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Per-parageter Methods:
Adaptcw‘(é Moments (Adam)

\)"\*
O
Q@ A variation of RMSprop +

momentum

* Incorporates first & second order
moments

* Bias correction needed to get rid of
bias towards zero at initialization

Algorithm taken from:
Goodfellow et al., Deep Learning, 2016.

Algorithm 8.7 The Adam algorithm

Require: Step size € (Suggested default: 0.001)
Require: Exponential decay rates for moment estimates, p and po in [0,1).
(Suggested defaults: 0.9 and 0.999 respectively)
Require: Small constant § used for numerical stabilization (Suggested default:
1078%)
Require: Initial parameters @
Initialize 1st and 2nd moment variables s =0, r =0
Initialize time step t = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {=(1, ..., 2™} with
corresponding targets y @),
Compute gradient: g < Vg >, L(f(z®;0),y®)
t<t+1
Update biased first moment estimate: s <— p1s+ (1 — p1)g
Update biased second moment estimate: 7 < por+ (1 — p2)g© g
Correct bias in first moment: § < Tsp’{

Correct bias in second moment: 7 <« #
P2

Compute update: A@ = —67%% (operations applied element-wise)
Apply update: 6 + @ + A8

end whilecso1




<(,éco‘ﬁ;I'odel Complexity
C

9\~\° * Models range in their flexibility to fit arbitrary data
3*{@?"3”0“5 20 hidden neurons
S
[
'.. . /q\
/ \\\ I
https://cs231n.github.io/ 6 g X} o https://cs231n.github.io/
hiigipleanodel tmmpiex model
bowsiaxiande higlonatiaivoed
small capacity may large capacity may
prevent it from allow it to memorize
representing all data and fail to Slide Credit: Michael Mozer
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Hca“?ﬁ do you spot overfitting?

o
S

A _—
accuracy training accuracy

validation accuracy:
little overfitting

validation accuracy: strong overfitting
—

epoch
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e"c’&
Aygiding Overfitting
N

2
& . .
¢ Increase training set size

<
R * Make sure effective size is growing; redundancy doesn’t help

* Incorporate domain-appropriate bias into model
* Customize model to your problem

* Tune hyperparameters of model
* number of layers, number of hidden units per layer, connectivity, etc.

* Regularization techniques

e Slide Credit: Michael Mozer
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D : .
igéu larization: Dropout cg: Srivastava et al, 2014
K)
Q¥ Feed-forward only on active units

* Can be trained using SGD with mini-batch
* Back propagate only “active” units.

* Oneissue:
* Expected output x with dropout:

.« E[x'] = %Zi(pxi +(1-p)0) = p%Zixi —

* To have the same scale at testing time (no dropout), multiply test-
time activations with p.

(b) After applying dropout.

Always
present

Present with
probability p

(a) At training time (b} At test time . .
‘ teNGsth Fig: Srivastava et al., 2014
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Figure 1: The /5-regularized cross-entropy train loss surface of a ResNet-164 on CIFAR-100, as a
function of network weights in a two-dimensional subspace. In each panel, the horizontal axis is
fixed and 1s attached to the optima of two independently trained networks. The vertical axis changes
between panels as we change planes (defined in the main text). Left: Three optima for independently
trained networks. Middle and Right: A quadratic Bezier curve, and a polygonal chain with one bend,

connecting the lower two optima on the left panel along a path of near-constant loss. Notice that in
each panel a direct linear path between each mode would incur high loss.

Garipov et al., “Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs”, 2018.

See also: Kuditipudi et al., “Explaining Landscape Connectivity of Low-cost Solutions for Multilayer Nets”, 2020.
- Explains this with noise stability, dropout stability.
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Dg@“?)out as Ensemble Training Method
AN

Q‘?/ Fig: Srivastava et al., 2014

“Dropout performs gradient
descent on-line with respect to
both the training examples and
the ensemble of all possible
subnetworks.”

a) Standard Neural Net (b) After applying dropout.

Pierre Baldi and Peter J Sadowski. Understanding dropout. In Advances in neural information
processing systems, pp. 2814-2822, 2013.
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Data(@ngentann

http://blcv.pl/static//2018/02/27/demystifying-face-recognition-v-
data-augmentation/

.:.o ‘

()nglndl pholo

@
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Left rotation, crop

Horizontal stretch

O/‘ :

Rdeolor casting

>

More horizontal stretch

Vertical stretch

<P
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Blue color casting
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More vertical stretch



QY
oY

Error

A

V\gﬁ‘gn to stop training
N _

Training Set

Val Set
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Slide Credit: Michael Mozer



Q> .
Da@"‘Pr.eprc.)cesangz -
anlﬁrmahzatmn (or conditioning)

4'\0 * Necessary if you believe that your dimensions have different scales

e
Q‘ * Might need to reduce this to give equal importance to each dimension

* Normalize each dimension by its std. dev. after mean subtraction:

e Effect: Make the dimensions have the same scale

original data zero-centered data normalized data

10 10 10

-10 -10
1g =10 -5 0 5 16 -10 -5 0 5 10

CENG501
http://cs231n.github.io/neural-networks-2/
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Figure 6: Activation values normalized histograms with  Figure 7: Back-propagated gradients normalized his-

hyperbolic tangent activation, with standard (top) vs nor-  tograms with hyperbolic tangent activation, with standard
malized initialization (bottom). Top: 0-peak increases for  (top) vs normalized (bottom) initialization. Top: O-peak
higher layers. decreases for higher layers.

* How?
* Scale the initial weights by v/n
« Why? Because: Var(aX) = a?*Var(X)

Figures: Glorot & Bengio, “Understanding the difficulty of training deep feedforward neural networks”, 2010.

e Standard Initialization (top plots in Figure

6&7): Xavier initialization for symmetric activation functions (Glorot & Bengio):

- V2

w; ~N|O,
l \/nin + Nout

wl»—\

which yields n Var(w) =

because variance of U[—r With Uniform distribution:

7] S—[1]

V6 V6
Wi ~

- )
CENG501 VNin + Nour VNin + Nout

[1] https://proofwiki.org/wiki/Variance_of Continuous_Uniform_Distribution
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AI;t‘éfrnatlve Batch Normalization

\A
'@ormallzatlon is differentiable

* So, make it part of the model (not only at the
beginning)

* l.e., perform normalization during every step
of processing
* More robust to initialization

e Shown to also regularize the network in some
cases (dropping the need for dropout)

* |ssue: How to normalize at test time?

1.  Store means and variances during training,
or

2.  Calculate mean & variance over your test
data

* PyTorch: use model.eval() in test time.

Input: Values of z over a mini-batch: B = {z1, ,, }:
Parameters to be learned: ~. 3

Output: {y; = BN, g(z;)}

// mini-batch mean

1 S .
O — — E (z; — ug)> // ' mini-batch variance
T
i=1
- ‘r? - ;EH i ' .
T; // normalize

\/ .-;r% + €

Yi <+ vx; + 3 = BN, g(x;) // scale and shift

Algorithm 1: Batch Normalizing Transform. applied to
activation x over a mini-batch.

loffe & Szegedy, “Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift”, 2015.
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<o$céif‘f\xlternative Normalizations
C
00

o) Batch Norm Layer Norm Instance Norm Group Norm
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batch size (images per worker)

https://medium.com/syncedreview/fagabgalk-ai-proposes-group-normalization-alternative-to-
batch-normalization-fb0699bffae7
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Drnpnut%&ernmﬂli(p) ___________I_-iﬁ_-:____________'

r
(/ I - X—u 1 Understanding the Disharmony between Dropout and Batch Normalization by
— 2 _ — &
OQX 1 : p=EX), 0% =Var(X),X = olte = Variance Shift
~N(0,1) —» = a- — i i
X ( :J'\A a D X — X I EMaumg (X) — E(#] Va?.Maumg(X) — E(G’E) :
0 Ko e e Xiang Li' Shuo Chen' Xiaolin Hu? Jian Yang' 2018

T@ﬁﬁ Mode VarT@(X) == = VarMoving(x) = E(-)
n . D

%
Test Mode Var™ (X)=1 ¢ Var®"o(x) = E})

X~V (0,1) > X =, S x o ? = X—E Mm’iing (X) i Since we get a clear knowledge about the disharmony be-
' _________\/_V_tgf_"_"'ffgi):r_s______! tween Dropout and BN, we can easily develop several ap-

proaches to combine them together, to see whether an extra
improvement could be obtained. In this section, we intro-

35 T T T T
= e e 8859 Dropoun 5 I ah Dottineck duce two possible solutions in modifying Dropout. One is
el I to avoid the scaling on feature-map before every BN layer,
?I 3_' Jel } | J |I | by only applying Dropout after the last BN block. Another
a2k || J|', il |.|I| | is to slightly modify the formula of Dropout and make it less
|§ 20 |" | l'l ’. .l"lllll'lll AN sensitive to variance, which can alleviate the shift problem
e N T TR T -'..'I'.I:II,|I“I|'I|| | III I" HI and stabilize the numerical behaviors.
;g’ | 1y '.'.HI"I 'n,'llu'l I AV T RARRARARE
3 LTI B
E
I:I'blil ZIEI 4II:I E:U EII:I 100

BN layer index on DenseNet trained on CIFAR100
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Today

* CNNs
* Drawbacks of MLPs
e Benefits of convolution
* Operations in CNNs
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Administrative Notes

* Quiz #2
e Upload the PDF on ODTUclass.

* Paper Selection
* Feedback provided
* Deadline: This Sunday

CENG501



Convolutional Neural networks:
MOTIVATION
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Disadvantages of MLPs:
Dimensionality

The number of parameters in an MLP is high for practical problems

* e.g., for grayscale images with 1000x1000 resolution, a fully-connected layer with 1000 neurons
requires 10° parameters.

The number of parameters in an MLP increases quadratically with an increase in input
dimensionality

For example, for a fully-connected layer with n;,, input neurons and n,,; output neurons:
* Number of parameters: n;,; X Nyt

« Assuming proportional decrease in layer size, e.g. gy = N/ 10, gives: Ny, X gy = n2, /10
* Increasing n;, by d yields a change of 0(d?).

This is a problem because:
* More parameters => larger model size & more computational complexity.

CENG501



Disadvantages of MLPs:
Curse of Dimensionality

 For conventional ML methods:

 The number of required samples for
obtaining small error increases
exponentially with input dimensions

A 4

Illustration of the curse of dimensionality: in order to approximate a Lipschitz-continuous function composed
of Gaussian kernels placed in the quadrants of a d-dimensional unit hypercube (blue) with error £, one
requires ¢i(1/e9) samples (red points).

Figure: https://towardsdatascience.com/geometric-
foundations-of-deep-learning-94cdd45b451d
* For deep networks:

 This does not seem to be an issue for

deep networks (see e.g. Poggio & | |
Poggio, T., & Liao, Q. (2018). Theory |: Deep networks and the curse

LlaO, 2018) . of dimensionality. Bulletin of the Polish Academy of Sciences:
Technical Sciences, (6).
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Disadvantages of MLPs: Equivariance

* Vectorizing an image breaks patterns in consecutive pixels.

 Shifting one pixel means a whole new vector
* Makes learning more difficult
* Requires more data to generalize

stretch pixels into single column

~lww
input image

11

3.2

02 |-05]| 01 | 2.0 56

15 | 1.3 | 21 | 0.0 231
g [lo2z5| 02 (03 24
|14 2

-1.2

Z;

b

-96.8

437.9

61.95

f(mi; Wa b)

cat score

dog score

ship score

Figure: http://cs231n.github.io/linear-classify/



Equivariance vs. Invariance

e Equivariant problem: image segmentation.
* f(g(x)) = g(f(x))

https://www.mathworks.com/discovery/image-segmentation.html

* Invariant problem: object recognition.
* f(g(x)) = f(x)

* Pooling provides invariance, convolution
provides equivariance.

f(g(x)): “cat”

CENG501



An Alternative to MLPs

Solution (inspiration):
* Hubel & Wiesel: Brain neurons are not fully connected. They have local receptive fields

Ocular Dominance Columns
O Left eye Right eye

S R %
g « W
G \
.g 50
Q T surface
@D 404
o .
2 30 Cortical
Q J\/\/\ Layers
Q
0 20+ v
o
™ 10 . J\/f\/v —
5 Spatial
% 0 S T " r ; Frequency '«/WV N S I VT deep
-40 -20 0 20 40 N—=/ 1|\ I

Columns

Stimulus orientation (deg) Orientation Columns

)

Model of Striate Module in Cats
Hubel & WieseENI96801
http://fouriereng.hmc.edu/e180/lectures/retina/nodel.html



An Alternative to MLPs = wlawle]s

Solution (inspiration):
* Hubel & Wiesel: Brain y

neurons are not fully }
connected. They have local |
receptive fields I

Figure: N. Krueger, P. Janssen, S. Kalkan, M. Lappe, A. Leonardis, J. Piater, A.
J. Rodriguez-Sanchez, L. Wiskott, "Deep Hierarchies in the Primate Visual
Cortex: What Can We Learn For Computer Vision?", IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), 2013.
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An Alternative to MLPs

Solution: Neocognitron (Fukushima, 1979):

A neural network model unaffected by shift |
in position, applied to Japanese @

handwritten character recognition. i
H
shared lcon.necltions
* S (simple) cells: local feature extraction. nput : | Zconvalution
* C (complex) cells: provide tolerance to feature L rscognition
deformation, e.g. shift. (S-cells) (C-cells)  (classification)

) . Figure: Fukushima (2019), Recent advances in the deep
* Self-organized learning method. CNN neocognitron.
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An Alternative to MLPs

Solution:
Neocognitron’s self-organized learning method (Fukushima, 2019):

“For training intermediate layers of the neocognitron, the learning rule called AiS (Add-if-Silent)

IS used. Under the AIS rule, a new cell is generated and added to the network if all postsynaptic
cells are silent in spite of non-silent presynaptic cells. The generated cell learns the activity of the
presynaptic cells in one-shot. Once a cell is generated, its input connections do not change any more.
Thus the training process is very simple and does not require time-consuming repetitive calculation.”

CENG501



An Alternative to MLPs

Solution: Convolutional Neural Networks (Lecun, 1998)

* Gradient descent
* Weights shared
* Document recognition

C3:f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

e BT "r|— g
|T_

C5: layer .
120 Fai layer {?IlgTPUT

I
| Full CDI'IIJIECtiDn | Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

Lecun, 1998
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CNNs: Underlying Principle

T3

L2

ing”, MIT Press, 2016.

Figure: Goodfellow et al., “Deep Learn

CENG501



CNNs vs. MLPs: Curse of Dimensionality

* A fully-connected network has too many
parameters

* On CIFAR-10:

* Images have size 32x32x3 = one neuron in hidden
layer has 3072 weights!

e With images of size 1024x1024x3 = one ‘ ‘ @
neuron in hidden layer has 3,145,728 weights! ’ g e 0
* This explodes quickly if you increase the

number of neurons & layers.
Figure: Goodfellow et al., “Deep Learning”, MIT Press, 2016.

* Alternative: enforce local connectivity!

CENG501



CNNs vs. MLPs: Curse of Dimensionality

52
° Q ° When things go deep, an output may depend on

all or most of the input:

OOy O¥ONO.
oRcR0R¢C

3 2 ') :

Z1 Z2 Z3 T4

CENG501

Figure: Goodfellow et al., “Deep Learning”, MIT Press, 2016.




v:1805.07883v1 [stat. ML] 21 May 2018

How Many Samples are Needed to Learn a
Convolutional Neural Network?

Simon S. Du*!, Yining Wane*!, Xiyu Zhai?, Sivaraman Balakrishnan®, Ruslan
7 (=] (=] 3 ? ?
Salakhutdinov!, and Aarti Singh®

"Machine Learning Department, Carnegie Mellon University
2University of Cambridge
*Department of Statistics, Carnegie Mellon University

May 22, 2018

Abstract

A widespread folklore for explaining the success of convolutional neural network (CNN) is
that CNN is a more compact representation than the fully connected neural network (FNN)
and thus requires fewer samples for learning. We initiate the study of rigorously characterizing
the sample complexity of learning convolutional neural networks. We show that for learning
an m-dimensional convolutional filter with linear activation acting on a_d-dimensional input,
the sample complexity of achieving population prediction error of € is O(m/e2)!, whereas its
FNN counterpart needs at least Q(d/e?) samples. Since m < d, this result demonstrates the
advantage of using CNN. We further consider the sample complexity of learning a one-hidden-
layer CNN with linear activation where both the m-dimensional convolutional filter and the
r-dimensional output weights are unknown. For this model, we show the sample complexity
is O ((m+7)/€%) when the ratio between the stride size and the filter size is a constant. For
both models, we also present lower bounds showing our sample complexities are tight up to
logarithmic factors. Our main tools for deriving these results are localized empirical process
and a new lemma characterizing the convolutional structure. We believe these tools may inspire
further developments in understanding CNN.
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CNNs vs. MLPs: Curse of Dimensionality

* Parameter sharing
* Inregular ANN, each weight is independent

* In CNN, a layer might re-apply the same convolution and therefore, share the parameters
of a convolution

* Reduces storage and learning time

W 320x280

* For a neuron in the next layer:
e With ANN: 320x280x320x280 multiplications
* With CNN: 320x280x3x3 multiplications

Figure: Goodfellow et al., “Deep Learning”, MIT Press, 2016.
CENG501



CNNs vs. MLPs: Equivariance

* Equivariant to translation
* The output will be the same, just translated, since the weights are shared.

representation e .. translated
P s S « "a" | representation

. translated
image image

Figure: https://towardsdatascience.com/translational-invariance-vs-translational-equivariance-f9fbc8fca63a

* Not equivariant to scale or rotation.

CENG501



A crash course on Convolution

CCCCCCC



Formulating Signals in Terms of Impulse Signal

e[—1] w[2]
x[0] xz[n
! ] [D 1 ‘ | !
1 0 l 2 l l ves @
a[1]
[
T 2[0] x[0]8[n]
0 n
_I_
. xz[1]6[n — 1]
} x[1] "
+

x[—1]0[n + 1]

1 n
_|_
x[2]
‘ 2[2]6[n — 2]
2. n

CENG501
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Formulating Signals in Terms of Impulse Signal

x[n]=...+ x[=2]0|n + 2] + x[=1]0[n + 1] + x[O 0] n] + x[1]O[n = 1] +...

U Important to note

/ the *“-” sign
x[n] = i ﬁ[ﬂ(ﬁ[n —kl

k=—x e

—

Coefficients Basic Signals

Alan V. Oppenheim and Alan S. Willsky
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Unit Sample Response

* Now suppose the system i1s LTI, and define the unit sample
response h|n:

o[n] —— h[n]
J

From Time-Invariance:

oln-kl—— hin-k]

From Linearity:

x[n]= Y x[k]16[n -kl — ylnl= > x[k] hln — k] = x[n]+ hn]
k= —oc

k= —00

~ e
convolution sum

Alan V. Oppenheim and Alan S. Willsky
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Conclusion

The output of any DT LTI System 1s a convolution of
the mput signal with the unit-sample response, i.e.

Any DT LTI <— y[n]= x[n]*h[n]

+o0

- Ex[k] hin - k)

k:—%

As aresult, any DT LTI Systems are completely
characterized by 1ts unit sample response

Alan V. Oppenheim and Alan S. Willsky
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Power of convolution

* Describe a “system” (or operation) with a very simple function
(impulse response).

* Determine the output by convolving the input with the impulse
response

CENG501



Convolution

* Definition of continuous-time convolution

x(t) * h(t) = fx(r)h(t —1)drt

l’l(r) FZEJD > h(—r) Shdf" > /’l(z _ T) M.ﬂffﬂpz}? S

¥(D)h(t - 1) —2E s [ (T)h(t - T)dT

Alan V. Oppenheim and Alan S. Willsky
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Convolution

e Definition of discrete-time convolution

x[n] * h[n] =

z x[k]h[n — k]

Choose the value of n and consider i1t fixed

+20

yinl= Y x[klhln - k]

]

View as functions of & with n fixed

1] 123 1 21 2
e SN o
—1 —1-1
(k] From x[n] and A[n]
Iy 4 to x[k] and h[n-k]
0 {_1 k

!

CENG501

o 12 h[n — k]
| 11
_11 1 n T k
n-+1

Alan V. Oppenheim and Alan S. Willsky



Discrete-time 2D Convolution

* For images, we need two-dimensional convolution:

sli, 7] = (I * K) z ZI m,n|K|[i —m,j — n]

T

* These multi-dimensional arrays are called tensors
* We have commutative property:

sli, 7] = (I x K)[i, j] = ZZH—TH}—HH[IH n|

Tri T

* Instead of subtraction, we can also write (easy to drive by a change of
variables). This is called cross-correlation:

sli, 7] = (I * K)[i. Z ZI i+ m,j + n|K[m,n]

1T

CENG501



Example multi-dimensional convolution
(kernel: finite impulse response)

Input
Kernel
a b c d
w T
e f q h
iy z
1 q k [
l Output
aw + bz bw + cx cw + dz
— ™| ey + f2 Ffy gz | |+ gy + hz
https://github.com/vdumoulin/conv_arithmetic
ew | fr i fw | gz quw | hz
iy jz jy Ty ¢ ﬁcy 1z Figure: Goodfellow et al., “Deep Learning”, MIT Press, 2016.
CENG501




What can filters do?
Recta ngular f||ter

flm,n]

CENG501 Slide: A. Torralba



What can filters do?
Recta ngular f||ter

h[m,n]

flm,n]

CENG501 Slide: A. Torralba



What can filters do?
Recta ngular f||ter

CENG501 Slide: A. Torralba



What can filters do?
Sharpening filter

original

filter

1.7

coefficient

-0.35

CENG501

result

11.2

T I I
-0.25
Sharpened
(differences are

accentuated; constant
areas are left untouched).

Slide: A. Torralba



What can filters do?
Sharpening filter

before

CENG501 Slide: A. Torralba



What can filters do? Gaussian filter

Slide: A. Torralba



Global to Local Analysis

Slide: A. Torralba



What can filters do?
-1 1]

ik — i —

r 0 i Im

g[m,n]

CENG501 Slide: A. Torralba



What can filters do?
-1 1]

g JEm

® 1y

h[m,n]

g[m,n]

CENG501 Slide: A. Torralba



Overview of CNN
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CNN layers

* Operationsin a CNN:
e Convolution (in parallel) to produce pre-synaptic

activations
Detector: Non-linear function
Pooling: A summary of a neighborhood

* Pooling of a region in a feature/activation
map:

Max
Average
L2 norm

Weighted average acc. to the distance to the
center

CENG501

Complex layer terminology

Next layer

Simple layer terminology

i

Next layer

Convolutional Layer

Pooling stage

\

Pooling layer

Detector stage:
Nonlinearity
e.g., rectified linear

\

A

Detector layer: Nonlinearity
e.g., rectified linear

Convolution stage:
Affine transform

A

A

Convolution layer:
Affine transform

Input to layer

?

Input to layers

Figure: Goodfellow et al., “Deep Learning”, MIT Press, 2016.




An example architecture

RELU RELU

=)
=l
L
o
=
=l
L
£ &

RELU RELU

— [ I PRV A A )

_—

—> [k Wik NS VALY

CONV [ CONV

|

—> |

CONV

-

— AV B RN GRS

CONV

http://cs231n.githuls:i6/cdhvolutional-networks/



Regular
ANN

CNN

input layer

%
l\/l‘q
DX
2700

output layer

/
L

hidden layer 1 hidden layer 2
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OPERATIONS IN A CNN:
Convolution

CCCCCCC



Convolution in CNN

Input
Kernel
a b c d
* The weights correspond to
the kernel e Il 7l o || n
. . Y
* The weights are shared in a A |
channel (depth slice)
* We are effectively learning l Output
fllte IS that respond to aw + bz bw + cx cw + dr
some part/entities/visual- M| e | Sz | e
cues etc.
ew | fr fw + gr i gw | hx
iy + jz Jy + kz + ky + lz
CENG501

Figure: Goodfellow et al., “Deep Learning”, MIT Press, 2016.




Local connectivity in CNN
= Receptive fields

* Each neuron is connected to only a local neighborhood, i.e., receptive field

* The size of the receptive field =» another hyper-parameter.

CENG501



Connectivity in CNN

Local: The behavior of a neuron does not change other than being restricted to a subspace of
the input.

Each neuron is connected to slice of the previous layer
A layer is actually a volume having a certain width x height and depth (or channel)

A neuron is connected to a subspace of width x height but to all channels (depth)

Example: CIFAR-10
* Input: 32 x 32 x3 (3 for RGB channels)
* Aneuron in the next layer with receptive field size 5x5 has input from a volume of 5x5x3.

depth / %2

height =
SeTeTere] g @7>OQOQO
- -~ IO0000K) - —7

OOOOOK width /32

3

CENG501
http://cs231n.github.io/convolutional-networks/



Important parameters

e Depth (humber of channels)
* We will have more neurons getting input from the same receptive field

* This is similar to the hidden neurons with connections to the same input
 These neurons learn to become selective to the presence of different signals in the same receptive field

e Stride

* The amount of space between neighboring receptive fields
* |If itis small, RFs overlap more
e ltitis big, RFs overlap less

* How to handle the boundaries?

i.  Option 1: Don’t process the boundaries. Only process pixels on which convolution window can be placed
fully.

ii. Option 2: Zero-pad the input so that convolution can be performed at the boundary pixels.

Weights:

-2 || 2 1 2 1 -2 1 1 1 0| -1

0 1 2 || -1 1113 0 0 1 2 | 1 111-3]|0

CENG501
http://cs231n.github.io/convolutional-networks/



Padding
illustration

* Only convolution layers are
shown.

* Top: no padding =» layers
shrink in size.

* Bottom: zero padding =»
layers keep their size fixed.

...........

009  OOOOOOOOOOOOOO 1 O®

0]0)0)0]00/0/00)¢

OOOOOO0OOC

OODOOO0CO000OTTHAO

Figure 9.11: The effect of zero padding en network size: Consider a convolutional network
with a kernel of width six at every layer. In this example, do not use any pooling, so
only the convolution operation itself shrinks the network size. Top) In this convolutional
network, we do not use any implicit zero padding. This causes the representation to
shrink by five pixels at each layer. Starting from an input of sixteen pixels, we are only
able to have three convalutional layers, and the last layer does not ever move the kernel,
so argnably only two of the layers are truly convolutional. The rate of shrinking can
be mitigated by using smaller kernels, but smaller kernels are less expressive and same
shrinking is inevitable in this kind of architecture. Bottom) By adding five implicit zeroes
to each layer, we prevent the representation from shrinking with depth. This allows us

m(fEK‘]]{fﬁEl arbitrarily deep convolutional network. Figure: Goodfellow et al., “Deep Learning”, MIT Press, 2016.



Size

* Along a dimension:
 W:Size of the input
* F:Size of the receptive field
e §:Stride
 P: Amount of zero-padding

of the next layer

* Then: the number of neurons as the output of a convolution layer:

 If this number is not an integer, your strides are incorrect and your neurons cannot tile

nicely to cover the input volume

W—F+ 2P

1
S +

Weights:

1

0

-1

0 1 2 || -1 1 || -3

Zero padding

CENG501
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Size of the next layer

Arranging these hyperparameters can be problematic
Example:
If W=10, P=0, and F=3, then

W—F+2P+1_10—3+0+1_7+1
S B S S

i.e., S cannot be an integer other than 1 or 7.

Zero-padding is your friend here.

CENG501



Real example — AlexNet (Krizhevsky et al., 2012)

* Image size: 227%x227x3

. W=227, F=11, 5=4, p=0 > 211

+1 =55
(55 => the width of the convolution layer)
* Convolution layer: 55x55x96 neurons

(96: the depth, the number of channels)

* Therefore, the first layer has 55x55x96 = 290,400 neurons

* Each has 11x11x3 receptive field = 363 weights and 1 bias

* Then, 290,400x364 = 105,705,600 parameters just for the first convolution layer (if there were no
weight sharing)

* With weight sharing: 96 x 364 = 34,944

CENG501



Real example —
AlexNet (Krizhevsky et al., 2012)

* However, we can share the parameters
* For each channel (slice of depth), have the same set of weights
* If 96 channels, this means 96 different set of weights
* Then, 96x364 = 34,944 parameters
* 364 weights shared by 55x55 neurons in each channel

Example filters learned by Krizhevsky et al. Each of the 96 filters shown here is of size [11x11x3], and each one is shared by the
55*55 neurons in one depth slice. Notice that the parameter sharing assumption is relatively reasonable: If detecting a
horizontal edge is important at some location in the image, it should intuitively be useful at some other location as well due to

the translationally-invariant structure of images. There is ’therefcol_%'lc\el gggleed to relearn to detect a horizontal edge at every one of

the 55*55 distinct locations in the Conv layer output volume. http'//c5231n github io/convolutional-networks/



More on connectivity

Small RF & Stacking Large RF & Single Layer
* E.g., 3 CONV layers of 3x3 RFs e 7x7 RFs of single CONV layer
* Pros: * Pros?
* Same extent for these example
figures
* With non-linearity added on 2" * Cons:
and 3" layers =» More expressive! * One layer => Linear capacity
More representational capacity!  More parameters:
* Less parameters: (7x7xC)xC = 49CxC
3 layers x [(3 x3x C) x C] =27CxC
* Cons?

So, we prefer a stack of small filter sizes against big ones

CENG501 http://cs231n.github.io/convolutional-networks/



Implementation Details:
NumPy example

Suppose input is X of shape (11,11,4)
Depth slice at depth d (i.e., channel d): X[ :, :,d]
Depth column at position (x,y): X[ X,V : ]

F: 5, P:0 (no padding), S=2

* Output volume (V) width, height = (11-5+0)/2+1 = 4
Example computation for some neurons in first channel:

V[0,0,0]
V[1,0,0]
v[(2,0,0]
V[3,0,0]

np.
np.
np.
np.

sum(X[:5,:5,:] * WO) + bO
sum(X[2:7,:5,:] * W0)
sum(X[4:9,:5,:] * WO)

sum(X[6:11,:5,:] * WO)

+ b0
+ b0
+ b0

Note that this is just along one dimension (x)

CENG501
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Implementation Details:

NumPy example

* A second activation map (channel):

v[0,0,1]
v[l1,0,1]
v[i2,0,1]
v[3,0,1]
v[0,1,1]
V[2,3,1]

np.
np.
.sum(X[4:9,:5,:] * Wl) + bl

np

np.
.sum(X[:5,2:7,:]1 * Wl) + bl (example of going alongy)
sum(xX[4:9,6:11,:1 * Wl) + bl (oralong both)

np

np.

sum(X[:5,:5,:] * Wl1l) + bl
sum(X[2:7,:5,:] * W1l) + bl

sum(X[6:11,:5,:] * W1l) + bl

CENG501
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Summary. To summarize, the Conv Layer:

e Accepts avolume of size W7 x Hy X Dy
e Requires four hyperparameters:
o Number of filters K,
o their spatial extent F,
o the stride S,
o the amount of zero padding P.
Produces a volume of size Wy x Hy X Dy where:
o WgI(Wl—F+2P)/S—|—1
o Hy = (Hy — F + 2P)/S + 1 (i.e. width and height are computed equally by symmetry)
o Dg — K
With parameter sharing, it introduces F' - F' - Dy weights per filter, for a total of (F' - F' - Dy) - K weights
and K biases.
In the output volume, the d-th depth slice (of size Wo x Hs) is the result of performing a valid convolution
of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

http://cs231n.github.io/convolutional-networks/
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Types of Convolution:
Unshared convolution

* In some cases, sharing the weights does not make sense
* When?

* Different parts of the input might require different types of
processing/features

* In such a case, we just have a network with local connectivity

* E.g., a face.
* Features are not repeated across the space.

CENG501



Types of Convolution:
Dilated (Atrous) Convolution

Purpose: Increase effective receptive field size
without increasing parameters.

(a) (b)

Figure 1: Systematic dilation supports exponential expansion of the receptive field without loss of
resolution or coverage. (a) F is produced from Fj by a 1-dilated convolution; each element in F;
has a receptive field of 3 x 3. (b) F3 is produced from F; by a 2-dilated convolution; each element
in Fy has a receptive field of 7x 7. (c) F3 is produced from F3 by a 4-dilated convolution; each
element in F3 has a receptive field of 15x 15. The number of parameters associated with each layer
is identical. The receptive field grows exponentially while the number of parameters grows linearly.

CENG501

Published as a conference paper at ICLR 2016

MULTI-SCALE CONTEXT AGGREGATION BY
DILATED CONVOLUTIONS

Fisher Yu
Princeton University

Viadlen Koltun
Intel Labs

https://github.com/vdumoulin/conv_arithmetic



Types of Convolution: Transposed Convolution

Purpose: Increasing layer width+height (upsampling).

Input Kernel Output
0|0 0| 1 0|0 |1

011 011
=100 + 213 |+[0]| 2 i 0|l3|=]0]|4]|6

213 213
4|6 619 4 11219

Fig. 13.10.1 Transposed convolution layer with a 2 X 2 kernel.

Figure: https://d2l.ai/chapter_computer-vision/transposed-conv.html

The size of the output:

W—-F+2XP

* Regular convolution: 0 = S +1

 Transpose convolution:W =(0 —-1) XS+ F—2XP

CENG501



Types of Convolution:
Upsampling with Padding or Dilation

https://github.com/vdumoulin/conv_arithmetic

CENG501



Types of Convolution: 3D Convolution

Purpose: Work with 3D data, e.g. learn spatial + temporal representations for videos.

Q

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

w
o
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Types of Convolution: 1x1 Convolution

Purpose: Reduce number of channels.

H

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

CENG501



Types of Convolution: Separable Convolution

Purpose: Reduce number of parameters and multiplications.

-1 0 1 1
—2 0 2| = |2| x [-1 o0 1]
-1 0 1 1

LTl I

Input Kernel Intermediate
output

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

Kernel Output

CENG501



Types of Convolution:
Depth-wise Separable Convolution

Purpose: Reduce number of parameters and multiplications.

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
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Types of Convolution: Group Convolution

224 5 =1-=---- = ' " — . | 3 =

4--t,1jﬁ’ [ |3 dense | [dense€

______ - | - 1000
X 192 192 128 Max || | |
: 2048 2048
220\[[}€4rid Max 128 Max pooling

Jof 4 pooling pooling

3 T AlexNet (Krizhevsky et al.)




oag \dense
1000
048

AlexNet

dense

128 Max

13

128 2

\ 13
| dense
pooling 2

192
192

192

48

10N

Types of Convolution
Group Convolut

Purpose: Reduce number of parameters and multiplications.

Normal Convolution

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
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Types of Convolution: —
Group Convolution ”

e Benefits:

* Efficiency in training
(distribute groups to
different GPUs)

* Decrease in # of parameters

as the # of groups increases S oot o
5 20% 4 groups ‘ ' §

* Better performance? — o no groups
C>U 19% .......................................

e 2 groups 5 5

g_‘ 18G% | S ® :

S | ,

0.6 0.8 1 1.2

Model Parameters (# floats) 107

Figure: https://blog.yani.ai/filter-group-tutorial/

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
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Types of Convolution:
Deformable Convolution

Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., & Wei, Y. (2017). Deformable
convolutional networks. ICCV.

Purpose: Flexible receptive field.

AP
Q———D v |w |
FAETRY
offsets
offset field

input feature map output feature map

Figure 2: Ilustration of 3 x 3 deformable convolution.

CENG501

(a) (b) (c) (d)

Figure 1: Illustration of the sampling locations in 3 X 3
standard and deformable convolutions. (a) regular sam-
pling grid (green points) of standard convolution. (b) de-
formed sampling locations (dark blue points) with aug-
mented offsets (light blue arrows) in deformable convolu-
tion. (c)(d) are special cases of (b), showing that the de-
formable convolution generalizes various transformations
for scale, (anisotropic) aspect ratio and rotation.

e Cg-f{‘? = o
DG ? T
= = SSoos Li%%%
S S5232 -

(a) standard convolution (b) deformable convolution



Types of Convolution:
Deformable Convolution

Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., & Wei, Y. (2017). Deformable
convolutional networks. ICCV.

Bilinear interpolation for x(p).

R ={(-1,-1),(=1,0),...,(0,1),(1,1)}

defines a 3 x 3 kernel with dilation 1.
For each location pg on the output feature map y, we
have

y(Po) = Y w(pn)-x(Po + Pn), (1)

PnER

where p,, enumerates the locations in R.

In deformable convolution, the regular grid R is aug-
mented with offsets {Ap,|n=1,..., N}, where N = |R|.
Eq. (1) becomes

y(Po) = Y W(pn) %X(Po+Pr+Aps). ()

PnER

CENG501

Now, the sampling is on the irregular and offset locations
Pn+Ap,. As the offset Ap,, is typically fractional, Eq. (2)
is implemented via bilinear interpolation as

x(p) = ) G(a,p) - x(a), 3)

where p denotes an arbitrary (fractional) location (p =
Po + pn + Ap, for Eq. (2)), q enumerates all integral spa-
tial locations in the feature map x, and G(-, -) is the bilinear
interpolation kernel. Note that G is two dimensional. It is
separated into two one dimensional kernels as

G(Qs p) = g(stpm) : Q(Qy,py)g (4)

where g(a,b) = maz(0,1 — |a — b|). Eq. (3) is fast to
compute as G(q, p) is non-zero only for a few qs.

In the deformable convolution Eq. (2), the gradient w.r.t.
the offset Ap,, is computed as

8y(p0) _ Z W(Pn) . 8X(p0 + Pn + Apn)

0Ap, oy 0Ap,
0G(q, Po + Pr + APy,
- Z w(pn) - Z OBApn )X(Q) )

PrER

(7

where the term 2¢(%: p°+p”+Ap“) can be derived from
Eq. (4). Note that the offset Apn is 2D and we use 0Ap,
to denote Ap? and JApY, for simplicity.




Types of Convolution:
Position-sensitive convolution

* Learn to use position information when necessary

Convolutional Layer CoordConv Layer
C et 2
w'
Concatenate D
Cam Channels b Conv h’
{or Deconv) {or Decony)

I coordinate

1 coordinate ﬁ

An intriguing failing of convolutional neural networks
and the CoordConv solution 20 1 8

Rosanne Liu! Joel Lehman! Piero Molino! Felipe Petroski Such®
rosanne@uber.com Jjoel.lehman@uber.com plero@uber.com felipe.such@uber.com

CENG501 Eric Frank'

mysterefrank@uber.com asergeev@uber.com yosinski@uber.com

Alex Sergeev? Jason Yosinski'



Convolution demos & tutorials

https://github.com/vdumoulin/conv arithmetic

http://cs231n.github.io/assets/conv-demo/index.html

https://ezyang.github.io/convolution-visualizer/index.html

https://ikhlestov.github.io/pages/machine-learning/convolutions-types/

* https://towardsdatascience.com/a-comprehensive-introduction-to-
different-types-of-convolutions-in-deep-learning-669281e58215

CENG501


https://github.com/vdumoulin/conv_arithmetic
http://cs231n.github.io/assets/conv-demo/index.html
https://ezyang.github.io/convolution-visualizer/index.html
https://ikhlestov.github.io/pages/machine-learning/convolutions-types/
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

OPERATIONS IN A CNN:
Pooling
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Remember the motivation for CNNs:
P | ° S (simple) cells: local feature extraction.
OO | ﬂ g C (complex) cells: provide tolerance to deformation, e.g. shift.

* Apply an operation on the “detector” results to combine or to
summarize the answers of a set of units.

* Applied to each channel (depth slice) independently
* The operation has to be differentiable of course.

e Alternatives:
e Maximum

POOLING STAGE

DETECTOR STAGE
* S um Figure: Goodfellow et al., “Deep Learning”, MIT Press, 2016.
* Average
* Weighted average with distance from the value of the center pixel
* L2 norm

Second-order statistics?

* Different problems may perform better with different pooling
methods

* Pooling can be overlapping or non-overlapping http://cs231n.github.io/convolutional-networks/

CENG501



* Example

* Pooling layer with filters of size 2x2

Pooling

e With stride =2
* Discards 75% of the activations

* Depth dimension remains unchanged

Figure: Goodfellow et al., “Deep Learning”, MIT Press, 2016.

* Max pooling with F=3, S=2 or F=2, S=2 are quite common.

* Pooling with bigger receptive field sizes can be destructive

* Avg pooling is an obsolete choice. Max pooling is shown to work better in

practice.

224x224x64

pool

—_—

l

112x112x64

224 downsampling d

224

B 112

112

Single depth slice

1

2

4

max pool with 2x2 filters
and stride 2 6 8

CENG501
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1

1
6
2
2

7
1
3

8
0
4

http://cs231n.github.io/convolutional-networks/



Pooling

* Pooling provides invariance to small translation.

POOLING STAGE

Shifted
to right

DETECTOR STAGE

Figures: Goodfellow et al., “Deep Learning”, MIT Press, 2016.

* If you pool over different convolution operators, you can gain
invariance to different transformations.

CENG501



Pooling can downsample

» Especially needed when to produce an output with fixed-length on
varying length input.

m u @ 0 @ 0 Figure: Goodfellow et al., “Deep Learning”, MIT Press, 2016.

* If you want to use the network on images of varying size, you can arrange this
with pooling (with the help of convolutional layers)

CENG501



CNNs without pooling

CIFAR-10 classification error

. . o Model Error (%) # parameters
* “Striving  for  Simplicity:  The All L
Convolutional Net proposes to discard the oL ONNA 1oaty  Yoem
pooling layer in favor of architecture that SLCINA e M
only consists of repeated CONV layers. To ComPooLCNNE  9.33%  m135M
reduce the size of the representation they ALLCONE  olhn 1o
suggest using larger stride in CONV layer Combool CNN-C 051% 14 M
ALL-CNN-C 9.08% ~14M

once in a while.” ,
(ALL-CNN: No pooling)

https://arxiv.org/pdf/1412.6806.pdf
http://cs231n.github.io/convolutional-networks/
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Summary: Convolution & pooling

* Provide strong bias on the model and the solution

* They directly affect the overall performance of the
system

CENG501



OPERATIONS IN A CNN:
nonlinearity
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Non-linearity

e Sigmoid
* Tanh

e ReLU and its variants

* The common choice
e Faster

e Easier (in backpropagation etc.)
* Avoids saturation issues

CENG501



OPERATIONS IN A CNN:
normalization
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* From Krizhevsky et al. (2012):

generalization. Denoting by ai,y the activity of a neuron computed by applying kernel 7 at position

(z,y) and then applying the ReLLU nonlinearity, the response-normalized activity b;,y is given by

the expression

min(N—1,i4+n/2) o

bey = @yl | K+ > (d,)?
j=max(0,i—n/2)
where the sum runs over n “adjacent” kernel maps at the same spatial position, and N 1s the total
number of Kernels in the layer. The ordering of the kernel maps is of course arbitrary and determined
before training begins. This sort of response normalization implements a form of lateral inhibition
inspired by the type found in real neurons. creating competition for big activities amongst neuron
outputs computed using different kernels. The constants k, n, «v, and 3 are hyper-parameters whose
values are determined using a validation set; we used k = 2, n =5, a = 10=4, and 8 = 0.75. We

CENG501



Normalization

Batch Norm Layer Norm Instance Norm Group Norm

H,W

VEATKREN Gy

DR
L RS

N A SR

2, N
R

=+ Batch Norm
For each channel independently. z'*ﬁm”""“
£ 30
EZE'
26
Hy— = —— F—
2y 16 8 4 2

batch size (images per worker)

https://medium.com/syncedreview/facebook-ai-proposes-group-normalization-alternative-to-
batch-normalization-fb0699bffae7
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OPERATIONS IN A CNN:
fully connected layer
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Fully-connected layer

* At the top of the network for mapping the feature responses to
output labels

* Full connectivity
 Can be many layers
e Various activation functions can be used

C3:f. maps 16@10x10

INPUT C1: feature maps S4: f. maps 16@5x5
32x32 6@28x28 S2:f. maps C5: layer OUTPUT
6@14x1 120 Fo:laver 4%

I
Full comjlection | Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection



Alternative to FC: Global Average Pooling

“Network In Network”, https://arxiv.org/pdf/1312.4400.pdf

flatten FC layers

» Classes

FC
0.80.10.2 » Classes

Sum
of Each
Channel

0.80.10.2
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Alternative to FC: Global Average Pooling

“Network In Network”, https://arxiv.org/pdf/1312.4400.pdf
* We have n feature maps:

f1r s fuo

* Advantages:

— No parameters, hence significant
improvement in terms of overfitting

fi = 2 fi(x,y) problem.
X,y

— Forces the feature maps to capture
confidence maps.

e Classification scores are — It is more suitable to the nature of CNNs.

obtained by: — Provides invariance to spatial
S, = Z wf f; transformations.
i

* Global average pooling is then:

CENG501



P loss pP»error

¥ R

P cs fe f7 fs
'y 'y 'y F'Yy A F'Yy
A
W+ Wa W3 Wa Ws Ws Wy Ws
forward
X v Vv ¥ ¥V V¥ ¥ \ .4 \ 4
backward
vy v v 4 \ 4 A 4 A v
derror derror derror derror derror derror derror derror
awi dwz aws dwa dws dwe dwy dws

Fig: http://www.robots.ox.ac.uk/~vgg/practicals/cnn/

raining a CNN
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Feed-forward through convolution

940 DO e

F
w W3 l _ . -1
T\ .. net; = sz Aiyi-1
Wy -j=:1

Forexample
~1 -1 -1
@ @ @ @ net! = wyal™t + wpal~s wal
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Feedforward:

Backpropagation through af = o(net})

F
. _ -1
neti = Z W] o al-+j_1
Jj=1

Gradient wrt. weights:

dL
=2
aWk
dL d0al 0L 0d)
=—F—+—F>—..
da; 0wy,  da, 0wy
X 0L 0q;
. aaf aWk

l

dL 0da. Onet;

i da. dnet! owy
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Backpropagation through

Feedforward:
g a(ne tll)

F
. _ -1
neti = z W] o al-+j_1
=

Gradient wrt. input layer:

L
dakt
_ oL dal onett 0L dal onet)
~ 0al onet! 9al? T dab dnet’ dai!
dL 0dab Onet}
dab dnet} dai?!
oL oL oL
~onetl ™ " onetl " " onet ™
In general:
oL oL
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Feed-forward through pooling

F
1 _ -1
@ @ Q @ a; = max {ai+j—1 =1

For example:
net! = max{a!"%,a}?, a1t}

CENG501




Backpropagation through

0 €

CENG501

Feedforward:

a; = max{a%;}-_l 5:1
Using derivative of max:
oL dL Onet,

dal='  Onet! dal?

(oL i

, a;” ~ is max
= dnet,,
\ 0, otherwise

This requires that we save the index of the max
activation (sometimes also called the switches)
so that gradient “routing” is handled efficiently
during backpropagation.



Backpropagation

* Backpropagation through non-linearity and fully-connected layers are straight-forward
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Designing CNN Architectures
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A Blueprint for CNNs

INPUT -> [[CONV -> RELU]*N -> POOL?]*M -> [FC -> RELU]*EK -> FC

where the * indicates repetition, and the pooL? indicates an optional pooling layer. Moreover, N >= 0 (and
usually N <= 3), M >= 0, K >= 0 (and usually & < 3 ). For example, here are some common ConvNet
architectures you may see that follow this pattern:

e INPUT -> FC ,implements a linear classifler Here N = M = K = 0.

e INPUT -> CONV -> RELU —> FC

® INPUT -> [CONV -> RELU -> POOL]*2 -> FC -> RELU —> FC .Here we see that there is a single
CONV layer between every POOL layer.

e INPUT -> [CONV —-> RELU —-> CONV -> RELU -> POOL]*3 —-> [FC —-> RELU]*2 -> FC Here we see
two CONV layers stacked before every POOL layer. This is generally a good idea for larger and deeper
networks, because multiple stacked CONV layers can develop more complex features of the input volume
before the destructive pooling operation.

http://cs231n.github.io/convolutional-networks/
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D e m O https://poloclub.github.io/cnn-explainer/

The following doesn’t work, try cnn-explainer instead

http://scs.ryerson.ca/~aharley/vis/conv/
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Fully Convolutional Networks (FCNs)

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for
semantic segmentation. CVPR.

* Fully-connected layers limit the input size

* Use convolution, especially 1x1
convolution to reduce channels and layer

Slze
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Figure 1. Fully convolutional networks can efficiently learn to

make dense predictions for per-pixel tasks like semantic segmen-

Figure 2. Transforming fully connected layers into convolution tation

layers enables a classification net to output a heatmap. Adding
layers and a spatial loss (as in Figure 1) produces an efficient ma-

chine for end-to-end dense learning. CENG501



General rules of thumb:
The input layer

* The size of the input layer should be divisible by 2 many times
* Hopefully a power of 2

*E.g,
* 32 (e.g. CIFAR-10),
* 64,
e 96 (e.g. STL-10), or
e 224 (e.g. common ImageNet ConvNets),
e 384, and 512 etc.
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General rules of thumb:
The conv layer

Small filters with stride 1
Usually zero-padding applied to keep the input size unchanged

In general, for a certain F, if you choose

P=(F-1)/2,
the input size is preserved (for S=1):
W—F+ 2P
S + 1

Number of filters:
* A convolution channel is more expensive compared to fully-connected layer.
* We should keep this as small as possible.
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General rules of thumb:
The pooling layer

* Commonly,
e F=2 with S=2
* Or: F=3 with S=2

* Bigger F or S is very destructive

CENG501



Taking care of downsampling

* At some point(s) in the network, we need to reduce the size

* If conv layers do not downsize, then only pooling layers take care of
downsampling

* If conv layers also downsize, you need to be careful about strides
etc. so that

(i) the dimension requirements of all layers are satisfied and
(ii) all layers tile up properly.

e S=1 seems to work well in practice
* However, for bigger input volumes, you may try bigger strides



Trade-offs in architecture

» Between filter size and number of layers (depth)

* Keep the layer widths fixed.

» “When the time complexity is roughly the same, the deeper
networks with smaller filters show better results than the

shallower networks with larger filters.”

* Between layer width and number of layers (depth)

* Keep the size of the filters fixed.

* “We find that increasing the depth leads to considerable gains,
even the width needs to be properly reduced.”

* Between filter size and layer width
* Keep the number of layers (depth) fixed.
* No significant difference

CENG501

This CVPR2015 paper is the Open Access version, provided by the Computer Vision Foundation.
The authoritative version of this paper is available in [EEE Xplore.

Convolutional Neural Networks at Constrained Time Cost

Kaiming He Jian Sun

Microsoft Research

{kahe, jiansun}fmicrosoft.com

4.4. Is Deeper Always Better?

The above results have shown the priority of depth for
improving accuracy. With the above trade-offs, we can have
a much deeper model if we further decrease width/filter
sizes and increase depth. However, in experiments we find
that the accuracy is stagnant or even reduced in some of our
very deep attempts. There are two possible explanations:
(1) the width/filter sizes are reduced overly and may harm
the accuracy, or (2) overly increasing the depth will degrade
the accuracy even if the other factors are not traded. To
understand the main reason, in this subsection we do not
constrain the time complexity but solely increase the depth
without other changes.



Memory

Main sources of memory load:

* Activation maps:

* Training: They need to be kept during training so that backpropagation can be
performed

* Testing: No need to keep the activations of earlier layers

* Parameters:
* The weights, their gradients and also another copy if momentum is used

* Data:
* The originals + their augmentations

* If all these don’t fit into memory,
* Load your data batch by batch from disk
* Decrease the size of your batches



Memory constraints

* Using smaller RFs with more layers means more memory since you need to store
more activation maps

* In such memory-scarce cases,
 the first layer may use bigger RFs with S>1
* information loss from the input volume may be less critical than the following layers

* E.g., AlexNet uses RFs of 11x11 and S = 4 for the first layer.
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How to initialize the weights?

e Option 1: randomly 1

e E.g. using He initialization (check Week 8 slides)
* This has been shown to work nicely in the literature

0.95+

0.9+

Error

» Option 2: — gavertud =1 ous
* Train/obtain the “filters” elsewhere and use them as the | e AVarlul = 1 Xavier
Welghts 0'750 05 1 1.‘5 2 2i5 3
e Unsupervised pre-training using image patches o
(WindOWS) He et al., “Delving Deep into Rectifiers: Surpassing Human-Level

Performance on ImageNet Classification”, 2015.

* Avoids full feedforward and backward pass, allows the
search to start from a better position

* You may even skip training the convolutional layers

CENG501
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Transfer learning:
using a trained CNN & fine-tuning
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Using trained CNN

* Also called transfer learning
* Rare to design and train a CNN from scratch!

* Take a trained CNN, e.g., AlexNet

* Use a trained CNN as a feature detector:
 Remove the last fully-connected layer
* The activations of the remaining layer are called CNN codes
* This yields a 4096 dimensional feature vector for AlexNet

* Now, add a fully-connected layer for your problem and train a linear classifier on your
dataset.

* Alternatively, fine-tune the whole network with your new layer and outputs

* You may limit updating only to the last layers because earlier layers are generic, and
quite dataset independent

* Pre-trained CNNs



CNN Features off-the-shelf: an Astounding Baseline for Recognition

CVAP, KTH (Royal Institute of Technology )

CN N ~ Ali Sharif Razavian Hossein Azizpour Josephine Sullivan Stefan Carlsson
{ Stockholm, Sweden

Representation |

{:aza'.rian, azizpour, sullivan, stefanc}lcsc. kth. se
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Finetuning

1.If the new dataset is small and similar to the original dataset used to train the CNN:
* Finetuning the whole network may lead to overfitting
e Just train the newly added layer

2.1f the new dataset is big and similar to the original dataset:
* The more, the merrier: go ahead and train the whole network

3.I1f the new dataset is small and different from the original dataset:

* Not a good idea to train the whole network

* However, add your new layer not to the top of the network, since those parts are very dataset
(problem) specific
* Add your layer to earlier parts of the network

4.1f the new dataset is big and different from the original dataset:

* We can “finetune” the whole network
* This amounts to a new training problem by initializing the weights with those of another network
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More on finetuning

* You cannot change the architecture of the trained network (e.g.,
remove layers) arbitrarily

* The sizes of the layers can be varied
* For convolution & pooling layers, this is straightforward

* For the fully-connected layers: you can convert the fully-connected layers
to convolution layers, which makes it size-independent.

* You should use small learning rates while fine-tuning
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See also:

Preprint release. Full citation: Yosinski J, Clune J, Bengio Y, and Lipson H. How transferable are features in deep
neural networks? In Advances in Meural Information Processing Systems 27 (NIPS "14), NIPS Foundation, 2014.

How transferable are features in deep neural
networks?

Jason Yosinski,! Jeff Clune,” Yoshua Bengio,” and Hod Lipson®
| Dept. Computer Science, Comell University
? Dept. Computer Science, University of Wyoming
 Dept Computer Science & Operations Research, University of Montreal
“ Dept. Mechanical & Aerospace Enginzering. Cornell University
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Visualizing and Understanding
CNNs
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Many different mechanisms

* Visualize layer activations
* Visualize the weights (i.e., filters)

* Visualize examples that maximally activate a neuron

* Visualize a 2D embedding of the inputs based on their CNN codes
* Occlude parts of the window and see how the prediction is affected
* Data gradients

CENG501



Visualize activations during training

* Activations are dense at the beginning.
* They should get sparser during training.

* |f some activation maps are all zero for many inputs, dying neuron problem =>
high learning rate in the case of RelUs.

http://cs231n.github.io/convolutional-networks/

Typical-looking activations on the first CONV layer (left), and the 5th CONV layer (right) of a trained AlexNet looking at a picture
of a cat. Every box shows an activation map corresponding to some filter. Notice that the activations are sparse (most values
are zero, in this visualization shown in black) and mostly local.



Visualize the weights

 We can directly look at the
filters of all layers

* First layer is easier to
Interpret

* Filters shouldn’t look noisy

Typical-looking filters on the first CONV layer (left), and the 2nd CONV layer (right) of a trained AlexNet. Notice that the first-layer
weights are very nice and smooth, indicating nicely converged network. The color/grayscale features are clustered because the
AlexNet contains two separate streams of processing, and an apparent consequence of this architecture is that one stream
develops high-frequency grayscale features and the other low-frequency color features. The 2nd CONV layer weights are not as
interpretable, but it is apparent that they are still smooth, well-formed, and absent of noisy patterns.

http://cs231n.github.io/convolutional-networks/
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Visualize the inputs that maximally activate a neuron

Rich feature hierarchies for accurate object detection and semantic segmentation
Tech report (v5)

Keep track of which images activate a neuron most

Ross Girshick Jeff Donahue Trevor Darrell  Jitendra Malik
UC Berkeley

{rbg, jdonahue, trevor, malik}feecs.berkeley . edn

Maximally activating images for some POOL5 (5th pool layer) neurons of an AlexNet. The activation values and the receptive
field of the particular neuron are shown in white. (In particular, note that the POOLS5 neurons are a function of a relatively large

) . ) ) i WAE http://cs231n.github.io/convolutional-networks/
portion of the input image!) It can be seen that some neurons are responsive to upper bodies, text, or specular highlights.
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Embed the codes in a lower-dimensional space

* Place images into a 2D space such that images which produce similar

CNN codes are placed close.

* You can use, e.g., t-Distributed Stochastic Neighbor Embedding (t-SNE)

i ¥ -
;!-;v '4'.‘17‘"\' W ’
o ol !

t-SNE embedding of a set of images based on their CNN codes. Images that are nearby each other are also close in the CNN
representation space, which implies that the CNN “"sees" them as being very similar. Notice that the similarities are more often
class-based and semantic rather than pixel and color-based. For more details on how this visualization was produced the
associated code, and more related visualizations at different scales refer to t-SNE visualization of CNN codes.

http://cs231n.github.io/convolutional-networks/ CENG501
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Figure 1 : lllustration of t-SNE on MNIST dataset

Figure: Laurens van der Maaten and Geoffrey
Hinton
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Occlude parts of the image

e Slide an “occlusion window”
over the image

* For each occluded image,
determine the class prediction
confidence/probability.

Three input images (top). Notice that the occluder region is shown in grey. As we slide the occluder over the image we record
the probability of the correct class and then visualize it as a heatmap (shown below each image). For instance, in the left-most
image we see that the probability of Pomeranian plummets when the occluder covers the face of the dog, giving us some level
of confidence that the dog's face is primarily responsible for the high classification score. Conversely, zeroing out other parts of
the image is seen to have relatively negligible impact.

http://cs231n.github.io/convolutional-networks/
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Data gradients

dumbbell

* Generate an image that maximizes the
class score.

More formally. letS,(I)betheseoteofmeclassc,oomwledbythechssnﬁcauonlayerofuw
CoquetforanmgeI We would like to find an Lo-regularised image, such that the score S, is

high: .
argmax S.(I) = ||, 0]
where A is the regularisation par rAlocally ptimal [ can be found by the back-propagation

bell pepper

e Use: Gradient ascent!

washing machine computer keyboard

Deep Inside Convolutional Networks: Visualising
Image Classification Models and Saliency Maps

Karen Simonyan Andrea Vedaldi Andrew Zisserman
Visual Geometry Group, University of Oxford 4 g b i
{karen,vedaldi,az}@robots.ox.ac.uk 2014 goose ostrich limousine
Figure 1: Numerically computed images, illustrating the class appearance models, learnt by a
CENG501 ConvNet, trained on ILSVRC-2013. Note how different aspects of class appearance are captured

in a single image. Better viewed in colour.



Data gradients

* The gradient with respect to the input is high
for pixels which are on the object

We start with a motivational example. Consider the linear score model for the class o
S.(I) =wlI+b,, (2)

where the image [ is represented in the vectorised (one-dimensional) form, and w,. and b, are respec-
tively the weight vector and the bias of the model. In this case. it 1s easy to see that the magnitude
of elements of w defines the importance of the corresponding pixels of I for the class .

In the case of deep ConvNets, the class score S.(]) is a highly non-linear function of I, so the
reasoning of the previous paragraph can not be immediately applied. However, given an image
I, we can approximate S.(I) with a linear function in the neighbourhood of Iy by computing the
first-order Taylor expansion:

Se(I) m~ wl I +b, (3)
where w is the derivative of 5. with respect to the image [ at the point (image) [
a8, |
1= — . 4)
u a1 B i

Deep Inside Convolutional Networks: Visualising
Image Classification Models and Saliency Maps

Karen Simonyan Andrea Vedaldi Andrew Zisserman
Visual Geometry Group, University of Oxford

{karen,vedaldi, az}@robots.ox.ac.uk 2014 CENG501



Class Activation Maps

* Weighted combination Ol=_[0]
Of the feature maps C C C e O W2\>‘ tel::i;f ian
before GAP: Y 44" Q@ ©

Class Activation Mapping

Class
= e = Wi % = Activation
Map
» ‘ ‘ . (Australian terrier)

Figure 2. Class Activation Mapping: the predicted class score is mapped back to the previous convolutional layer to generate the class
activation maps (CAMs). The CAM highlights the class-specific discriminative regions.

M(xy) = ) wifi(x,y)
k

‘+‘W2*

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep features for discriminative localization,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2921-2929.
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Class Activation Maps

 GradCAM:

o = z S,
0fk(x,¥)
x’y

M®(x,y) = ReLU ay fre(x,y)

k

R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh, and D. Batra, “Grad-cam:
Why did you say that? visual explanations from deep networks via gradient-based
localization,” arXiv preprint arXiv:1610.02391, 2016.

Network GradCAM

GradCAM++

VGG16

Resnet50

Figure: https://pypi.org/project/grad-cam/

Chattopadhay, A., Sarkar, A., Howlader, P., & Balasubramanian, V. N. (2018, March).
Grad-cam++: Generalized gradient-based visual explanations for deep convolutional
networks. In 2018 IEEE Winter Conference on Applications of Computer Vision
(WACV) (pp. 839-847). IEEE.
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Feature inversion

° Lea rns to reconstru Ct an |m age from |ts Understanding Deep Image Representations by Inverting Them
re p rese ntatl on Aravindh Mahendran Andrea Vedaldi

University of Oxford University of Oxford

This section introduces our method to compute an ap-
proximate inverse of an image representation. This is for-
mulated as the problem of finding an image whose repre-
sentation best matches the one given [ ]. Formally, given
a representation function ® : RH>*Wx*C _ Rd and a rep-
resentation $y = P(xg) to be inverted, reconstruction finds
the image x € R#*WXC that minimizes the objective:

x* = argmin ((P(x),Pg) + A\R(x) (1)

XERHXxWxC

where the loss £ compares the i |/?,ge representation ¢(x) to
the target one @0 and R : RH xWxC S Risa regu]ariser Figure 1. What is encoded by a CNN? The figure shows five

. . . possible reconstructions of the reference image obtained from the

captunng a natural image prior. 1,000-dimensional code extracted at the penultimate layer of a ref-

. . . erence CNN[ | 3] (before the softmax is applied) trained on the Im-

L] Reg u Ia rl Zat 10N te rrm h ere iIs th e key fa Cto r’ e. g. ageNet data. From the viewpoint of the model, all these images are

practically equivalent. This image is best viewed in color/screen.

a combination of the two terms:

Ra(x) = [xll2 Rya(e) = 3 (@ige1 = 265)* + @is15 —255)°)

4,3

[Nk
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Feature inversion with perceptual losses

relub_3

Figure from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016.
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Visualization distill.pub

https://distill.pub/2017/feature-visualization/

https://distill.pub/2018/building-blocks/
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Fooling ConvNets

* Given an image [ labeled as [4, find
minimum “r” (noise) such that I + r is
classified as a different label, [,.

* |.e., minimize:

argmin loss(I +r,1,) + c|r]
r

+.007 x

.

“panda”
57.7% confidence

: =2 T+
Sign(Vad(0,2,9)  ion(v,J(6,,y))
“nematode” “gibbon™
8.2% confidence 99.3 % confidence
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Publizhed as a conference paper at ICLE 2015

EXPLAINING AND HARNESSING
ADVERSARIAL EXAMPLES

lan J. Goodfellow, Jonathon Shlens & Christian Szegedy
Google Inc., Mountain View, CA
{goodfellow, shlens, szegedy}@google. com

Intriguing properties of neural networks

Christian Szegedy Wojciech Zaremba Ilya Sutskever Joan Bruna
Google Inc. Mew York University Google Inc. Mew York University
Dumitru Erhan Ian Goodfellow Kob Fergus
Google Inc. University of Montreal New York University
Facebook Inc.
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More on adversarial examples

* How to classify adversarial examples correctly?
* You need to train your network against them!
* That is very expensive and training against all kinds of adversarial examples is not possible

* However, training against adversarial examples increases accuracy on non-adversarial examples
as well.

* They are still an unsolved issue in neural networks
* Adversarial examples are problems of any learning method

e See |. Goodfellow for more on adversarial examples:
* http://www.kdnuggets.com/2015/07/deep-learning-adversarial-examples-misconceptions.html
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There Is No Free Lunch In Adversarial Robustness
(But There Are Unexpected Benefits)

Dimitris Tsipras*® Shibani Santurkar* Logan Engstrom
MIT MIT MIT
tsipras@mit.edu shibani@mit.edu engstrom@mit.edu

Alexander Turner Aleksander Madry
MIT MIT
turneram@mit . edu madry@mit.edu 20 1 8

* “We provide a new understanding of the fundamental nature of
adversarially robust classifiers and how they differ from standard models. In
particular, we show that there provably exists a trade-off between the
standard accuracy of a model and its robustness to adversarial
perturbations. We demonstrate an intriguing phenomenon at the root of this
tension: a certain dichotomy between “robust” and “non-robust” features.
We show that while robustness comes at a price, it also has some surprising
benefits. Robust models turn out to have interpretable gradients and feature
representations that align unusually well with salient data characteristics. In
fact, they yield striking feature interpolations that have thus far been
possible to obtain only using generative models such as GANs.”
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