Unsupervised pretraining

CENG501

Unsupervised pretraining

CENG501

What if things are not working?
• Check your gradients by comparing them against numerical

gradients
• More on this at: http://cs231n.github.io/neural-networks-3/
• Check whether you are using an appropriate floating point representation

• Be aware of floating point precision/loss problems
• Turn off drop-out and other “extra” mechanisms during gradient check
• This can be performed only on a few dimensions

• Regularization loss may dominate the data loss
• First disable regularization loss & make sure data loss works
• Then add regularization loss with a big factor
• And check the gradient in each case

CENG501

What if things are not working?

• Have a feeling of the initial loss value
• For CIFAR-10 with 10 classes: because each class has probability of 0.1,

initial loss is –ln(0.1)=2.302
• For hinge loss: since all margins are violated (since all scores are

approximately zero), loss should be around 9 (+1 for each margin).

• Try to overfit on a tiny subset of the dataset
• The cost should reach to zero if things are working properly

CENG501

What if things are not working?

Learning rate might be too low;
Batch size might be too small

CENG501

What if things are not working?

CENG501

What if things are not working?

• Plot the histogram of activations per layer
• E.g., for tanh functions, we expect to see a diverse distribution of values

between [-1,1]

CENG501

What if things are not working?

• Visualize your layers (the weights)

CENG501

Andrew Ng’s suggestions

• “In DL, the coupling between bias &
variance is weaker compared to other
ML methods:
• We can train a network to have high

bias and variance.”

• “Dev (validation) and test sets should
come from the same distribution.
Dev&test sets are like problem
specifications.
• This requires especially attention if you

have a lot of data from simulated
environments etc. but little data from
the real test environment.”

https://www.youtube.com/watch?v=F1ka6a13S9I

CENG501

• “Knowing the human performance level gives
information about the problem of your
network:
• If training error is far from human performance, then

there is a bias error.
• If they are close but validation has more error

(compared to the diff between human and training
error), then there is variance problem.”

• “After surpassing human level, performance
increases only very slowly/difficult.
• One reason: There is not much space for improvement

(only tiny little details). Problem gets much harder.
• Another reason: We get labels from humans.”

Andrew Ng’s suggestions
https://www.youtube.com/watch?v=F1ka6a13S9I

CENG501

Also read the following

• 37 reasons why your neural network is not working:
• https://medium.com/@slavivanov/4020854bd607

• “A Recipe for Training Neural Networks” by Karpathy:
• http://karpathy.github.io/2019/04/25/recipe/

• Deep Learning Tuning Playbook:
• https://github.com/google-research/tuning_playbook

• Calibrated Chaos: Variance Between Runs of Neural Network
Training is Harmless and Inevitable:
• https://arxiv.org/pdf/2304.01910.pdf

CENG501

https://medium.com/@slavivanov/4020854bd607
http://karpathy.github.io/2019/04/25/recipe/
https://github.com/google-research/tuning_playbook
https://arxiv.org/pdf/2304.01910.pdf

What is best then?

• Which algorithm to choose?
• No answer yet
• See Tom Schaul (2014)
• Adam, RMSprop seem to be slightly favorable; however, no best algorithm

• SGD, SGD+momentum, RMSprop, RMSprop+momentum, Adam are
the most widely used ones

CENG501

Luckily, deep networks are very powerful

Regularization is turned off in the experiments.
When you turn on regularization, the networks
perform worse.

CENG501

Concluding remarks for this part

• Loss functions
• Gradients of loss functions for minimizing them
• All operations in the network should be differentiable

• Gradient descent and its variants
• Initialization, normalization, adaptive learning rate, …
• Overall, you have learned most of the tools you will use in the rest of

the course.

CENG501

