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Per-parameter Methods: 
Adaptive Moments (Adam)

• A variation of RMSprop + 
momentum

• Incorporates first & second order 
moments

• Bias correction needed to get rid of 
bias towards zero at initialization

Algorithm taken from: 
Goodfellow et al., Deep Learning, 2016.
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Model Complexity

• Models range in their flexibility to fit arbitrary data

complex model

unconstrained

large capacity may
allow it to memorize
data and fail to
capture regularities

simple model

constrained

small capacity may
prevent it from 
representing all
structure in data

low bias

high variance

high bias

low variance

Slide Credit: Michael Mozer

https://cs231n.github.io/ https://cs231n.github.io/

CENG501



How do you spot overfitting?
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Avoiding Overfitting

• Increase training set size
• Make sure effective size is growing; redundancy doesn’t help

• Incorporate domain-appropriate bias into model
• Customize model to your problem

• Tune hyperparameters of model
• number of layers, number of hidden units per layer, connectivity, etc.

• Regularization techniques

Slide Credit: Michael Mozer
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Regularization: Dropout

• Feed-forward only on active units

• Can be trained using SGD with mini-batch
• Back propagate only “active” units.

•  One issue:
• Expected output 𝑥 with dropout: 

• 𝐸 𝑥′ =
1

𝑁
σ𝑖 𝑝𝑥𝑖 + 1 − 𝑝 0 = 𝑝

1

𝑁
σ𝑖 𝑥𝑖 = 𝑝𝐸[𝑥]

• To have the same scale at testing time (no dropout), multiply test-
time activations with 𝑝.

Fig: Srivastava et al., 2014

Fig: Srivastava et al., 2014
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Garipov et al., “Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs”, 2018.

See also: Kuditipudi et al., “Explaining Landscape Connectivity of Low-cost Solutions for Multilayer Nets”, 2020.
- Explains this with noise stability, dropout stability.



Dropout as Ensemble Training Method

“Dropout performs gradient 
descent on-line with respect to 
both the training examples and 
the ensemble of all possible 
subnetworks.”

CENG501

Pierre Baldi and Peter J Sadowski. Understanding dropout. In Advances in neural information 
processing systems, pp. 2814–2822, 2013.

Fig: Srivastava et al., 2014



Data Augmentation

http://blcv.pl/static//2018/02/27/demystifying-face-recognition-v-
data-augmentation/ CENG501



When to stop training

Slide Credit: Michael Mozer

Val Set

Training Set
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Data Preprocessing: 
Normalization (or conditioning)
• Necessary if you believe that your dimensions have different scales

• Might need to reduce this to give equal importance to each dimension

• Normalize each dimension by its std. dev. after mean subtraction:
𝑥𝑗𝑖

′ = 𝑥𝑗𝑖 − 𝜇𝑖

𝑥𝑗𝑖
′′ = 𝑥𝑗𝑖

′ /𝜎𝑖

• Effect: Make the dimensions have the same scale

http://cs231n.github.io/neural-networks-2/
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Initial Weight 
Normalization

• Solution:

• Get rid of 𝑛 in 𝑉𝑎𝑟 𝑠 = (𝑛 
Var(w))Var(x)

• How? 

• Scale the initial weights by 𝑛

• Why? Because: 𝑉𝑎𝑟 𝑎𝑋 = 𝑎2𝑉𝑎𝑟 𝑋

• Standard Initialization (top plots in Figure 
6 & 7):

𝑤𝑖 ∼ 𝑈 −
1

𝑛
,

1

𝑛

       which yields 𝑛 𝑉𝑎𝑟 𝑤 =
1

3
 

      because variance of 𝑈[−𝑟, 𝑟] is 
𝑟2

3
 [1].

Figures: Glorot & Bengio, “Understanding the difficulty of training deep feedforward neural networks”, 2010. 

Xavier initialization for symmetric activation functions (Glorot & Bengio):

𝑤𝑖 ∼ 𝑁 0,
2

𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡
 

With Uniform distribution:

𝑤𝑖 ∼ 𝑈 −
6

𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡
,

6

𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡[1] https://proofwiki.org/wiki/Variance_of_Continuous_Uniform_Distribution CENG501



Alternative: Batch Normalization
• Normalization is differentiable

• So, make it part of the model (not only at the 
beginning)

• I.e., perform normalization during every step 
of processing

• More robust to initialization

• Shown to also regularize the network in some 
cases (dropping the need for dropout)

• Issue: How to normalize at test time?
1. Store means and variances during training, 

or

2. Calculate mean & variance over your test 
data

• PyTorch: use model.eval() in test time.
Ioffe & Szegedy, “Batch Normalization: Accelerating Deep Network Training by 
Reducing Internal Covariate Shift”, 2015.
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Alternative Normalizations

https://medium.com/syncedreview/facebook-ai-proposes-group-normalization-alternative-to-
batch-normalization-fb0699bffae7
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2018
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Today

• CNNs
• Drawbacks of MLPs

• Benefits of convolution

• Operations in CNNs
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Administrative Notes

• Quiz #2
• Upload the PDF on ODTUclass.

• Paper Selection
• Feedback provided

• Deadline: This Sunday
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Convolutional Neural networks: 
MOTIVATION
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Disadvantages of MLPs: 
Dimensionality

• The number of parameters in an MLP is high for practical problems
• e.g., for grayscale images with 1000x1000 resolution, a fully-connected layer with 1000 neurons 

requires 109 parameters.

• The number of parameters in an MLP increases quadratically with an increase in input 
dimensionality

• For example, for a fully-connected layer with 𝑛𝑖𝑛 input neurons and 𝑛𝑜𝑢𝑡 output neurons:
• Number of parameters: 𝑛𝑖𝑛 × 𝑛𝑜𝑢𝑡

• Assuming proportional decrease in layer size, e.g. 𝑛𝑜𝑢𝑡 = 𝑛𝑖𝑛/10, gives: 𝑛𝑖𝑛 × 𝑛𝑜𝑢𝑡 = 𝑛𝑖𝑛
2 /10

• Increasing 𝑛𝑖𝑛 by 𝑑 yields a change of 𝒪(𝑑2).

• This is a problem because:
• More parameters => larger model size & more computational complexity.

• Teaser for CNNs: 
• Input size does not affect model size (in general)
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Disadvantages of MLPs: 
Curse of Dimensionality

• For conventional ML methods:
• The number of required samples for 

obtaining small error increases 
exponentially with input dimensions

• For deep networks:
• This does not seem to be an issue for 

deep networks (see e.g. Poggio & 
Liao, 2018).

CENG501

Figure: https://towardsdatascience.com/geometric-
foundations-of-deep-learning-94cdd45b451d

Poggio, T., & Liao, Q. (2018). Theory I: Deep networks and the curse 
of dimensionality. Bulletin of the Polish Academy of Sciences: 
Technical Sciences, (6).



Disadvantages of MLPs: Equivariance

• Vectorizing an image breaks patterns in consecutive pixels. 
• Shifting one pixel means a whole new vector

• Makes learning more difficult 

• Requires more data to generalize

CENG501 Figure: http://cs231n.github.io/linear-classify/



Equivariance vs. Invariance

• Equivariant problem: image segmentation. 
• f(g(x)) = g(f(x)) 

• Invariant problem: object recognition. 
• f(g(x)) = f(x)

• Pooling provides invariance, convolution 
provides equivariance.

CENG501

https://www.mathworks.com/discovery/image-segmentation.html

f(x): “cat” f(g(x)): “cat”

g(x)



An Alternative to MLPs

Solution (inspiration): 

• Hubel & Wiesel: Brain neurons are not fully connected. They have local receptive fields

http://fourier.eng.hmc.edu/e180/lectures/retina/node1.html
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An Alternative to MLPs

Solution (inspiration): 

• Hubel & Wiesel: Brain 
neurons are not fully 
connected. They have local 
receptive fields

CENG501

Figure: N. Krueger, P. Janssen, S. Kalkan, M. Lappe, A. Leonardis, J. Piater, A. 
J. Rodriguez-Sanchez, L. Wiskott, "Deep Hierarchies in the Primate Visual 
Cortex: What Can We Learn For Computer Vision?", IEEE Transactions on 
Pattern Analysis and Machine Intelligence (PAMI), 2013.



An Alternative to MLPs

Solution: Neocognitron (Fukushima, 1979): 

A neural network model unaffected by shift 
in position, applied to Japanese 
handwritten character recognition.

• S (simple) cells: local feature extraction.

• C (complex) cells: provide tolerance to 
deformation, e.g. shift.

• Self-organized learning method.

CENG501

Figure: Fukushima (2019), Recent advances in the deep 
CNN neocognitron.



An Alternative to MLPs

Solution: 

Neocognitron’s self-organized learning method (Fukushima, 2019): 

CENG501

“For training intermediate layers of the neocognitron, the learning rule called AiS (Add-if-Silent)

is used. Under the AiS rule, a new cell is generated and added to the network if all postsynaptic

cells are silent in spite of non-silent presynaptic cells. The generated cell learns the activity of the

presynaptic cells in one-shot. Once a cell is generated, its input connections do not change any more.

Thus the training process is very simple and does not require time-consuming repetitive calculation.”



An Alternative to MLPs

Solution: Convolutional Neural Networks (Lecun, 1998)
• Gradient descent

• Weights shared

• Document recognition

CENG501

Lecun, 1998



CNNs: Underlying Principle

CENG501

Figure: Goodfellow et al., “Deep Learning”, MIT Press, 2016.



CNNs vs. MLPs: Curse of Dimensionality

• A fully-connected network has too many 
parameters

• On CIFAR-10: 
• Images have size 32x32x3 ➔ one neuron in hidden 

layer has 3072 weights!

• With images of size 1024x1024x3 ➔ one 
neuron in hidden layer has 3,145,728 weights!

• This explodes quickly if you increase the 
number of neurons & layers.

• Alternative: enforce local connectivity!
Figure: Goodfellow et al., “Deep Learning”, MIT Press, 2016.
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When things go deep, an output may depend on 
all or most of the input:

Figure: Goodfellow et al., “Deep Learning”, MIT Press, 2016.

CNNs vs. MLPs: Curse of Dimensionality

CENG501



Motivation
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• Parameter sharing
• In regular ANN, each weight is independent

• In CNN, a layer might re-apply the same convolution and therefore, share the parameters 
of a convolution
• Reduces storage and learning time

• For a neuron in the next layer:
• With ANN: 320x280x320x280 multiplications
• With CNN: 320x280x3x3 multiplications

320x280320x280

Figure: Goodfellow et al., “Deep Learning”, MIT Press, 2016.

CNNs vs. MLPs: Curse of Dimensionality

CENG501



• Equivariant to translation
• The output will be the same, just translated, since the weights are shared.

• Not equivariant to scale or rotation.
Figure: https://towardsdatascience.com/translational-invariance-vs-translational-equivariance-f9fbc8fca63a

CNNs vs. MLPs: Equivariance

CENG501



A crash course on Convolution
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Formulating Signals in Terms of Impulse Signal



Formulating Signals in Terms of Impulse Signal
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Unit Sample Response
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Conclusion 
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Power of convolution

• Describe a “system” (or operation) with a very simple function 
(impulse response).

• Determine the output by convolving the input with the impulse 
response

CENG501



Convolution

• Definition of continuous-time convolution

𝑥 𝑡 ∗ ℎ 𝑡 = න 𝑥 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏

CENG501



Convolution
• Definition of discrete-time convolution

𝑥[𝑛] ∗ ℎ[𝑛] = ෍ 𝑥 𝑘 ℎ[𝑛 − 𝑘]

CENG501



Discrete-time 2D Convolution

• For images, we need two-dimensional convolution:

• These multi-dimensional arrays are called tensors

• We have commutative property:

• Instead of subtraction, we can also write (easy to drive by a change of 
variables). This is called cross-correlation:

CENG501



Example multi-dimensional convolution
(kernel: finite impulse response)

CENG501

Figure: Goodfellow et al., “Deep Learning”, MIT Press, 2016.

https://github.com/vdumoulin/conv_arithmetic



What can filters do? 
Rectangular filter

 



g[m,n]

h[m,n]

=

f[m,n]

Slide: A. TorralbaCENG501
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What can filters do? 
Rectangular filter

 



g[m,n]

h[m,n]

=

f[m,n]

Slide: A. TorralbaCENG501



What can filters do? 
Sharpening filter

c
o
e

ff
ic

ie
n
t

-0.35
original

8

Sharpened

(differences are

accentuated;  constant

areas are left untouched).

1.7

filter

11.2

-0.25

8

result

Slide: A. TorralbaCENG501



What can filters do? 
Sharpening filter

before after

Slide: A. TorralbaCENG501



What can filters do? Gaussian filter

=1

=2

=4

Slide: A. Torralba CENG501



Global to Local Analysis

Dali

Slide: A. TorralbaCENG501



What can filters do?
[-1 1]

 



g[m,n]

h[m,n]

=

f[m,n]

[-1, 1]

Slide: A. TorralbaCENG501



What can filters do?
[-1 1]T

 



g[m,n]

h[m,n]

=

f[m,n]

[-1, 1]T

Slide: A. TorralbaCENG501



Overview of CNN
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CNN layers

• Operations in a CNN:
• Convolution (in parallel) to produce pre-synaptic 

activations

• Detector: Non-linear function

• Pooling: A summary of a neighborhood

• Pooling of a region in a feature/activation 
map:
• Max

• Average

• L2 norm

• Weighted average acc. to the distance to the 
center

• …

Figure: Goodfellow et al., “Deep Learning”, MIT Press, 2016.
CENG501



An example architecture

http://cs231n.github.io/convolutional-networks/CENG501



Regular 
ANN

CNN

http://cs231n.github.io/convolutional-networks/CENG501



OPERATIONS IN A CNN: 
Convolution

CENG501



Convolution in CNN

• The weights correspond to 
the kernel

• The weights are shared in a 
channel (depth slice)

• We are effectively learning 
filters that respond to 
some part/entities/visual-
cues etc.

Figure: Goodfellow et al., “Deep Learning”, MIT Press, 2016.

CENG501



Local connectivity in CNN 
= Receptive fields

• Each neuron is connected to only a local neighborhood, i.e., receptive field

• The size of the receptive field ➔ another hyper-parameter.

CENG501



Connectivity in CNN

http://cs231n.github.io/convolutional-networks/

• Local: The behavior of a neuron does not change other than being restricted to a subspace of 
the input.

• Each neuron is connected to slice of the previous layer 

• A layer is actually a volume having a certain width x height and depth (or channel)

• A neuron is connected to a subspace of width x height but to all channels (depth)

• Example: CIFAR-10
• Input: 32 x 32 x 3  (3 for RGB channels)

• A neuron in the next layer with receptive field size 5x5 has input from a volume of 5x5x3.

CENG501



Important parameters

• Depth (number of channels)
• We will have more neurons getting input from the same receptive field 

• This is similar to the hidden neurons with connections to the same input

• These neurons learn to become selective to the presence of different signals in the same receptive field

• Stride
• The amount of space between neighboring receptive fields

• If it is small, RFs overlap more

• It it is big, RFs overlap less

• How to handle the boundaries?
i. Option 1: Don’t process the boundaries. Only process pixels on which convolution window can be placed 

fully.

ii. Option 2: Zero-pad the input so that convolution can be performed at the boundary pixels.

Weights:

http://cs231n.github.io/convolutional-networks/
CENG501



Padding 
illustration

• Only convolution layers are 
shown.

• Top: no padding ➔ layers 
shrink in size.

• Bottom: zero padding ➔ 
layers keep their size fixed.

Figure: Goodfellow et al., “Deep Learning”, MIT Press, 2016.CENG501



Size of the next layer
• Along a dimension:

• 𝑊: Size of the input

• 𝐹: Size of the receptive field

• 𝑆: Stride

• 𝑃: Amount of zero-padding

• Then: the number of neurons as the output of a convolution layer:
𝑊 − 𝐹 + 2𝑃

𝑆
+ 1

• If this number is not an integer, your strides are incorrect and your neurons cannot tile 
nicely to cover the input volume

http://cs231n.github.io/convolutional-networks/Zero padding

Weights:

CENG501



Size of the next layer

• Arranging these hyperparameters can be problematic

• Example:

• If W=10, P=0, and F=3, then

𝑊 − 𝐹 + 2𝑃

𝑆
+ 1 =

10 − 3 + 0

𝑆
+ 1 =

7

𝑆
+ 1

  

     i.e., 𝑆 cannot be an integer other than 1 or 7.

• Zero-padding is your friend here.

CENG501



Real example – AlexNet (Krizhevsky et al., 2012)

• Image size: 227×227×3

• W=227, F=11, S=4, P=0  ➔
227−11

𝑆
+ 1 = 55   

     (55 => the width of the convolution layer)

• Convolution layer: 55×55×96 neurons   

     (96: the depth, the number of channels)

• Therefore, the first layer has 55×55×96 = 290,400 neurons
• Each has 11×11×3 receptive field ➔ 363 weights and 1 bias

• Then, 290,400×364 = 105,705,600 parameters just for the first convolution layer (if there were no 
weight sharing)

• With weight sharing: 96 x 364 = 34,944

CENG501



• However, we can share the parameters
• For each channel (slice of depth), have the same set of weights

• If 96 channels, this means 96 different set of weights

• Then, 96×364 = 34,944 parameters 

• 364 weights shared by 55×55 neurons in each channel

Real example – 
AlexNet (Krizhevsky et al., 2012)

http://cs231n.github.io/convolutional-networks/
CENG501



More on connectivity

Small RF & Stacking

• E.g., 3 CONV layers of 3x3 RFs

• Pros:
• Same extent for these example 

figures
• With non-linearity added on 2nd 

and 3rd layers ➔ More expressive! 
More representational capacity!

• Less parameters: 
      3 layers x [(3 x 3 x C) x C] = 27CxC

• Cons?

Large RF & Single Layer

• 7x7 RFs of single CONV layer

• Pros?

• Cons: 
• One layer => Linear capacity 
• More parameters: 
      (7x7xC)xC = 49CxC

So, we prefer a stack of small filter sizes against big ones

http://cs231n.github.io/convolutional-networks/CENG501



Implementation Details: 
NumPy example

• Suppose input is X of shape (11,11,4)

• Depth slice at depth d (i.e., channel d): X[:,:,d]

• Depth column at position (x,y): X[x,y,:]

• F: 5, P:0 (no padding), S=2
• Output volume (V) width, height = (11-5+0)/2+1 = 4

• Example computation for some neurons in first channel:

• Note that this is just along one dimension (x)
http://cs231n.github.io/convolutional-networks/
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• A second activation map (channel):

Implementation Details: 
NumPy example

http://cs231n.github.io/convolutional-networks/
CENG501



http://cs231n.github.io/convolutional-networks/
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Types of Convolution:
Unshared convolution

• In some cases, sharing the weights does not make sense
• When?

• Different parts of the input might require different types of 
processing/features

• In such a case, we just have a network with local connectivity

• E.g., a face.
• Features are not repeated across the space.
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Types of Convolution: 
Dilated (Atrous) Convolution

https://github.com/vdumoulin/conv_arithmetic
CENG501

Purpose: Increase effective receptive field size 
without increasing parameters.



Types of Convolution: Transposed Convolution

The size of the output:

• Regular convolution: 𝑂 =
𝑊−𝐹+2×𝑃

𝑆
+ 1

• Transpose convolution: 𝑊 = 𝑂 − 1 × 𝑆 + 𝐹 − 2 × 𝑃

CENG501

Figure: https://d2l.ai/chapter_computer-vision/transposed-conv.html

Purpose: Increasing layer width+height (upsampling).



Types of Convolution: 
Upsampling with Padding or Dilation

https://github.com/vdumoulin/conv_arithmetic
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Types of Convolution: 3D Convolution

CENG501

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

Purpose: Work with 3D data, e.g. learn spatial + temporal representations for videos.



Types of Convolution: 1x1 Convolution

CENG501

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

Purpose: Reduce number of channels.



Types of Convolution: Separable Convolution

CENG501

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

Purpose: Reduce number of parameters and multiplications.



Types of Convolution: 
Depth-wise Separable Convolution

CENG501

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

Purpose: Reduce number of parameters and multiplications.



Types of Convolution: Group Convolution

CENG501

AlexNet (Krizhevsky et al.)



Types of Convolution: 
Group Convolution

CENG501

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

AlexNet

Normal Convolution

Purpose: Reduce number of parameters and multiplications.



Types of Convolution: 
Group Convolution

CENG501

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

• Benefits:
• Efficiency in training 

(distribute groups to 
different GPUs)

• Decrease in # of parameters 
as the # of groups increases

• Better performance?

Figure: https://blog.yani.ai/filter-group-tutorial/



Types of Convolution: 
Deformable Convolution

CENG501

Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., & Wei, Y. (2017). Deformable 
convolutional networks. ICCV.

Purpose: Flexible receptive field.



Types of Convolution: 
Deformable Convolution

CENG501

Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., & Wei, Y. (2017). Deformable 
convolutional networks. ICCV.

Bilinear interpolation for x(p).



Types of Convolution: 
Position-sensitive convolution
• Learn to use position information when necessary

2018

CENG501



Convolution demos & tutorials

• https://github.com/vdumoulin/conv_arithmetic

• http://cs231n.github.io/assets/conv-demo/index.html

• https://ezyang.github.io/convolution-visualizer/index.html

• https://ikhlestov.github.io/pages/machine-learning/convolutions-types/

• https://towardsdatascience.com/a-comprehensive-introduction-to-
different-types-of-convolutions-in-deep-learning-669281e58215

CENG501

https://github.com/vdumoulin/conv_arithmetic
http://cs231n.github.io/assets/conv-demo/index.html
https://ezyang.github.io/convolution-visualizer/index.html
https://ikhlestov.github.io/pages/machine-learning/convolutions-types/
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215


OPERATIONS IN A CNN: 
Pooling
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Pooling

• Apply an operation on the “detector” results to combine or to 
summarize the answers of a set of units.
• Applied to each channel (depth slice) independently
• The operation has to be differentiable of course.

• Alternatives:
• Maximum
• Sum
• Average
• Weighted average with distance from the value of the center pixel
• L2 norm
• Second-order statistics?
• …

• Different problems may perform better with different pooling 
methods

• Pooling can be overlapping or non-overlapping http://cs231n.github.io/convolutional-networks/

CENG501

Figure: Goodfellow et al., “Deep Learning”, MIT Press, 2016.

Remember the motivation for CNNs:
S (simple) cells: local feature extraction.
C (complex) cells: provide tolerance to deformation, e.g. shift.



Pooling

• Example
• Pooling layer with filters of size 2x2
• With stride = 2
• Discards 75% of the activations
• Depth dimension remains unchanged

• Max pooling with F=3, S=2 or F=2, S=2 are quite common.
• Pooling with bigger receptive field sizes can be destructive

• Avg pooling is an obsolete choice. Max pooling is shown to work better in 
practice.

http://cs231n.github.io/convolutional-networks/

CENG501

Figure: Goodfellow et al., “Deep Learning”, MIT Press, 2016.



Pooling

• Pooling provides invariance to small translation.

• If you pool over different convolution operators, you can gain 
invariance to different transformations.

Shifted 
to right

Figures: Goodfellow et al., “Deep Learning”, MIT Press, 2016.
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Pooling can downsample

• Especially needed when to produce an output with fixed-length on 
varying length input.

Figure: Goodfellow et al., “Deep Learning”, MIT Press, 2016.

CENG501

• If you want to use the network on images of varying size, you can arrange this 
with pooling (with the help of convolutional layers)



CNNs without pooling

• “Striving for Simplicity: The All 
Convolutional Net proposes to discard the 
pooling layer in favor of architecture that 
only consists of repeated CONV layers. To 
reduce the size of the representation they 
suggest using larger stride in CONV layer 
once in a while.”

http://cs231n.github.io/convolutional-networks/

CENG501

https://arxiv.org/pdf/1412.6806.pdf

(ALL-CNN: No pooling)



Summary: Convolution & pooling

• Provide strong bias on the model and the solution

• They directly affect the overall performance of the 
system

CENG501



OPERATIONS IN A CNN: 
nonlinearity

CENG501



Non-linearity

• Sigmoid

• Tanh

• ReLU and its variants
• The common choice

• Faster

• Easier (in backpropagation etc.)

• Avoids saturation issues

• …

CENG501



OPERATIONS IN A CNN: 
normalization

CENG501



• From Krizhevsky et al. (2012):

CENG501



Normalization

https://medium.com/syncedreview/facebook-ai-proposes-group-normalization-alternative-to-
batch-normalization-fb0699bffae7

CENG501

For each channel independently.



OPERATIONS IN A CNN: 
fully connected layer

CENG501



Fully-connected layer

• At the top of the network for mapping the feature responses to 
output labels

• Full connectivity

• Can be many layers

• Various activation functions can be used

CENG501



CENG501

flatten FC layers FC
Classes

0.8 0.1 0.2 0.1

Sum
of Each 
Channel

0.8 0.1 0.2 0.1 Classes

Alternative to FC: Global Average Pooling
“Network In Network”, https://arxiv.org/pdf/1312.4400.pdf



Alternative to FC: Global Average Pooling

• We have 𝑛 feature maps: 

     𝑓1, …, 𝑓𝑛.

• Global average pooling is then: 

ҧ𝑓𝑖 = ෍

𝑥,𝑦

𝑓𝑖(𝑥, 𝑦)

• Classification scores are 
obtained by:

𝑆𝑐 = ෍

𝑖

𝑤𝑖
𝑐 ҧ𝑓𝑖

CENG501

“Network In Network”, https://arxiv.org/pdf/1312.4400.pdf

• Advantages:
– No parameters, hence significant 

improvement in terms of overfitting 
problem.

– Forces the feature maps to capture 
confidence maps.

– It is more suitable to the nature of CNNs.

– Provides invariance to spatial 
transformations. 



Training a CNN
Fig: http://www.robots.ox.ac.uk/~vgg/practicals/cnn/
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Feed-forward through convolution

CENG501

𝑎1
𝑙−1 𝑎2

𝑙−1 𝑎𝑛𝑙−1
𝑙−1

𝑎1
𝑙 𝑎𝑛𝑙

𝑙

…

…𝑎2
𝑙 𝑎3

𝑙

𝑎3
𝑙−1 𝑎4

𝑙−1

𝑤1
𝑤2

𝑤3

𝑤1 𝑤2
𝑤3

𝑤1

𝑤2
𝑤3

…
𝑤2

𝑤3
𝑤1

𝑎𝑖
𝑙 = 𝜎 𝑛𝑒𝑡𝑖

𝑙

𝑛𝑒𝑡𝑖
𝑙 = ෍

𝑗=1

𝐹

𝑤𝑗 ⋅ 𝑎𝑖+𝑗−1
𝑙−1

For example:
𝑛𝑒𝑡1

𝑙 = 𝑤1𝑎1
𝑙−1 + 𝑤2𝑎2

𝑙−1+ 𝑤3𝑎3
𝑙−1



Backpropagation through 
convolution

CENG501

Feedforward:
𝑎𝑖

𝑙 = 𝜎 𝑛𝑒𝑡𝑖
𝑙

𝑛𝑒𝑡𝑖
𝑙 = ෍

𝑗=1

𝐹

𝑤𝑗 ⋅ 𝑎𝑖+𝑗−1
𝑙−1

Gradient wrt. weights:
𝜕𝐿

𝜕𝑤𝑘
=?

=
𝜕𝐿

𝜕𝑎1
𝑙

𝜕𝑎1
𝑙

𝜕𝑤𝑘
+

𝜕𝐿

𝜕𝑎2
𝑙

𝜕𝑎2
𝑙

𝜕𝑤𝑘
…

= ෍

𝑖

𝜕𝐿

𝜕𝑎𝑖
𝑙

𝜕𝑎𝑖
𝑙

𝜕𝑤𝑘

= ෍

𝑖

𝜕𝐿

𝜕𝑎𝑖
𝑙

𝜕𝑎𝑖
𝑙

𝜕𝑛𝑒𝑡𝑖
𝑙

𝜕𝑛𝑒𝑡𝑖
𝑙

𝜕𝑤𝑘

𝑎1
𝑙−1 𝑎2

𝑙−1 𝑎𝑛𝑙−1
𝑙−1

𝑎1
𝑙 𝑎𝑛𝑙

𝑙

…

…𝑎2
𝑙 𝑎3

𝑙

𝑎3
𝑙−1 𝑎4

𝑙−1

𝑤1
𝑤2

𝑤3

𝑤1 𝑤2
𝑤3

𝑤1

𝑤2
𝑤3

…
𝑤2

𝑤3 𝑤1



Backpropagation through 
convolution
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𝑎1
𝑙−1 𝑎2

𝑙−1 𝑎𝑛𝑙−1
𝑙−1

𝑎1
𝑙 𝑎𝑛𝑙

𝑙

…

…𝑎2
𝑙 𝑎3

𝑙

𝑎3
𝑙−1 𝑎4

𝑙−1

𝑤1
𝑤2

𝑤3

𝑤1 𝑤2
𝑤3

𝑤1

𝑤2
𝑤3

…

𝑤2

𝑤3
𝑤1

Feedforward:
𝑎𝑖

𝑙 = 𝜎 𝑛𝑒𝑡𝑖
𝑙

𝑛𝑒𝑡𝑖
𝑙 = ෍

𝑗=1

𝐹

𝑤𝑗 ⋅ 𝑎𝑖+𝑗−1
𝑙−1

Gradient wrt. input layer:
𝜕𝐿

𝜕𝑎3
𝑙−1 =?

=
𝜕𝐿

𝜕𝑎1
𝑙

𝜕𝑎1
𝑙

𝜕𝑛𝑒𝑡1
𝑙

𝜕𝑛𝑒𝑡1
𝑙

𝜕𝑎3
𝑙−1 +

𝜕𝐿

𝜕𝑎2
𝑙

𝜕𝑎2
𝑙

𝜕𝑛𝑒𝑡2
𝑙

𝜕𝑛𝑒𝑡2
𝑙

𝜕𝑎3
𝑙−1

+
𝜕𝐿

𝜕𝑎2
𝑙

𝜕𝑎2
𝑙

𝜕𝑛𝑒𝑡2
𝑙

𝜕𝑛𝑒𝑡2
𝑙

𝜕𝑎3
𝑙−1

=
𝜕𝐿

𝜕𝑛𝑒𝑡1
𝑙 𝑤3 +

𝜕𝐿

𝜕𝑛𝑒𝑡2
𝑙 𝑤2 +

𝜕𝐿

𝜕𝑛𝑒𝑡3
𝑙 𝑤1

In general:
𝜕𝐿

𝜕𝑎𝑖
𝑙−1 = ෍

𝑗=1

𝜕𝐿

𝜕𝑛𝑒𝑡𝑖−𝑗+1
𝑙 𝑤𝑗



Feed-forward through pooling

CENG501

𝑎1
𝑙−1 𝑎2

𝑙−1 𝑎𝑛𝑙−1
𝑙−1

𝑎1
𝑙 𝑎𝑛𝑙

𝑙

…

…𝑎2
𝑙 𝑎3

𝑙

𝑎3
𝑙−1 𝑎4

𝑙−1

…

𝑎𝑖
𝑙 = max 𝑎𝑖+𝑗−1

𝑙−1

𝑗=1

𝐹

For example:

𝑛𝑒𝑡1
𝑙 = max 𝑎1

𝑙−1, 𝑎2
𝑙−1, 𝑎3

𝑙−1



Backpropagation through pooling
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𝑎1
𝑙−1 𝑎2

𝑙−1 𝑎𝑛𝑙−1
𝑙−1

𝑎1
𝑙 𝑎𝑛𝑙

𝑙

…

…𝑎2
𝑙 𝑎3

𝑙

𝑎3
𝑙−1 𝑎4

𝑙−1

…

Using derivative of max: 

𝜕𝐿

𝜕𝑎𝑖
𝑙−1

=
𝜕𝐿

𝜕𝑛𝑒𝑡𝑘
𝑙

𝜕𝑛𝑒𝑡𝑘
𝑙

𝜕𝑎𝑖
𝑙−1

= ൞

𝜕𝐿

𝜕𝑛𝑒𝑡𝑘
𝑙

, 𝑎𝑖
𝑙−1 is max

0, otherwise

Feedforward:

𝑎𝑖
𝑙 = max 𝑎𝑖+𝑗−1

𝑙−1

𝑗=1

𝐹

This requires that we save the index of the max 
activation (sometimes also called the switches) 
so that gradient “routing” is handled efficiently 
during backpropagation.



Backpropagation

• Backpropagation through non-linearity and fully-connected layers are straight-forward

CENG501



Designing CNN Architectures
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A Blueprint for CNNs

http://cs231n.github.io/convolutional-networks/

CENG501



Demo

http://scs.ryerson.ca/~aharley/vis/conv/

CENG501

https://poloclub.github.io/cnn-explainer/

The following doesn’t work, try cnn-explainer instead

https://poloclub.github.io/cnn-explainer/


Fully Convolutional Networks (FCNs)

• Fully-connected layers limit the input size

• Use convolution, especially 1x1 
convolution to reduce channels and layer 
size

CENG501

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for 
semantic segmentation. CVPR.



General rules of thumb:
The input layer
• The size of the input layer should be divisible by 2 many times

• Hopefully a power of 2

• E.g., 
• 32 (e.g. CIFAR-10), 

• 64, 

• 96 (e.g. STL-10), or 

• 224 (e.g. common ImageNet ConvNets), 

• 384, and 512 etc.

CENG501



General rules of thumb:
The conv layer

• Small filters with stride 1

• Usually zero-padding applied to keep the input size unchanged

• In general, for a certain 𝐹, if you choose 

   𝑃 = (𝐹 − 1)/2, 

     the input size is preserved (for 𝑆=1):
𝑊 − 𝐹 + 2𝑃

𝑆
+ 1

• Number of filters:

• A convolution channel is more expensive compared to fully-connected layer.

• We should keep this as small as possible.
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General rules of thumb:
The pooling layer

• Commonly, 
• F=2 with S=2

• Or: F=3 with S=2

• Bigger F or S is very destructive

CENG501



Taking care of downsampling

• At some point(s) in the network, we need to reduce the size

• If conv layers do not downsize, then only pooling layers take care of 
downsampling

• If conv layers also downsize, you need to be careful about strides 
etc. so that 

(i) the dimension requirements of all layers are satisfied and 

(ii) all layers tile up properly.

• S=1 seems to work well in practice

• However, for bigger input volumes, you may try bigger strides

CENG501



Trade-offs in architecture

• Between filter size and number of layers (depth)
• Keep the layer widths fixed.
• “When the time complexity is roughly the same, the deeper 

networks with smaller filters show better results than the 
shallower networks with larger filters.”

• Between layer width and number of layers (depth)
• Keep the size of the filters fixed. 
• “We find that increasing the depth leads to considerable gains, 

even the width needs to be properly reduced.”

• Between filter size and layer width 
• Keep the number of layers (depth) fixed.

• No significant difference
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Memory

Main sources of memory load:

• Activation maps:

• Training: They need to be kept during training so that backpropagation can be 
performed

• Testing: No need to keep the activations of earlier layers

• Parameters:

• The weights, their gradients and also another copy if momentum is used

• Data:

• The originals + their augmentations

• If all these don’t fit into memory, 

• Load your data batch by batch from disk

• Decrease the size of your batches

CENG501



Memory constraints

• Using smaller RFs with more layers means more memory since you need to store 
more activation maps

• In such memory-scarce cases, 
• the first layer may use bigger RFs with S>1

• information loss from the input volume may be less critical than the following layers

• E.g., AlexNet uses RFs of 11x11 and S = 4 for the first layer.

CENG501



How to initialize the weights?

• Option 1: randomly
• E.g. using He initialization (check Week 8 slides)

• This has been shown to work nicely in the literature

• Option 2:
• Train/obtain the “filters” elsewhere and use them as the 

weights

• Unsupervised pre-training using image patches 
(windows)

• Avoids full feedforward and backward pass, allows the 
search to start from a better position

• You may even skip training the convolutional layers

CENG501

He et al., “Delving Deep into Rectifiers: Surpassing Human-Level 
Performance on ImageNet Classification”, 2015.



CENG501



Transfer learning: 
using a trained CNN & fine-tuning
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Using trained CNN

• Also called transfer learning
• Rare to design and train a CNN from scratch!

• Take a trained CNN, e.g., AlexNet
• Use a trained CNN as a feature detector:

• Remove the last fully-connected layer

• The activations of the remaining layer are called CNN codes

• This yields a 4096 dimensional feature vector for AlexNet

• Now, add a fully-connected layer for your problem and train a linear classifier on your 
dataset.

• Alternatively, fine-tune the whole network with your new layer and outputs
• You may limit updating only to the last layers because earlier layers are generic, and 

quite dataset independent

• Pre-trained CNNs
CENG501
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Finetuning
1.If the new dataset is small and similar to the original dataset used to train the CNN:

• Finetuning the whole network may lead to overfitting
• Just train the newly added layer

2.If the new dataset is big and similar to the original dataset:
• The more, the merrier: go ahead and train the whole network

3.If the new dataset is small and different from the original dataset:
• Not a good idea to train the whole network
• However, add your new layer not to the top of the network, since those parts are very dataset 

(problem) specific
• Add your layer to earlier parts of the network

4.If the new dataset is big and different from the original dataset:
• We can “finetune” the whole network
• This amounts to a new training problem by initializing the weights with those of another network

CENG501



More on finetuning

• You cannot change the architecture of the trained network (e.g., 
remove layers) arbitrarily

• The sizes of the layers can be varied
• For convolution & pooling layers, this is straightforward

• For the fully-connected layers: you can convert the fully-connected layers 
to convolution layers, which makes it size-independent.

• You should use small learning rates while fine-tuning

CENG501



See also:
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Visualizing and Understanding 
CNNs

CENG501



Many different mechanisms

• Visualize layer activations

• Visualize the weights (i.e., filters)

• Visualize examples that maximally activate a neuron

• Visualize a 2D embedding of the inputs based on their CNN codes

• Occlude parts of the window and see how the prediction is affected

• Data gradients

CENG501



Visualize activations during training

• Activations are dense at the beginning.
• They should get sparser during training.

• If some activation maps are all zero for many inputs, dying neuron problem => 
high learning rate in the case of ReLUs.

http://cs231n.github.io/convolutional-networks/
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Visualize the weights

• We can directly look at the 
filters of all layers

• First layer is easier to 
interpret

• Filters shouldn’t look noisy

http://cs231n.github.io/convolutional-networks/
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Visualize the inputs that maximally activate a neuron

http://cs231n.github.io/convolutional-networks/

• Keep track of which images activate a neuron most

CENG501



Embed the codes in a lower-dimensional space

• Place images into a 2D space such that images which produce similar 
CNN codes are placed close.

• You can use, e.g., t-Distributed Stochastic Neighbor Embedding (t-SNE) 

http://cs231n.github.io/convolutional-networks/ CENG501

Figure: Laurens van der Maaten and Geoffrey 
Hinton



Occlude parts of the image

• Slide an “occlusion window” 
over the image

• For each occluded image, 
determine the class prediction 
confidence/probability.

http://cs231n.github.io/convolutional-networks/
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Data gradients

• Generate an image that maximizes the 
class score.

• Use: Gradient ascent!

2014
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Data gradients

• The gradient with respect to the input is high 
for pixels which are on the object

CENG5012014



Class Activation Maps

• Weighted combination 
of the feature maps 
before GAP:

𝑀 𝑥, 𝑦 = ෍

𝑘

𝑤𝑘
𝑐𝑓𝑘(𝑥, 𝑦)

CENG501

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep features for discriminative localization,” in Proceedings of 
the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2921–2929.



Class Activation Maps

• GradCAM:

𝛼𝑘
𝑐 = ෍

𝑥,𝑦

𝜕𝑆𝑐

𝜕𝑓𝑘(𝑥, 𝑦)

𝑀𝑐 𝑥, 𝑦 = 𝑅𝑒𝐿𝑈 ෍

𝑘

𝛼𝑘
𝑐 𝑓𝑘(𝑥, 𝑦)
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R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh, and D. Batra, “Grad-cam: 
Why did you say that? visual explanations from deep networks via gradient-based 
localization,” arXiv preprint arXiv:1610.02391, 2016.

Chattopadhay, A., Sarkar, A., Howlader, P., & Balasubramanian, V. N. (2018, March). 

Grad-cam++: Generalized gradient-based visual explanations for deep convolutional 

networks. In 2018 IEEE Winter Conference on Applications of Computer Vision 

(WACV) (pp. 839-847). IEEE.

Figure: https://pypi.org/project/grad-cam/



Feature inversion

• Learns to reconstruct an image from its 
representation

• Regularization term here is the key factor, e.g. 
a combination of the two terms:
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Feature inversion with perceptual losses

Figure from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016.
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Visualization distill.pub

https://distill.pub/2017/feature-visualization/

https://distill.pub/2018/building-blocks/

CENG501

https://distill.pub/2018/building-blocks/


Fooling ConvNets

• Given an image 𝐼 labeled as 𝑙1, find 
minimum “𝑟” (noise) such that 𝐼 + 𝑟 is 
classified as a different label, 𝑙2.

• I.e., minimize:
arg min

𝑟
𝑙𝑜𝑠𝑠 𝐼 + 𝑟, 𝑙2 + 𝑐 𝑟

O
st

ri
ch
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More on adversarial examples

• How to classify adversarial examples correctly?
• You need to train your network against them!

• That is very expensive and training against all kinds of adversarial examples is not possible

• However, training against adversarial examples increases accuracy on non-adversarial examples 
as well.

• They are still an unsolved issue in neural networks

• Adversarial examples are problems of any learning method

• See I. Goodfellow for more on adversarial examples:
• http://www.kdnuggets.com/2015/07/deep-learning-adversarial-examples-misconceptions.html
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• “We provide a new understanding of the fundamental nature of 
adversarially robust classifiers and how they differ from standard models. In 
particular, we show that there provably exists a trade-off between the 
standard accuracy of a model and its robustness to adversarial 
perturbations. We demonstrate an intriguing phenomenon at the root of this 
tension: a certain dichotomy between “robust” and “non-robust” features. 
We show that while robustness comes at a price, it also has some surprising 
benefits. Robust models turn out to have interpretable gradients and feature 
representations that align unusually well with salient data characteristics. In 
fact, they yield striking feature interpolations that have thus far been 
possible to obtain only using generative models such as GANs.”

2018
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