CENG501 — Deep Learning

Week 3
Fall 2024

Sinan Kalkan

Dept. of Computer Engineering, METU

&
. .
0‘}I®pICS covere

O
4\
‘0

"« Loss Functions
* Activation Functions
* Optimization Perspective
* Challenges of the Loss Surface
 Setting the Learning Rate

CENG501

CCCCCCC

Error contours

W,
Error contours

© John A Bullinaria, 2015

s>
S
Altérnatives
S

S0 .
Q¢ ¢ Single global learning rate
* Constant Learning Rate
* Scheduling Learning Rate

* Per-parameter learning rate
e AdaGrad
* RMSprop
 Adam
e AdaDelta

CENG501

¢

O
GLanI Methods: Scheduling the learning rate

N
04\00
e Step decay

* 1" < nXc, where c could be 0.5, 0.4, 0.3,

0.2, 0.1 etc.
Graph for 1/(1+x), e”-x
* Exponential decay: a J cossasz yoometonn 8
« 1 =1noe ¥, where t is iteration number - x
* Mo, k: hyperparameters

N

°1/tdecay: -”-’3_’2-'1_%5:;45&,;;@‘

* If you have time, keep decay small and
train longer

CENG501

o"QS

Gi@“%al Methods: warm-up
N

O
Q\ L] L]
Q¢ ¢ Start with a small learning rate [1]
e Constant learning rate

* Gradually increasing
 Why? The first steps of learning appear to be very critical [2]

[1] Goyal, P, Dollar, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., ... & He, K. (2017). Accurate, large
minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677. (this is not the first paper to do so)

[2] Achille, A., Rovere, M., & Soatto, S. (2018). Critical learning periods in deep networks. In International
Conference on Learning Representations.

CENG501

o"&

Gi@“%al Methods: Cyclic Learning Rates
N

O
O
«‘?9\
R Maximum bound
(max_Ir)
Minimum bound
. (base_Ir)
stepsize

Figure 2. Triangular learning rate policy. The blue lines represent fm,lth’ LN (2?171' Cyckllca;l Iggr‘lr;rl\gErs te_s ior
learning rate values changing between bounds. The input parame- raining neuralne Yvor .S' : Wm_ ?r
ter stepsize is the number of iterations in half a cycle. conference on applications of computer vision

(WACV) (pp. 464-472). IEEE.

CENG501

o"’&

Gi@“%al Methods: Cosine Scheduling
N

3°
"N
Cosine Annealing is a type of learning rate schedule that has the effect of starting with a large learning
rate that is relatively rapidly decreased to a minimum value before being increased rapidly again. The
resetting of the learning rate acts like a simulated restart of the learning process and the re-use of good
weights as the starting point of the restart is referred to as a "warm restart" in contrast to a "cold restart"

where a new set of small random numbers may be used as a starting point.

. 1, . . T,
Nt = nzmn + 5 (ninam - nimn) (1 + COS(;—11” W))

i

Where where nfm.n and nﬁnam are ranges for the learning rate, and 7, account for how many epochs have

been performed since the last restart.

Text Source: Jason Brownlee

https://paperswithcode.com/method/cosine-annealing

CENG501

Training loss

10!

10°

—
o
-

—
o
N

103

10

Cifar10 (L=100,k=24, B=300 epochs)

= Standard Ir scheduling
- (Cosine annealing with restart Ir 0.1

|
| |
Model | Model | Model | Model | Model | Model

1 2 3 4 5 6
| l | | |

50 100 150 200 250 300

Epochs

o"QS
Gj)gsgal Methods: learning rate & the batch size

N

eg@oBigger batch size, bigger learning rate

< . , .
R« Increase batch size => increase learning rate

* If you increase batch size from N to kN, learning rate should be scaled by:
* sqrt(k) [1]
* k(2]

* Two interpretations:

e Bigger batch means more stable gradient => Safer to make large steps.

* Bigger batch means less number of update steps => increase learning rate to
compensate.

[1] Krizhevsky, A. (2014). One weird trick for parallelizing convolutional neural networks. arXiv preprint
arXiv:1404.5997.

[2] Goyal, P, Dollar, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., ... & He, K. (2017).
Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677.

CENG501

Y
Glocg@ol\/lethods: learning rate & the batch size
O

o

N BATCH SIZE: [es=2| [Wes-1 Bs -8 Bs=4

10 1

08 1

leaming rate (log scale)
https://miguel-data-sc.github.io/2017-11-05-first/
CENG501

Today

 Setting the Learning Rate

* Representational Capacity

* Overfitting, Convergence, When to Stop Training
* Data Preprocessing

* Weight Initialization

* Concluding Remarks

* CNNs

Administrative Notes

* Quiz #1
* Upload the PDF on ODTUclass.

* Paper Selection
* https://forms.gle/2wB7ELE1BFVU4jlv7
* Deadline tonight

CENG501

https://themlbook.com/
https://forms.gle/2wB7ELE1BFVU4jJv7

Per-parameter Methods: Adagrad

* Higher the gradient, lower the
learning rate

* Accumulate square of gradients
elementwise (initially r = 0):)

e € Te—q t+ (z Vo, L(X;; 9t)>

i=1:M

* Update each parameter/weight
based on the gradient on that:

7
NG, « _\/_’"_ti;M Vo L(x;;60,)

Algorithm 8.4 The AdaGrad algorithm

Require: Global learning rate €
Require: Initial parameter 6
Require: Small constant §, perhaps 107, for numerical stability
Initialize gradient accumulation variable » = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {z(1), ..., (™)} with
corresponding targets y (¥).
Compute gradient: g < Vg >, L(f(x®;8),y®).
Accumulate squared gradient: r < r+g ©® g.
Compute update: A@ + — = +‘5 7 ® g. (Division and square root applied

element-wise)
Apply update: 0 <+ 0 + A#6.
end while

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for
online learning and stochastic optimization. Journal of machine learning
research, 12(7).

Algorithm taken from: Goodfellow et al., Deep Learning, 2016.
CENG501

Per-parameter Methods:
Root-Mean-Squared Propagation (RMSprop)

Similar to Adagrad. Adagrad uses the whole history Algorithm 8.5 The RMSProp algorithm
of gradients, which can be a limitation when
training converges to a nice “basin”.

Require: Global learning rate €, decay rate p
Require: Initial parameter 0
Require: Small constant §, usually 1079, used to stabilize division by small

. . . bers
RMSprop handles this by weighted/moving Sumbe . .
: : . Initialize accumulation variables » = 0
averaging (again, elementwise):
ging (gain,) 2 while stopping criterion not met do
E : . Sample a minibatch of m examples from the training set {1, ... (™)} with
Tt < Pre—1t (1 N p) < VetL(Xl’ 0t)) corresponding targets y(i).
i=1:M

Compute gradient: g < Elvb‘ ZiL(f(m(i); 9), y(i))_

Accumulate squared gradient: r < pr + (1 — p)g ® g.
P is typically one of: 0.9 0.99 0.999 Compute parameter update: AQ = —\/3—6_‘__1, ©g. (\/8—1_‘__10 applied element-wise)

Apply update: 0 < 6 + A6.
end while

Update each parameter/weight based on the
gradient on that:

MOy, q — — n Z Vo L(x;;6,) Currently, unpublished. Proposed by Hinton in one of his lectures.
Tt t

\/—i=1:M

Algorithm taken from: Goodfellow et al., Deep Learning, 2016.

CENG501

Per-parameter Methods:
RMSprop with Nesterov Momentum

Algorithm 8.6 RMSProp algorithm with Nesterov momentum

Require: Global learning rate €, decay rate p, momentum coefficient o
Require: Initial parameter 0, initial velocity v
Initialize accumulation variable » = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {1, ...,z (™)} with
corresponding targets y(i) :
Compute interim update: 6 < 6 + awv.
Compute gradient: g < %Vé S L(f(2;0),y®).
Accumulate gradient: r <~ pr + (1 —p)g © g.
Compute velocity update: v < av — ﬁ ©g.| (
Apply update: 0 < 0 + v.
end while

1
\/;

applied element-wise)

Algorithm taken from: Goodfellow et al., Deep Learning, 2016.

CENG501

Per-parameter Methods:
Adaptive Moments (Adam)

e Avariation of RMSprop +
momentum

* Incorporates first & second order
moments

* Bias correction needed to get rid of
bias towards zero at initialization

Algorithm taken from:
Goodfellow et al., Deep Learning, 2016.

Algorithm 8.7 The Adam algorithm

Require: Step size € (Suggested default: 0.001)
Require: Exponential decay rates for moment estimates, py and py in [0, 1).
(Suggested defaults: 0.9 and 0.999 respectively)
Require: Small constant § used for numerical stabilization (Suggested default:
1078)
Require: Initial parameters 6
Initialize 1st and 2nd moment variables s =0, r =0
Initialize time step t = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {1, ... (™)} with
corresponding targets y(i) .
Compute gradient: g < Vg 3. L(f(z®;0),y®)
t<—t+1
Update biased first moment estimate: s <— p1s+ (1 — p1)g
Update biased second moment estimate: 7 < por+ (1 — p2)g © g
Correct bias in first moment: § < Tsp{

Correct bias in second moment: 7 « 1—7'pf
P2

Compute update: A = —evq-ir—é (operations applied element-wise)
Apply update: 6 < 0 + A8
end whilecso1

Comparison

NAG: Nesterov’s Accelerated Gradient

SGD
Momentum
NAG

Adagrad
Adadelta
Rmsprop

mmmrrTrTrT T

- SGD
- Momentum
- NAG
- Adagrad
Adadelta
Rmsprop

1.0

https://twitter.com/alecrad

Comparison

2.38

I\
R\

)

R\

. \\\

" ARV AN N AV»/\WW‘

" RNANN \\@%@

CENG501

* When SGD+momentum is tuned for hyperparameters, it can
outperform Adam etc.

* There are methods that try to finetune the hyper-parameters:

YellowFin and the Art of Momentum Tuning
https://arxiv.org/abs/1706.03471

To sum up

* Different problems seem to favor different per-parameter
methods

* Adam seems to perform better among per-parameter adaptive
learning rate algorithms

e SGD+Nesterov momentum seems to be a fair alternative

Representational capacity

CCCCCCC

Representational capacity

 Boolean functions:

* Every Boolean function can be represented exactly by a neural network
 The number of hidden layers might need to grow with the number of inputs

 Continuous functions:

* Every bounded continuous function can be approximated with small error with
two layers

 Arbitrary functions:
* Three layers can approximate any arbitrary function

Cybenko, G. (1989) "Approximations by superpositions of sigmoidal functions", Mathematics of Control, Signals, and
Systems, 2 (4), 303-314

Kurt Hornik (1991) "Approximation Capabilities of Multilayer Feedforward Networks", Neural Networks, 4(2), 251257.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. "Multilayer feedforward networks are universal approximators."
Neural networks 2.5 (1989): 359-366.

CENG501

Representational Capacity:
Why go deeper if 3 layers is sufficient?

* Going deeper helps convergence in “big” problems.

* Going deeper in “old-fashion trained” ANNs does not help much in accuracy

* However, with different training strategies or with Convolutional Networks, going deeper
matters

Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., & LeCun, Y. (2015). The loss surfaces of multilayer networks. In Artificial

Intelligence and Statistics (pp. 192-204).
CENG501

Representational Capacity

* More hidden neurons = capacity to represent more complex functions

3 hidden neurons 6 hidden neurons 20 hidden neurons

Figure: https://cs231n.github.io/

* Problem: overfitting vs. generalization

» We will discuss the different strategies to help here (L2 regularization, dropout, input noise, using a
validation set etc.)

CENG501

Number of hidden neurons

Several rule of thumbs (Jeff Heaton)

* The number of hidden neurons should be between the size of the input
layer and the size of the output layer.

* The number of hidden neurons should be:
» 2/3 x (the size of the input layer + the size of the output layer)

e The number of hidden neurons should be less than twice the size of the
input layer.

CENG501

Number of hidden layers

* Depends on the nature of the problem
* Linear classification? =2 No hidden layers needed
* Non-linear classification?

CENG501

3 hidden neurons

https://cs231n.github.io/

Model Complexity

* Models range in their flexibility to fit arbitrary data

A\

AL

O
bigiplEiamodel bmmplex model
bonwsiaxinnde higlonatraimeed

small capacity may
prevent it from
representing all
structure in data

CENG501

large capacity may
allow it to memorize
data and fail to
capture regularities

20 hidden neurons

https://cs231n.github.io/

Slide Credit: Michael Mozer

Training Vs. Test/Val Set Error

A
Validation
Error
Optimum
Model Complexity
-
@)
el
(- .
L -
_____ Training
Error
High Bias . Low Bias
Low Variance M Od e I CO m p I EXIW High Variance

CENG501

Bias-Variance Trade Off

A

Total Error

Variance

Optimum Model Complexity

Error on Test Set

- >
underfit Model Complexity overfit

CENG501
image credit: scott.fortmann-roe.com Slide Credit: Michael Mozer

Memorization vs. Generalization

https://arxiv.org/pdf/1906.05271.pdf

Does Learning Require Memorization?
A Short Tale about a Long Tail

Vitaly Feldman
Google Research’
Mountain View, CA, USA
vitaly.edu@gmail.com

ABSTRACT

State-of-the-art results on image recognition tasks are achieved us-
ing over-parameterized learning algorithms that (nearly) perfectly
fit the training set and are known to fit well even random labels.
This tendency to memorize seemingly useless training data labels
is not explained by existing theoretical analyses. Memorization of
the training data also presents significant privacy risks when the
training data contains sensitive personal information and thus it is
important to understand whether such memorization is necessary
for accurate learning.

We provide a simple conceptual explanation and a theoretical
model demonstrating that for natural data distributions memoriza-
tion of labels is necessary for achieving close-to-optimal general-
ization'error! The model is motivated and supported by the results
of several recent empirical works. In our model, data is sampled
from a mixture of subpopulations and the frequencies of these
subpopulations are chosen from some prior. The model allows to
quantify the effect of not fitting the training data on the generaliza-
tion performance of the learned classifier and demonstrates that
memorization is necessary whenever frequencies are long-tailed.
Image and text data are known to follow such distributions and
therefore our results establish a formal link between these empirical
phenomena. Our results also have concrete implications for the
cost of ensuring differential privacy in learning.

ACM Reference Format:

Vitaly Feldman. 2020. Does Learning Require Memorization? A Short Tale
about a Long Tail. In Proceedings of the 52nd Annual ACM SIGACT Sympo-
sium on Theory of Computing (STOC °20), June 22-26, 2020, Chicago, IL, USA.
ACM, New York, NYY, USA, 6 pages. https://doi.org/10.1145/3357713.3384290

1 INTRODUCTION

Understanding the generalization properties of learning systems
based on deep neural networks (DNNs) is an area of great practical
importance and significant theoretical interest. The main concep-
tual hurdle to adapting the classical approaches for analysis of gen-
eralization is the well-known fact that state-of-the-art approaches
to training DNNs reach zero (or very low) training error even when
the test error is relatively high. In fact, as highlighted in the in-
fluential work of Zhang et al.[54], low training error is achieved
even when the labels are generated at random. The only way to
fit an example whose label cannot be predicted based on the rest
of the dataset is to effectively memorize it. In this work we will
formalize and quantify this notion of memorization. For now we
will informally say that a learning algorithm memorizes the label
of some example (x,y) in its dataset S if the model output on S
predicts y on x whereas when the learning algorithm is trained on
S without (x, y) it is unlikely to predict y on x.

The classical approach to understanding generalization starts
with the decomposition of the generalization error errp(h) relative

Double Descent

Classical Regime: Modern Regime:
Bias-Variance Tradeoff Larger Model is Better
A A0 .
4 1
0.5 : Critical — Test 0.71 Optimal Early
b, o s . A .
o ! / Regime Train Stopping
= : 0.6
i 0. . S
c 1 =
'5(13 : w 0.5
= \N Interpolation In
~0.2 v L Threshold L 0.4
{7 i =
\
2 0.1 \ 0.3
l\\
0.0 1 10 _20 30 40 50 60 Wi 0 10 20 30 40 50 60
ResNet18 width parameter ResNet18 Width Parameter

Figure 1: Left: Train and test error as a function of model size, for ResNet18s of varying width
on CIFAR-10 with 15% label noise. Right: Test error, shown for varying train epochs. All models
trained using Adam for 4K epochs. The largest model (width 64) corresponds to standard ResNet18.

Nakkiran et al., “Deep Double Descent: Where Bigger Models and More Data Hurt”, 2019.

CENG501

100

1000

Epochs

Double Descent

00 Test Risk for Regularized Regression

A= 2_8/\apt

1.75 I\ T A=27Ao
A=2"52p
A=2"5200
A=2"Nopt
A =273t
A=2"2Agpt
A=2"Wgp

— A = Agpt

A=20op

A=22A0pt

A =2

A=2%0pt

1.50+

=

N

v
f

o
~
3

Expected Excess Test Risk
5

0.501

0.251 SSSSRSSss.

3o o2

0.00— : : . : ;
0 200 400 600 800 1000
Num Samples

Nakkiran et al., “Optimal Regularization Can Mitigate Double Descent”, 2020.

CENG501

Grokking

100

80

o))
o

Accuracy
S
o

20

Modular Division (training on 50% of data)

R Ta tralln r B 1 o e s b o §
va &
A
>
o
©
| .
-
o
|9
©
| =3
o
+
©
o
©
>
(o]
-t
("]
o
(O]
-t
(V)]
[o
©
©
e (0]
s
10! 102 103 104 10° 106

Optimization Steps

CENG501

5.

GROKKING: GENERALIZATION BEYOND OVERFIT-
TING ON SMALL ALGORITHMIC DATASETS

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin Vedant Misra*
OpenAl Google

ABSTRACT

In this paper we propose to study generalization of neural networks on small al-
gorithmically generated datasets. In this setting, questions about data efficiency,
memorization, generalization, and speed of learning can be studied in great de-
tail. In some situations we show that neural networks learn through a process
of “grokking” a pattern in the data, improving generalization performance from
random chance level to perfect generalization, and that this improvement in general-
ization can happen well past the point of overfitting. We also study generalization as
a function of dataset size and find that smaller datasets require increasing amounts
of optimization for generalization. We argue that these datasets provide a fertile
ground for studying a poorly understood aspect of deep learning: generalization
of overparametrized neural networks beyond memorization of the finite training
dataset.

G] 6 Jan 2022

Steps until generalization for product in abstract group Ss

105 AAAAAA
10°
104

A Runs that didn't reach 99% val acc in 5 - 10° updates

® Runs that reached > 99% val acc in 5 10° updates

—— Median
103
0.3 0.4 0.5 0.6 0.7 0.8

Training data fraction

What do the layers represent?

Input Hidden Qutput
Values :
10000000 — .89 .04 08 — 10000000
01000000 — .15 99 99 — 01000000
00100000 — .01 97 27 — 00100000
00010000 — 99 97 71 — 00010000
00001000 — .03 .05 .02 — (00001000
00000100 — .01 .11 .88 — 00000100
00000010 — .80 .01 98 — 00000010
00000001 — 60 94 .01 — 00000001

FIGURE 4.7 ,
Learned Hidden Layer Representation. This 8 x 3 x 8 network was trained to learn the identity

function, using the eight training examples shown. After 5000 training epochs, the three hidden unit
values encode the eight distinct inputs using the encoding shown on the right. Notice if the encoded
values are rounded to zero or one, the result is the standard binary encoding for eight distinct values.

T. Mitchell, “Machine Learning”, 1997.

CENG501

What do the layers represent?

High-Level Trainable car
Feature Classifier

Mid-Level
Feature

Low-Level
Feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
CENG501

Similarities to the Hierarchies in Visual Cortex

Hyppocampus Prefrontal cortex FEF, Frontal Cortex, Occulomotor PMD, PMV, Prefrontal cortex
Memory (non motor) SC, Brain Stem (Hand control, rule based behaviours)

&
Arm control, PMD S
TE (AIT) ;s
3
Ventral Dorsal s
pathway T pathway S
N
U
o 3
S
%, S
@ Vestibular information about
099 arm, eye and head position
%
7
()
2
’oo . .
"3@ Occipital
(7 | | cortex
VISUAL CORTEX

[]

Krueger, Jannsen, Kalkan, Lappe, .., “Deep Hierarchies in the Primate Visual
Cortex: What Can We Learn For Computer Vision”, IEEE PAMI, 2013.

Overtitting, Convergence, and
when to stop

CCCCCCC

Overfitting

* Occurs when training procedure fits to not only regularities in
training data but also noise.

* Like memorizing the training examples instead of learning the statistical
regularities

* Leads to poor performance on test set

* Most of the practical issues with neural nets involve avoiding
overfitting

A =0.001 A =0.01 A=0.1

Figure: https://cs231n.github.io/

® ® ®] ® ®

Adapted from Michael Mozer

How do you spot overfitting?

A _—
accuracy training accuracy

validation accuracy:
little overfitting

validation accuracy: strong overfitting
S

epoch

CENG501

Avoiding Overfitting

* Increase training set size
* Make sure effective size is growing; redundancy doesn’t help

* Incorporate domain-appropriate bias into model
* Customize model to your problem

* Tune hyperparameters of model
* number of layers, number of hidden units per layer, connectivity, etc.

* Regularization techniques

CENG501
Slide Credit: Michael Mozer

Incorporating Domain-Appropriate
Bias Into Model

* Input representation
* Output representation

* Architecture
e # |layers, connectivity
* e.g., convolutional nets, residual connections etc.

e Activation function

e Loss function

CENG501
Slide Credit: Michael Mozer

Customizing Networks

* Neural nets can be customized based on the problem domain
* choice of loss function
e choice of activation function

* Domain knowledge can be used to impose domain-appropriate bias
on model

* bias is good if it reflects properties of the data set
* bias is harmful if it conflicts with properties of data

Slide Credit: Michael Mozer

Adding bias into a mode|

* Adding hidden layers or direct connections based on the problem

Diveer T/n oonnechons 1o leam ez3y ?5«*!'5; of task
— Mq,H-olK perfotms ot abcok 0% without Wdler wnits

(w‘
o% RrfSenence e +
w"""\ ‘/HMCA& un

- Hihben urls vsefid foc harsd g excqﬂ‘m

-_— Efncy) XOR 5“..“' d/” :rﬂﬂugunﬂh
!‘ E ; ordat foatives
urhcgl +o

Chuxt Agﬁk)

CENG501
Slide Credit: Michael Mozer

Adding bias into a mode|

e Modular architectures

* Specialized hidden units for
special problems

wohaed architschn
aFaé;iQ#ufhdh
bt fewer

Connechons

- splithg mdden onrls, Eudﬂ4d&45ﬂan howo el
erh+rsE 1 2ud Yhat wWeocmalioy relkwvards = onetask
1S5 viot relevavdt = e checr

s)

Slide Credit: Michael Mozer

CENG501

Adding bias into a model

‘-/,K'J‘f".".L‘/ﬁj:' 2,; on f\:‘_'/’lf’.’,’-',J."j.;
* Local or specialized receptive e.q tedvce dmourt of emat1onHowng Miroudh
l vet en) b -W
fields =12 Deeg g
e E.g.,in CNNs E = %;(&}’-oﬂ*+ S on(i-on)

 Constraints on activities

* Constraints on weights

Conshrands 2o w@%’d’g

2.9y T=C probles’: Each mdden w et show

€ Wdllor ;’Q

o {

On

detect e same Refire , Bt siffat m Foﬁho\

A

CENG501

Seb wy= Wy, mdve)/ﬂ
Aw(= ALUA.: “‘Z(Qg/gu)’—i '&%w:

Slide Credit: Michael Mozer

Adding bias into a

model

e Use different loss functions (e.g.,

cross-entropy)

* Use specialized activation
functions

Speclaed Wehvzbion Fnctions .

W'u_,r_f"’, < . /:/_P‘:/I"'& /QOJ!GS .(‘-‘S“JG//',' A ’JL:))M) { M, l}"’){ q’)

\-chl

-

% -ﬁ}_ﬁz T ~3
. v 1 3
—@' % o) %: § %;E;
c:;n;:_ej

- u)a-gil”
Ee= ~ln$%«'€ ?

Raé’/&ﬁ, Basms Fchons
nek; = = (x-wi)/s;

),
*A;D':L W = e

Mothyo,!évzﬁ Efx_?:vwﬁ‘ Z3 4 'Tf?'w,)-ﬁj\‘u,(, alt.a. kg;gg'c q '\

Ci 0)072;'3 Ui =< wijhj (neer)
I\ X i .
e - b
) =S 9
h oo’ ‘-/Ze' wolex

Slide Credit: Michael Mozer

Adding bias into a
model

* Introduce other parameters
* Temperature
 Saliency of input

Dcsqjm.n_q bas ks B, VL@LJM)

Trhodine. povawmetors Thaecthen Ld</b
?er*ﬁgrrn c'mw\)' descaunt mm%m as unel.

— Eg, -M?waf‘we" (3*27-?4153 aPsram:cﬂ) th+T
\

&% = —
@ e

C_QM?U{.b E /T, AT = ~€ aa'_g\’.,

— ES’ mpt galience +erm

_t.n‘ﬂm "real world” W‘b‘/‘aﬁk
o houn®. Wedd e a/geds

et
?z,,g_,.a

Compute OE /B3 ASy=-€ aeasd
mvm&w‘b weg all a:;('aonﬁ u.e,mlbdis fom mfu"’

“These paramelaes al % ot acrass ue(
dﬁjc‘r}gyg (low‘!": ‘hfgﬁ) all wc{dlcomm;j mw’l'j

leew Su-hxmyﬂdaa.«aulwt?m

CENG501

Slide Credit: Michael Mozer

Regularization

e Regularization strength can effect overfitting

—Aw?
2W

Figure: https://cs231n.github.io/
CENG501

Regularization

1
L2 regularization: EAWZ

* Very common
* Penalizes peaky weight vector, prefers diffuse weight vectors

L1 regularization: A|w|
* Enforces sparsity (some weights become zero)
 Why? Weight decay is by a constant value if |w| is non-zero.
* Leads to input selection (makes it noise robust)
* Use it if you require sparsity / feature selection

Can be combined: A,|w| + A,w?

Regularization is not performed on the bias; it seems to make no significant
difference

L2 regularization and weight decay

1
L — Ldata + EAWZ

* L2 regularization

oL
L Aw; « uAw; + (1 —) (data | Awi)
Wi — Wi — (data /1W-) — ow;
l = ow; l wi < w; — 1 Aw;
When you add moving
avg (as in e.g. Adam), Vs
 Weight decaya they become different ' oL,
L _ ata

aWi
W; < W; — TIAWL — 77/1Wl

CENG501

Weight Decay

* Adam & weight decay issue:

https://www.fast.ai/2018/07/02/adam-weight-decay/

CENG501

LO regularization

Ly = (Zixio)l/o

How to compute the zeroth power and
zeroth-root?

Mathematicians approximate this as:

° LO=#{i|xi¢O}

* The cardinality of non-zero element
This is a strong enforcement of sparsity.

However, this is non-convex
* L1 norm is the closest convex form

S

CENG501

1.5}

0.5¢

p=2

p=0.5_]

p=0.1

-1.5

-0.5

0.5

1.5

Probabilistic interpretation of regularization

* http://bjlkeng.github.io/posts/probabilistic-interpretation-of-
regularization/

* https://towardsdatascience.com/understanding-the-scaling-of-1%C2%B2-
regularization-in-the-context-of-neural-networks-e3d25f8b50db

* Adverse effects of regularization and normalization:
https://ojs.aaai.org/index.php/AAAl/article/view/6046

https://arxiv.org/abs/1911.05920

CENG501

http://bjlkeng.github.io/posts/probabilistic-interpretation-of-regularization/
https://towardsdatascience.com/understanding-the-scaling-of-l%C2%B2-regularization-in-the-context-of-neural-networks-e3d25f8b50db
https://ojs.aaai.org/index.php/AAAI/article/view/6046
https://arxiv.org/abs/1911.05920

Large-norm L2 regularization

e https://arxiv.org/pdf/1910.00359.pdf
* (section 3)

CENG501

https://arxiv.org/pdf/1910.00359.pdf

Regularization

* Enforce an upper bound on weights:

* Max norm: Fig: Srivastava et al., 2014
. ||W||2 <c

)‘

* Helps the gradient explosion problem

* Improvements reported

i
)
72

'l/
vl#

(7
A/
e

2
Xie

\\}
A‘E\

&

N
XX
Xy
)
g

/

A
XS
':'
N
¢,
2
,
%

A
)
»

{7

N
\‘6’,‘6/
L
" 41 :‘ \’
R
2N

v
€

* Dropout:
* At each iteration, drop a number of
neurons in the network

e Use a neuron’s activation with (a) Standard Neural Net (b) After applying dropout.
probability p (a hyperparameter)

e Adds stochasticity!

=

CENG501
http://cs231n.github.io/neural-networks-2/

Regularization: Dropout Fig: Srivastava et a, 2014

* Feed-forward only on active units

* Can be trained using SGD with mini-batch
* Back propagate only “active” units.

* One issue:
¢ ExpeCtEd OUtpUt X Wlth d ropo ut: (a) Standard Neural Net (b) After applying dropout.

» E[x'] = =%i(px; + (1 — p)0) = p % x; = pE[x]

* To have the same scale at testing time (no dropout), multiply test-
time activations with p.

Present with Always

probability p present

(a) At training time (b At test time) _
I eNcisph Fig: Srivastava et al., 2014

Regularization: Dropout

Training-time:
Hl = np.maximum (0, np.dot(Wl, X) + bl)
Ul = np.random.rand (*Hl.shape) < p # first dropout mask
H1l *= Ul # drop!
H2 = np.maximum (0, np.dot (W2, Hl) + b2)
U2 = np.random.rand(*H2.shape) < p # second dropout mask

H2 *= U2 # drop!

out = np.dot (W3, H2) + b3

Test-time: All neurons receive their normal input (x) so we should scale by p to have E[x] = px.

Y o —— N oo

10 UL LT L L UL WA L L a2 o

Hl = np.maximum(0, np.dot (Wl, X) + bl) * p # NOTE: scale the activations
H2 = np.maximum(0, np.dot (W2, Hl1l) + b2) * p # NOTE: scale the activations
out = np.dot (W3, H2) + b3

CENG501
http://cs231n.github.io/neural-networks-2/

Regularization: Inverted Dropout

Perform scaling while dropping at training time!

Training-time: Correct the expected expected output from px to x.

Hl = np.maximum (0, np.dot(Wl, X) + bl)

Ul = (np.random.rand(*Hl.shape) < p) / # first dropout mask.
H1l *= Ul # drop!

H2 = np.maximum (0, np.dot (W2, H1l) + b2)

U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask.
H2 *= U2 # drop!

out = np.dot (W3, H2) + b3

Test-time:
def predict (X):

Hl = np.maximum(0, np.dot (Wl, X) + bl) # no scaling necessary
H2 = np.maximum (0, np.dot (W2, Hl) + b2)
out = np.dot (W3, H2Z) + b3
CENG501
http://cs231n.github.io/neural-networks-2/

>5
5
23

0.17

I 0.11
0.065 0.065

-20 0 20 40 60 80 100 -20 0 20 40 60 80 100 -20 0 20 40 60 80 100

>5
5
23
1.1

0.54

0.28

0.17
I 0.11
0.065

Figure 1: The ¢5-regularized cross-entropy train loss surface of a ResNet-164 on CIFAR-100, as a
function of network weights in a two-dimensional subspace. In each panel, the horizontal axis is
fixed and 1s attached to the optima of two independently trained networks. The vertical axis changes
between panels as we change planes (defined in the main text). Left: Three optima for independently
trained networks. Middle and Right: A quadratic Bezier curve, and a polygonal chain with one bend,
connecting the lower two optima on the left panel along a path of near-constant loss. Notice that in
each panel a direct linear path between each mode would incur high loss.

0.11

-20

-—

Garipov et al., “Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs”, 2018.

See also: Kuditipudi et al., “Explaining Landscape Connectivity of Low-cost Solutions for Multilayer Nets”, 2020.
- Explains this with noise stability, dropout stability.

CENG501

Published as a conference paper at ICLR 2023

Il
I
w

SYMMETRIES, FLAT MINIMA AND THE CONSERVED
QUANTITIES OF GRADIENT FLOW

Q
Q=
Q
m

Bo Zhao* ' Tordan Ganev*

University of California, San Diego Radboud University
bozhao@ucsd.edu iganev@cs.ru.nl

Robin Walters Rose Yu

Northeastern University University of California, San Diego
r.walters@northeastern.edu roseyulucsd.edu

Nima Dehmamy

IBM Research

nima.dehmamy@ibm. com

ABSTRACT

Empirical studies of the loss landscape of deep networks have revealed that many
local minima are connected through low-loss valleys. Yet, little is known about
the theoretical origin of such valleys. We present a general framework for finding
continuous symmetries in the parameter space, which carve out low-loss valleys.
Our framework uses equivariances of the activation functions and can be applied
to different layer architectures. To generalize this framework to nonlinear neu-
ral networks, we introduce a novel set of nonlinear, data-dependent symmetries.
These symmetries can transform a trained model such that it performs similarly
on new samples, which allows ensemble building that improves robustness un-
der certain adversarial attacks. We then show that conserved quantities associated
with linear symmetries can be used to define coordinates along low-loss valleys.
The conserved quantities help reveal that using common initialization methods,
gradient flow only explores a small part of the global minimum. By relating con-
served quantities to convergence rate and sharpness of the minimum, we provide
insights on how initialization impacts convergence and generalizability.

https://openreview.net/pdf?id=9ZpciCOunFb

CENG501

Drop-Activation: Implicit Parameter Reduction and Harmonic Regularization

Senwei Liang Yuehaw Kwoo Haizhao Yang
National University of Singapore Stanford University National University of Singapore
10 Lower Kent Ridge Road 450 Serra Mall 10 Lower Kent Ridge Road
Singapore 119076 Stanford, CA 94305 Singapore 119076
liangsenwei@u.nus.edu ykhoolstanford. edu haizhao@nus.edu.sg

14 November 2018

LA ;
NG

XX,
Sole

(a) Standard neural network with (b) After applying Drop-

nonlinearity Activation
model Baseline DropAct
ResNet-164 8.85 8.82
PreResNet-164 8.88 8.72
WideResNet-28-10 8.97 8.72
DenseNet-BC-100-12 8.81 8.90
ResNeXt-29-8x64d 9.07 8.91

Table 4: Test error (%) on EMNIST (Balanced). The Base-
line results were generateﬁEBSGBQPrselves.

Dropout as Ensemble Training Method

Fig: Srivastava et al., 2014

“Dropout performs gradient
descent on-line with respect to
both the training examples and
the ensemble of all possible
subnetworks.”

a) Standard Neural Net (b) After applying dropout.

Pierre Baldi and Peter J Sadowski. Understanding dropout. In Advances in neural information
processing systems, pp. 2814-2822, 2013.

CENG501

Dropout is a special case of the stochastic delta rule:
faster and more accurate deep learning

Noah Frazier-Logue Stephen José Hanson
Rutgers University Brain Imaging Center Rutgers University Brain Imaging Center
Rutgers University - Newark Rutgers University - Newark
Newark, NJ 07103 Newark, NJ 07103
n.frazier.logue@nyu.edu jose@rubic.rutgers.edu

S(wij = wj;) = pay; + Mo, 0(wi5;0,1)

The first update rule refers to the mean of the weight distribution:

oF
How;; (n+ 1) = Q(W) + Moy, (n)
ij

and is directly dependent on the error gradient and has learning rate . This is the usual delta rule
K5) update but conditioned on sample weights thus causing weight sharing through the updated mean
value. The second update rule is for the standard deviation of the weight distribution (and for a
Gaussian is known to be sufficient for identification).

Figure 1: SDR sampling. oF

Ow,(n+1)= 3|W| + ow,,; (1)
%

CENG501

before pruning after pruning

pruning _
synapses

Lottery Ticket Hypothesis

pruning
neurons

-——

Frankle & Carbin, “The Lottery Ticket Hypothesis: Finding Sparse, Trainable
Neural networks", 20109. Figure: https://herbiebradley.com/The-Lottery-Ticket-Hypothesis

Identifying winning tickets. We identify a winning ticket by training a network and pruning its
smallest-magnitude weights. The remaining, unpruned connections constitute the architecture of the
winning ticket. Unique to our work, each unpruned connection’s value is then reset to its initialization
from original network before it was trained. This forms our central experiment:

1. Randomly initialize a neural network f(x;6y) (where 6y ~ Dy).

2. Train the network for j iterations, arriving at parameters 6.

3. Prune p% of the parameters in 6;, creating a mask m.

4. Reset the remaining parameters to their values in 6y, creating the winning ticket f(z; m®#6y).

As described, this pruning approach is one-shot: the network is trained once, p% of weights are
pruned, and the surviving weights are reset. However, in this paper, we focus on iterative pruning,

which repeatedly trains, prunes, and resets the network over n rounds; each round prunes p= % of the
weights that survive the previous round. Our results show that iterative pruning finds winning tickets
that match the accuracy of the original network at smaller sizes than does one-shot pruning.

Data Augmentation X B | e
"‘@/‘ A V4 V4

Original photo Green color c.asting Blue color casting

®

More vignette Blue casting + vignette

oV I ©V%

Pincushion distortion Barrel distortion

http://blcv.pl/static//2018/02/27 /demystifying-face-recognition-v- |) 4 "l “
data-augmentation/ - ' %/‘_ { O’/ ‘ O’/

Horizontal stretch More horizontal stretch Vertical stretch More vertical stretch

Regularization Summary

* L2 regularization
* Inverted dropout with p = 0.5 (tunable)
* Data augmentation

CENG501

When To Stop Training

* 1. Train n epochs; lower learning rate; train m epochs
* bad idea: can’t assume one-size-fits-all approach

e 2. Loss-change criterion
e stop when loss isn’t dropping

* recommendation: criterion based on % drop over a window of, say, 10
epochs
* 1 epoch is too noisy
* absolute error criterion is too problem dependent

* Another idea: train for a fixed number of epochs after criterion is reached
(possibly with lower learning rate)

Slide Credit: Michael Mozer

When To Stop Training

* 3. Weight-change criterion
* Compare weights at epochs (t — 10) and t and test:

max,

Wi —wf‘lo‘ <0
* Don’t base on length of overall weight change vector

* Possibly express as a percentage of the weight

* Be cautious: small weight changes at critical points can result in
rapid drop in error

CENG501
Slide Credit: Michael Mozer

Training Vs. Val Set Error

Error

A

Val Set

Training Set

CENG501

Slide Credit: Michael Mozer

Data Preprocessing and weight
initialization

CCCCCCC

Data Preprocessing

e Mean subtraction
* Normalization
* PCA and whitening

CENG501

Data Preprocessing: Mean subtraction

* Compute the mean of each dimension, u;, over the training set:
1
P — x..
Hi NZ ji
J

* Subtract the mean for each dimension: i
!/
Xji < Xji — Hi ;

» Effect: Move the data center (mean) to coordinate center 10

15

original data zero-centered data "

10

10

25

30

0 5 10 15 20 25 30

Mean image of CIFAR10
(from PA1)

g 10 = 0 5 13

CENG501
http://cs231n.github.io/neural-networks-2/

Data Preprocessing:
Normalization (or conditioning)

* Necessary if you believe that your dimensions have different scales
* Might need to reduce this to give equal importance to each dimension

* Normalize each dimension by its std. dev. after mean subtraction:

* Effect: Make the dimensions have the same scale

original data zero-centered data normalized data

10

-10 - -10 - -10
-10 =5 0 5 1q -10 5 5 19 -10 -5 0 5 10

 CENG501
http://cs231n.github.io/neural-networks-2/

Data Preprocessing:
Principle Component Analysis

* First center the data
Find the eigenvectors e, ..., e,
Project the data onto the eigenvectors:
« xf =x;[eq, ..,en]
This corresponds to rotating the data to have the eigenvectors as the axes
If you take the first M eigenvectors, it corresponds to dimensionality reduction

original data decorrelated data

1 =T
CENG501
http://cs231n.github.io/neural-networks-2/

Data Preprocessing: Whitening

Normalize the scale with the norm of the eigenvalue:

x{” = x /(A + €)

€: a very small number to avoid division by zero

This stretches each dimension to have the same scale.

Side effect: this may exaggerate noise.

original data

decorrelated data whitened data

19

19

" CENGS01
http://cs231n.github.io/neural-networks-2/

Data Preprocessing: Example

orlglnal |mages top 144 elgenvectors reduced images whitened images

CENG501
http://cs231n.github.io/neural-networks-2/

Data Preprocessing: Summary

* We mostly don’t use PCA or whitening
* They are computationally very expensive
* Whitening has side effects

* It is quite crucial and common to zero-center the data
* Most of the time, we see normalization with the std. deviation

CENG501

Weight Initialization

e Zero weights
* Wrong!
* Leads to updating weights by the same amounts for every input
 Symmetry!

* Initialize the weights randomly to small values:

e Sample from a small range, e.g., Normal(0,0.01)
* Don’t initialize too small

* The bias may be initialized to zero
* For ReLU units, this may be a small number like 0.01.

Note: None of these provide guarantees. Moreover, there is no guarantee that one of these
will always be better. CENG501

Initial Weight Normalization

* Problem: Variance of the output changes with the number of inputs
o If s = Y, w;x; (note that Var(X) = E[(X — u)?]):

Var(s) = Var(z w;T;)
= Z Var(w;z;)
= i[E(wi)]zVar(mi) + E[(x;)]*Var(w;) + Var(z;) Var(w;)

= i Var(z;)Var(w;)
= (nVar(w)) Var(z)

Egn: https://cs231n.github.io/neural-networks-2/#init
CENG501

Initial Weight
Normalization

e Solution:
* GetridofninVar(s) = (n
Var(w))Var(x)

* How?
* Scale the initial weights by v/n
« Why? Because: Var(aX) = a?Var(X)

« Standard Initialization (top plots in Figure
6&7):
o]

which yields n Var(w) = g

2
because variance of U[—1, 1] is L [1].
3

[1] https://proofwiki.org/wiki/Variance_of _Continuous_Uniform_Distribution

15

10
5 //:&
R i T i
0
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Activation value
2
—Layer 1
1.5 Layer 2| -
!’!i "|I'hh',."".h.“ —Layer 3
v(‘”#’ W Layer 5
0.5 g ey,
o Lo
4'./_-»" .“:9&.5..,
0 et I I I I e SV
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Activation value

Figure 6: Activation values normalized histograms with
hyperbolic tangent activation, with standard (top) vs nor-
malized initialization (bottom). Top: O-peak increases for
higher layers.

100 T T
: Layer 1
! ! Layer 2
] ~—Layer 3
50- : . e —Layer 4/
. [L Layer 5
0 s ; -«é’&%“ ; i
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 02
Backpropagated gradients
10 ! .
f‘ pu —Layer 1
! Layer 2
IHH 11 —Layer 3
50 l#’ o —Layer 4|
L T Layer 5
ﬂ!qw ff d
. c.”:?l"l' 1‘"‘ ‘J A
0 . i i 1 1 Lo L
-025 -02 -0.15 -0.1 -0.05 0 0.05 0.1 015 02 025
Backpropagated gradients
Figure 7: Back-propagated gradients normalized his-

fograms with hyperbolic tangent activation, with standard
(top) vs normalized (bottom) initialization. Top: O0-peak
decreases for higher layers.

Figures: Glorot & Bengio, “Understanding the difficulty of training deep feedforward neural networks”, 2010.

Xavier initialization for symmetric activation functions (Glorot & Bengio):

V2

Wl'NN 0,

\/nin + Nout

With Uniform distribution:

V6

CENGSOl \/nm T Nout \/nm + Moyt

Initial Weight
Normalization

* He et al. shows that Xavier initialization
does not work well for ReLUs.

Seee

-

"~
N,

0.9+

Error

1
—_ EﬁlVar[W,] =1 ours

0.8+
---= AVar[w] =1 Xavier

T T 1 L L 1
0.5 1 1.5 2 25 3
Epoch

Figure 2. The convergence of a 22-layer large model (B in Ta-
ble 3). The x-axis is the number of training epochs. The y-axis is
the top-1 error of 3,000 random val samples, evaluated on the cen-
ter crop. We use ReLU as the activation for both cases. Both our
initialization (red) and “Xavier” (blue) [7] lead to convergence, but
ours starts reducing error earlier.

CENG501

He et al., “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet
Classification”, 2015.

0.95 -
0.9+

2 085}
w

1
0.8} —— EﬁlVar[wl] =1 ours

0781 oo AVar[w,] =1 Xavier

Epoch

Figure 3. The convergence of a 30-layer small model (see the main
text). We use ReLLU as the activation for both cases. Our initial-
ization (red) is able to make it converge. But “Xavier” (blue) [7]
completely stalls - we also verify that its gradients are all dimin-
ishing. It does not converge even given more epochs.

More on Weight Initialization

Tutorial and Demo:

https://www.deeplearning.ai/ai-notes/initialization/index.html|

Tutorial:
https://mmuratarat.github.io/2019-02-25/xavier-glorot-he-weight-init

CENG501

https://www.deeplearning.ai/ai-notes/initialization/index.html
https://mmuratarat.github.io/2019-02-25/xavier-glorot-he-weight-init

Alternative: Batch Normalization

Normalization is differentiable

* So, make it part of the model (not only at the
beginning)

* |.e., perform normalization during every step
of processing

More robust to initialization

Shown to also regularize the network in some
cases (dropping the need for dropout)

Issue: How to normalize at test time?

1. Store means and variances during training,
or

2. Calculate mean & variance over your test
data

e PyTorch: use model.eval() in test time.

Input: Values of x over a mmi-batch: B = {z1_ }:
Parameters to be learned: ~. 3
Output: {y; = BN, g(z;)}

1 TTe
1Up +— — E xT;
m

i=1

// mini-batch mean

e

: 1 .
O — Z(It‘ — ug)?
i=1

£r; — j.i-g

w::r% + €

Yi “"r':fi + ;3 = BNnr-_‘_,-g (Izj

// mini-batch variance

T; // normalize

/I scale and shift

Algorithmm 1: Batch Normalizing Transform. applied to
activation x over a mini-batch.

loffe & Szegedy, “Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift”, 2015.

CENG501

Alternative: Batch Normalization

* Before or after non-linearity?
* Proposers

* “If, however, we could ensure that the distribution of nonlinearity inputs remains more stable as
the network trains, then the optimizer would be less likely to get stuck in the saturated regime,
and the training would accelerate.”

* “As each layer observes the inputs produced by the layers below, it would be advantageous to
achieve the same whitening of the inputs of each layer. By whitening the inputs to each layer, we

would take a step towards achieving the fixed distributions of inputs that would remove the ill
effects of the internal covariate shift.”

* “We add the BN transform immediately before the nonlinearity, by normalizing x = Wu+b. We
could have also normalized the layer inputs u, but since u is likely the output of another
nonlinearity, the shape of its distribution is likely to change during training, and constraining its
first and second moments would not eliminate the covariate shift. In contrast, Wu + b is more likely
to have a symmetric, non-sparse distribution, that is “more Gaussian” (Hyv arinen & Oja, 2000);
normalizing it is likely to produce activations with a stable distribution.”

CENG501

BatchNorm introduces scale invariance

* https://www.inference.vc/exponentially-growing-learning-rate-
implications-of-scale-invariance-induced-by-batchnorm/

CENG501

Alternative Normalizations

Batch Norm Layer Norm Instance Norm Group Norm

H,W
H,W

L

NERR Y e

LR T
RN W

VRSN

2, (N

=+ Batch Norm
34 |-~ Group Norm

32 16 8 4 2
batch size (images per worker)

https://medium.com/syncedreview/fagebgok-ai-proposes-group-normalization-alternative-to-
batch-normalization-fb0699bffae7

Dropout a~Bernoulli(p)

x~N(0,1)

Train Mode

—_—mnmn——

Test Mode

x~N(0,1)

)

MOoVIng_var,

max(—

real _var,

real _var;
moving_var;

35

w
=)

N
in

20

et
=3

05

1
—> X =a—x
p

—

X

| X—u
|
i u=E(X),c? =Var(X),X = i
_4 . - Voi+te i
i EMovmg(X) - E(ﬂ) VarMovmg(X) — E(Uz) :
L---------------------------

V(lTTrain(X) — 1 — Va_rMoving(X) = E(%)

p

Var™st () =1 A Var'em(x) = E()

--------------------------‘
_ pMoving |
| PN X—FE X
X X = __(%) -
! JvarMoving(x) ¢ 1

—— Test Acc 77.42%, No Dropout in each bottleneck

—— Test Acc 68.55%, Dropout 0.5 in each bottleneck

0 i IM‘”I\ ’ i.‘
,~~.'mmmm

\VcV

40

60 80 100

BN layer index on DenseNet trained on CIFAR100

CENG501

Understanding the Disharmony between Dropout and Batch Normalization by
Variance Shift

Xiang Li' Shuo Chen' Xiaolin Hu? Jian Yang' 20 1 8

Since we get a clear knowledge about the disharmony be-
tween Dropout and BN, we can easily develop several ap-
proaches to combine them together, to see whether an extra
improvement could be obtained. In this section, we intro-
duce two possible solutions in modifying Dropout. One is
to avoid the scaling on feature-map before every BN layer,
by only applying Dropout after the last BN block. Another
is to slightly modify the formula of Dropout and make it less
sensitive to variance, which can alleviate the shift problem
and stabilize the numerical behaviors.

How critical are BatchNorm parameters?

O

(o)}
O
()]

Accuracy During Training - ResNet-110

S 3 95
=94 S 94 85
< o
w = 375
O 92 o 92 s —
5 S > 65
> g ©
g 90 990 355
: g
g 4
< 88 < g8 ! °
E § ~ 35
8614 32 56 110 218 434 866 °014-1 14-2 14-4 14-8 14-16 14-32 25 — BN BN/S/O e Al
Network (ResNet) Network (WRN) 15
0 20 40 60 80 100 120 140 160

wem Al === All (y/B Disabled) Training Epoch

Figure 1. Test accuracy when training all parameters of the deep
(left) and wide (right) ResNets in Table [I| with v and 3 enabled
(blue) and frozen at their initial values (purple). Except on the
deepest ResNets, accuracy is about half a percent lower when -y
and (3 are disabled.

Figure 3. Test accuracy of ResNet-110 during training when train-
ing all parameters, just BatchNorm, and BatchNorm with shortcut
and output parameters. Learning appears to occur at a similar rate
in all experiments, although they reach different accuracies.

Frankle et al., “Training BatchNorm and Only BatchNorm: On the Expressive Power of Random Features in CNNs”, 2020.

CENG501

To sum up

* |nitialization and normalization are crucial

* Different initialization & normalization strategies may be
needed for different deep learning methods

* E.g., in CNNs, normalization might be performed only on convolution
etc.

Issues & Practical advices

CCCCCCC

Issues & tricks

* Vanishing gradient
e Saturated units block gradient propagation (why?)
* A problem especially present in recurrent networks or networks with
a lot of layers
e Overfitting
* Drop-out, regularization and other tricks.

* Tricks:
* Unsupervised pretraining

e Batch normalization (each unit’s preactivation is normalized)
* Helps keeping the preactivation non-saturated
* Do this for mini-batches (adds stochasticity)
* Backprop needs to be updated

Unsupervised pretraining

< 1 layer without pretraining

1 layer with pretraining = =
o <~ 4 layers without pretraining
_ b : “= ' 4 layers with pretraining 4
Journal of Machine Learning Research 11 (2010) 625-660 Submitted 8/09; Published 2/10
= J
€ 2T T
3 k . P .
o 3 e Why Does Unsupervised Pre-training Help Deep Learning?
[T IRE] (M 1
ot . (Il
[Dumitru Erhan” DUMITRU ERHAN(@UMONTREAL CA
ol I Yoshua Bengio TOSHUA.BENGIO(@UMONTREAL.CA
Aaron Courville AARON.COURVILLE(@UMONTREAL.CA
Bl] Lo Pierre-Antoine Manzagol PIERRE-ANTOINE.MANZAGOL@UMONTREAL.CA
st SRR Pascal Vincent PASCAL.VINCENT(@UMONTREAL.CA
)] Département d informatique et de recherche opérationnelle
@& || i i T 1 i Université de Montréal
e ; . o E xS T3 2020, chemin de la Tour
test error Montréal, Québec, H3T 1J8, Canada
Samy Bengio BENGIO@GOOGLE.COM
Google Research
1600 Amphitheatre Pavioway

- i Mountain Fiew, CA, 94043, USA
Figure 2: Histograms presenting the test errors obtamed on MNIST using models trained with or

without pre-training (400 different initializations each). Left: 1 hidden layer. Right: 4
hidden layers.

CENG501

Unsupervised pretraining

3-layer net, budget of 10000000 iterations

T

== 0 unsupervised + 10000000 supervised
=l 2500000 unsupervised + 7500000 supervised

10°¢

Online classification error

Number of examples seen x 10°

Learning Deep Architectures for Al

Figure 7: Deep architecture trained online with 10 million examples of digit images, either with pre-training
(triangles) or without (circles). The classification error shown (vertical axis, log-scale) is computed online
on the next 1000 examples, plotted against the number of examples seen from the beginning. The first
2.5 million examples are used for unsupervised pre-training (of a stack of denoising auto-encoders). The
oscillations near the end are because the error rate is too close to zero, making the sampling variations
appear large on the log-scale. Whereas with a very large training set regularization effects should dissipate,
one can see that without pre-training, training converges to a poorer apparent local minimum: unsupervised
pre-training helps to find a better minimum of the online error. Experiments performed by Dumitru Erhan.

Yoshua Bengio

CENG501

What if things are not working?

* Check your gradients by comparing them against numerical
gradients
* More on this at: http://cs231n.github.io/neural-networks-3/

* Check whether you are using an appropriate floating point representation
* Be aware of floating point precision/loss problems

* Turn off drop-out and other “extra” mechanisms during gradient check
* This can be performed only on a few dimensions

* Regularization loss may dominate the data loss
* First disable regularization loss & make sure data loss works
* Then add regularization loss with a big factor
* And check the gradient in each case

What if things are not working?

* Have a feeling of the initial loss value

* For CIFAR-10 with 10 classes: because each class has probability of 0.1,
initial loss is —In(0.1)=2.302

* For hinge loss: since all margins are violated (since all scores are
approximately zero), loss should be around 9 (+1 for each margin).

* Try to overfit on a tiny subset of the dataset
* The cost should reach to zero if things are working properly

CENG501

What if things are not working?

loss

low learning rate

high learning rate

good learning rate

CENG501

25

0.0
0

20 40 60 80 100
Epoch

Learning rate might be too low;
Batch size might be too small

What if things are not working?

A -
accuracy training accuracy

validation accuracy:
little overfitting

validation accuracy: strong overfitting
= Sy

epoch

CENG501

What if things are not working?

* Plot the histogram of activations per layer

e E.g., for tanh functions, we expect to see a diverse distribution of values
between [-1,1]

CENG501

What if things are not working?

* Visualize your layers (the weights)

Examples of visualized weights for the first layer of a neural network. Left: Noisy features indicate could be a symptom:
Unconverged network, improperly set learning rate, very low weight regularization penalty. Right: Nice, smooth, clean and
diverse features are a good indication that the training is proceeding well.

CENG501

Andrew Ng’s suggestions

https://www.youtube.com/watch?v=F1ka6a13S9I

* “In DL, the coupling between bias &
variance is weaker compared to other
ML methods:

* We can train a network to have high
bias and variance.”

Pl o 29:22/1:19:47

* “Dev (validation) and test sets should
come from the same distribution.
Dev&test sets are like problem
specifications.

* This requires especially attention if you
have a lot of data from simulated
environments etc. but little data from
the real test environment.”

Pl o 49:31/1:19:47

CENG501

Andrew Ng’s suggestions

https://www.youtube.com/watch?v=F1ka6a13S9I

* “Knowing the human performance level gives
information about the problem of your
network:

 If training error is far from human performance, then
there is a bias error.

* |If they are close but validation has more error N
(compared to the diff between human and training
error), then there is variance problem.”

e “After surpassing human level, performance
increases only very slowly/difficult.

* One reason: There is not much space for improvement
(only tiny little details). Problem gets much harder.

* Another reason: We get labels from humans.”

P> Pl @ 54:31/1:19:47

CENG501

Also read the following

e 37 reasons why your neural network is not working:
e https://medium.com/@slavivanov/4020854bd607

* “A Recipe for Training Neural Networks” by Karpathy:
e http://karpathy.github.io/2019/04/25/recipe/

* Deep Learning Tuning Playbook:
e https://github.com/google-research/tuning playbook

e Calibrated Chaos: Variance Between Runs of Neural Network
Training is Harmless and Inevitable:

* https://arxiv.org/pdf/2304.01910.pdf

CENG501

https://medium.com/@slavivanov/4020854bd607
http://karpathy.github.io/2019/04/25/recipe/
https://github.com/google-research/tuning_playbook
https://arxiv.org/pdf/2304.01910.pdf

What is best then?

* Which algorithm to choose?

* No answer yet
e See Tom Schaul (2014)
 Adam, RMSprop seem to be slightly favorable; however, no best algorithm

* SGD, SGD+momentum, RMSprop, RMSprop+momentum, Adam are
the most widely used ones

Luckily, deep networks are very powerful

25 . : : 4.0 : : . .
»=a ftrue labels =8 |nception
2.0 e—e random labels |{ 33| e=e AlexNet
; a2

§ w—= shuffled pixels || & 5 ,|| == MLP 1x512 o
215 === random pixels [{ ¢ 2
g e=# gaussian o 25} v,
o - @
o 1.0 (7] ()]
> e 20} a

0.5 15L

00 1% 1 1 1

5 10 15 20 25 0 02 04 06 08 10
thousand steps label corruption
(a) learning curves (b) convergence slowdown

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

o}

=8 |nception
o—o AlexNet
W MLP 1x512

0 0.2

0.4 0.6 0.8 1.0

label corruption

(c) generalization error growth

Figure 1: Fitting random labels and random pixels on CIFARI10. (a) shows the training loss of
various experiment settings decaying with the training steps. (b) shows the relative convergence
time with different label corruption ratio. (¢) shows the test error (also the generalization error since

training error 1s 0) under different label corruptions.

UNDERSTANDING DEEP LEARNING REQUIRES RE-
THINKING GENERALIZATION

Regularization is turned off in the experiments. Chyun zhang
When you turn on regularization, the networks chiiyuanimit.eds '
perform worse. gﬁ:?:mml: :feg;:;fomia. Berkeley

CENG501 recht@berkeley.edu

Samy Bengio Moritz Hardt

Google Brain Google Brain

bengiofgoogle.com mrtz@google. com
Oriol Vinyals

Google DeepMind

vinyals@google.com

Concluding remarks for this part

* Loss functions

e Gradients of loss functions for minimizing them
* All operations in the network should be differentiable

* Gradient descent and its variants
* Initialization, normalization, adaptive learning rate, ...

* Overall, you have learned most of the tools you will use in the rest of
the course.

CENG501

