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Disadvantages of MLPs: 
Dimensionality

• The number of parameters in an MLP is high for practical problems
• e.g., for grayscale images with 1000x1000 resolution, a fully-connected layer with 1000 neurons 

requires 109 parameters.

• The number of parameters in an MLP increases quadratically with an increase in input 
dimensionality

• For example, for a fully-connected layer with 𝑛𝑖𝑛 input neurons and 𝑛𝑜𝑢𝑡 output neurons:
• Number of parameters: 𝑛𝑖𝑛 × 𝑛𝑜𝑢𝑡

• Assuming proportional decrease in layer size, e.g. 𝑛𝑜𝑢𝑡 = 𝑛𝑖𝑛/10, gives: 𝑛𝑖𝑛 × 𝑛𝑜𝑢𝑡 = 𝑛𝑖𝑛
2 /10

• Increasing 𝑛𝑖𝑛 by 𝑑 yields a change of 𝒪(𝑑2).

• This is a problem because:
• More parameters => larger model size & more computational complexity.

• Teaser for CNNs: 
• Input size does not affect model size (in general)
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Equivariance vs. Invariance

• Equivariant problem: image segmentation. 
• f(g(x)) = g(f(x)) 

• Invariant problem: object recognition. 
• f(g(x)) = f(x)

• Pooling provides invariance, convolution 
provides equivariance.
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https://www.mathworks.com/discovery/image-segmentation.html

f(x): “cat” f(g(x)): “cat”

g(x)



An Alternative to MLPs

Solution: Neocognitron (Fukushima, 1979): 

A neural network model unaffected by shift 
in position, applied to Japanese 
handwritten character recognition.

• S (simple) cells: local feature extraction.

• C (complex) cells: provide tolerance to 
deformation, e.g. shift.

• Self-organized learning method.
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Figure: Fukushima (2019), Recent advances in the deep 
CNN neocognitron.



When things go deep, an output may depend on 
all or most of the input:

Figure: Goodfellow et al., “Deep Learning”, MIT Press, 2016.

CNNs vs. MLPs: Curse of Dimensionality
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Motivation

CENG501



Size of the next layer
• Along a dimension:

• 𝑊: Size of the input

• 𝐹: Size of the receptive field

• 𝑆: Stride

• 𝑃: Amount of zero-padding

• Then: the number of neurons as the output of a convolution layer:
𝑊 − 𝐹 + 2𝑃

𝑆
+ 1

• If this number is not an integer, your strides are incorrect and your neurons cannot tile 
nicely to cover the input volume

http://cs231n.github.io/convolutional-networks/Zero padding

Weights:

CENG501



Types of Convolution

• Unshared 

• Dilated

• Transposed

• 3D

• 1x1

• Separable and Depth-wise Separable

• Group

• Deformable

• Position-sensitive
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Pooling

• Example
• Pooling layer with filters of size 2x2
• With stride = 2
• Discards 75% of the activations
• Depth dimension remains unchanged

• Max pooling with F=3, S=2 or F=2, S=2 are quite common.
• Pooling with bigger receptive field sizes can be destructive

• Avg pooling is an obsolete choice. Max pooling is shown to work better in 
practice.

http://cs231n.github.io/convolutional-networks/
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Figure: Goodfellow et al., “Deep Learning”, MIT Press, 2016.



Normalization

https://medium.com/syncedreview/facebook-ai-proposes-group-normalization-alternative-to-
batch-normalization-fb0699bffae7
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For each channel independently.
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flatten FC layers FC
Classes

0.8 0.1 0.2 0.1

Sum
of Each 
Channel

0.8 0.1 0.2 0.1 Classes

Alternative to FC: Global Average Pooling
“Network In Network”, https://arxiv.org/pdf/1312.4400.pdf



A Blueprint for CNNs

http://cs231n.github.io/convolutional-networks/
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Trade-offs in architecture

• Between filter size and number of layers (depth)
• Keep the layer widths fixed.
• “When the time complexity is roughly the same, the deeper 

networks with smaller filters show better results than the 
shallower networks with larger filters.”

• Between layer width and number of layers (depth)
• Keep the size of the filters fixed. 
• “We find that increasing the depth leads to considerable gains, 

even the width needs to be properly reduced.”

• Between filter size and layer width 
• Keep the number of layers (depth) fixed.

• No significant difference
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Finetuning
1.If the new dataset is small and similar to the original dataset used to train the CNN:

• Finetuning the whole network may lead to overfitting
• Just train the newly added layer

2.If the new dataset is big and similar to the original dataset:
• The more, the merrier: go ahead and train the whole network

3.If the new dataset is small and different from the original dataset:
• Not a good idea to train the whole network
• However, add your new layer not to the top of the network, since those parts are very dataset 

(problem) specific
• Add your layer to earlier parts of the network

4.If the new dataset is big and different from the original dataset:
• We can “finetune” the whole network
• This amounts to a new training problem by initializing the weights with those of another network
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Many mechanisms for visualization

• Visualize layer activations

• Visualize the weights (i.e., filters)

• Visualize examples that maximally activate a neuron

• Visualize a 2D embedding of the inputs based on their CNN codes

• Occlude parts of the window and see how the prediction is affected

• Data gradients
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Data gradients

• The gradient with respect to the input is high 
for pixels which are on the object
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Class Activation Maps

• Weighted combination 
of the feature maps 
before GAP:

𝑀 𝑥, 𝑦 = ෍

𝑘

𝑤𝑘
𝑐𝑓𝑘(𝑥, 𝑦)
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B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep features for discriminative localization,” in Proceedings of 
the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2921–2929.



Fooling ConvNets

• Given an image 𝐼 labeled as 𝑙1, find 
minimum “𝑟” (noise) such that 𝐼 + 𝑟 is 
classified as a different label, 𝑙2.

• I.e., minimize:
arg min

𝑟
𝑙𝑜𝑠𝑠 𝐼 + 𝑟, 𝑙2 + 𝑐 𝑟

O
st

ri
ch
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Today

• CNNs
• Popular CNN architectures

• Sequence Modeling

• Recurrent Neural Networks

• Long Short Term Memory (LSTM)

• Application: Language Modeling

• Application: Image Captioning

• Application: Machine Translation

• Echo State Networks
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Administrative Notes

• No quiz today

• Hopfield Networks, Boltzmann Machines and the Associated Nobel 
Prize
• Today at 18:30 in “Cavid Erginsoy Salonu” in the Dept. of Physics

• Paper Selection
• Feedback provided
• Deadline: This Sunday
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Popular 
CNN models
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LeNet (1998) 

• For reading zip codes and digits

F=5x5
S=1
P=0

F=2x2
S=2

sigm(𝛼 × 𝑎𝑣𝑔 + 𝑏)
𝛼 & b: trainable

F=5x5
S=1
P=0

F=2x2
S=2

sigm(𝛼 × 𝑎𝑣𝑔 + 𝑏)
𝛼 & b: trainable

F=5x5
S=1
P=0

Euclidean RBF:
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AlexNet (2012)
• Popularized CNN in computer vision & pattern recognition

• ImageNet ILSVRC challenge 2012 winner

• Similar to LeNet
• Deeper & bigger
• Many CONV layers on top of each other (rather than adding 

immediately a pooling layer after a CONV layer)
• Uses GPU

• 650K neurons. 60M parameters. Trained on 2 GPUs for a 
week.
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AlexNet (2012) Details

• Since the network is too big to fit in on GPU, it is divided into two.
• Note the cross connections between the “pathways”.
• Uses ReLU as non-linearity after every convolutional and fully-connected layer.
• Normalization layer is placed after the first & the second convolutional layers.
• Max-pooling layer is placed only after the normalization layers & the fifth convolutional layer.
• Last layer is a soft-max.
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AlexNet (2012) Training

• Data augmentation & dropout are used during training to avoid overfitting.
• Stochastic Gradient Descent with a batchsize of 128 examples is used.
• Momentum with coefficient 0.9 is employed.
• Weight decay (L2 regularization cost) with factor 0.0005 is also used in the loss function.
• Weights are initialized from a zero-mean Gaussian distribution with 0.01 std.
• Learning rate started with 0.01 and manually divided by 10 when the validation error rate 

stopped improving.
• Trained on 1.2 million images, which took 5-6 days on two GPUs.
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AlexNet (2012): The learned filters

• Do you notice anything strange with the filters?
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GoogleNet (2014)

• ImageNet 2014 winner

• Contributions: 
• Inception module

• Dramatically reduced parameters (from 60M in AlexNet to 4M)

• Avg Pooling at the top, instead of fully-connected layer ➔ 
Reduced number of parameters

• Motivation: 
• Going bigger (in depth or width) means too many 

parameters.
• Go bigger by maintaining sparse connections.
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Inception module:  “network in network” 
(inspired from Lin et al., 2013)

• Concatenation is performed along the “columns” (depth).
• The output of inception layers must have the same size.

• The naïve version has a tendency to blow up in number of channels.
• Why? Max-pooling does not change the number of channels. When concatenated with other filter responses, number of channels 

increase with every layer.
• Solution: Do 1x1 convolution to decrease the number of channels.

• Also called “bottleneck”.

• In order to decrease the computational complexity of 3x3 and 5x5 pooling, they are also preceded by 1x1 
convolution (i.e., the number of channels are reduced).
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• Since the intermediate 
layers learn to discriminate 
features specific to a class, 
we can directly link them 
to the loss term.
• Encourages these layers to 

become more discriminative
• Increases propagation of 

gradient signal to earlier 
stages
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GoogleNet: More Details

• ReLU after all layers

• Max pooling in inception modules as well as a whole layer occasionally

• Avg pooling instead of fully-connected layers
• Only a minor change in the accuracy (0.6%)

• However, less number of parameters

• Other usual tricks (e.g., dropout, augmentation etc.) are used.

• Trained on CPUs using a distributed machine learning system.

• SGD with momentum (0.9).

• Fixed learning rate scheme with 4% decrease every 8 epochs

• They trained many different models with different initializations and parameters. 
They combined these models using different methods and tricks. There is no single 
training method that yields the results they achieved.
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VGGNet (2014)

• ImageNet runner up in 2014

• Contribution: 
• Use small RFs & increase depth as much as possible

• 16 CONV/FC layers. 

• 3x3 CONVs and 2x2 pooling from beginning to the end

• Although performs slightly worse than GoogleNet in image 
classification, VGGNet may perform better at other tasks (such as 
transfer learning problems).

• Downside: Needs a lot of memory & parameters (140M)
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ResNet (2015)

• Increasing the depth naively may not give 
you better performance after a number of 
depths

• Why?
• This is shown to be not due to overfitting (since 

training error also gets worse) or vanishing 
gradients (suitable non-linearities used)

• Accuracy is somehow saturated. Though 
reported in several studies.

• Solution: Make shortcut connections
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ResNet (2015)

• Residual (shortcut) connections

CENG501



ResNet (2015)

• Residual (shortcut) connections
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Effect of residual connections

2018
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ResNet: Ensemble of 
Shallow Networks

CENG501

2016



"Our initial results suggest that past a 

certain depth, on the order of tens or 

hundreds of layers, the test performance 

for vanilla convolutional architecture 

saturates.  These observations suggest 
that architectural features such as 

residual connections and batch 

normalization are likely to play an 

important role in defining a good model 

class, rather than simply enabling efficient 
training."
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DiracNets
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ResNext
2017
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DenseNet
2016;2018
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Highway networks

• This is a regular MLP with gated 
units.
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Highway Networks

https://www.researchgate.net/publication/311842587_Highway_and_Residual_Networks_learn_Unrolled_Iterative_Estimation
CENG501



Comparison:
https://arxiv.org/pdf/1605.07678.pdf
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Comparison:
https://arxiv.org/pdf/1605.07678.pdf

CENG501



Going deep may not be the only answer
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Recent work

“Towards Principled Design of Deep Convolutional Networks: Introducing SimpNet”

• Major winning Convolutional Neural Networks (CNNs), such as VGGNet, ResNet, DenseNet, \etc, 
include tens to hundreds of millions of parameters, which impose considerable computation and 
memory overheads. This limits their practical usage in training and optimizing for real-world 
applications. On the contrary, light-weight architectures, such as SqueezeNet, are being proposed 
to address this issue. However, they mainly suffer from low accuracy, as they have compromised 
between the processing power and efficiency. These inefficiencies mostly stem from following an 
ad-hoc designing procedure. In this work, we discuss and propose several crucial design principles 
for an efficient architecture design and elaborate intuitions concerning different aspects of the 
design procedure. Furthermore, we introduce a new layer called {\it SAF-pooling} to improve the 
generalization power of the network while keeping it simple by choosing best features. Based on 
such principles, we propose a simple architecture called {\it SimpNet}. We empirically show that 
SimpNet provides a good trade-off between the computation/memory efficiency and the 
accuracy solely based on these primitive but crucial principles. SimpNet outperforms the deeper 
and more complex architectures such as VGGNet, ResNet, WideResidualNet \etc, on several well-
known benchmarks, while having 2 to 25 times fewer number of parameters and operations. We 
obtain state-of-the-art results (in terms of a balance between the accuracy and the number of 
involved parameters) on standard datasets, such as CIFAR10, CIFAR100, MNIST and SVHN. The 
implementations are available at \href{url}{this https URL}.

https://arxiv.org/abs/1802.06205CENG501

https://github.com/Coderx7/SimpNet


Binary networks
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Binary networks
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CNNs: 
summary & future directions

• Less parameters

• Allows going deeper

• High flexibility
• In operations
• In organization of layers
• In the overall architecture etc.

• Future directions:
• Understanding them better
• Making them deeper, faster and more efficient
• Compressing a big network into a smaller & cheaper one.
• …
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Sequence Labeling/Modeling: Motivation
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Why do we need them?

A. Graves, “Supervised Sequence Labelling with Recurrent Neural Networks”, 2012.
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Different types of sequence learning / 
recognition problems

• Sequence Classification
• A sequence to a label

• E.g., recognizing a single spoken word

• Length of the sequence is fixed

• Why RNNs then? Because sequential modeling provides 
robustness against translations and distortions.

• Segment Classification
• Segments in a sequence correspond to labels

• Temporal Classification
• General case: sequence (input) to sequence (label) modeling. 

• No clue about where input or label starts.

A. Graves, “Supervised Sequence Labelling with Recurrent 

Neural Networks”, 2012.
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Different types of sequence learning / 
recognition problems

CENG501

http://karpathy.github.io/2015/05/21/rnn-effectiveness/



Recurrent Neural Networks
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Recurrent Neural Networks (RNNs)

• RNNs are very powerful because:
• Distributed hidden state that allows them 

to store a lot of information about the 
past efficiently.

• Non-linear dynamics that allows them to 
update their hidden state in complicated 
ways.

• With enough neurons and time, RNNs 
can compute anything that can be 
computed by your computer. 

• More formally, RNNs are Turing 
complete.
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Some examples

Slide: Michael MozerCENG501



Some examples

Jordan Networks

“context” neurons

Elman Networks

Figs: David Kriesel
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Challenge

• Back propagation is designed for feedforward nets

• What would it mean to back propagate through a recurrent 
network?
• error signal would have to travel back in time

Slide: Michael Mozer
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Unfolding

time →

in
p
u

t
h

id
d

e
n

o
u

tp
u
t

in
p
u

t
h

id
d

e
n

o
u

tp
u
t

Feed-forward
networks

Recurrent
networks

Unfolding

in
p
u

t
h

id
d

e
n

o
u

tp
u
t

t=0

in
p
u

t
h

id
d

e
n

o
u

tp
u
t

t=1

in
p
u

t
h

id
d

e
n

o
u

tp
u
t

t=2

…

CENG501



Unfolding (another example)

Figure: Michael MozerCENG501



http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Alec Radford
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Alec Radford
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Unfolding implications

• Entails duplication of weights => weight sharing

• Sharing weights means their gradients will be accumulated 
over time and reflected on the weights

• Unfolded network has the same dynamics of the RNN for a 
fixed number of time steps!
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Back-propagation Through Time
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Feedforward through Vanilla RNN

𝐱1

𝐡1 𝐡2

𝐱2

ො𝐲1 ො𝐲2

… 𝐡𝑛−1

𝐱𝑛−1

ො𝐲𝑛−1

𝑊𝑥ℎ

𝑊ℎℎ

𝑊ℎ𝑦

𝑊𝑥ℎ 𝑊𝑥ℎ

𝑊ℎ𝑦 𝑊ℎ𝑦

𝑊ℎℎ 𝑊ℎℎ 𝑊ℎℎ

ℒ1 ℒ2 ℒ𝑛−1

𝐡0

𝐡1 = 𝑡𝑎𝑛ℎ 𝑊 𝑥ℎ ⋅ 𝐱1 + 𝑊ℎℎ ⋅ 𝐡0

ො𝐲1 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊ℎ𝑦 ⋅ 𝐡1

ℒ1 = 𝐶𝐸( ො𝐲1, 𝐲1)

𝐡𝑛

𝐱𝑛

ො𝐲𝑛

𝑊𝑥ℎ

𝑊ℎ𝑦

𝑊ℎℎ

ℒ𝑛
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Feedforward through Vanilla RNN
The Vanilla RNN Model

First time-step (𝑡 = 1):

𝐡1 = 𝑡𝑎𝑛ℎ 𝑊𝑥ℎ ⋅ 𝐱1 + 𝑊ℎℎ ⋅ 𝐡0

ො𝐲1 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊ℎ𝑦 ⋅ 𝐡1

ℒ1 = 𝐶𝐸(ො𝐲1, 𝐲1)

In general:

𝐡t = 𝑡𝑎𝑛ℎ 𝑊𝑥ℎ ⋅ 𝐱𝑡 + 𝑊ℎℎ ⋅ 𝐡𝑡−1

ො𝐲𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊ℎ𝑦 ⋅ 𝐡𝑡

ℒ𝑡 = 𝐶𝐸(ො𝐲𝑡, 𝐲t)

In total:

ℒ = ෍

𝑡

ℒ𝑡
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Backpropagation 
through Vanilla RNN

In general:

𝐡t = 𝑡𝑎𝑛ℎ 𝑊 𝑥ℎ ⋅ 𝐱𝑡 + 𝑊ℎℎ ⋅ 𝐡𝑡−1

ො𝐲𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊ℎ𝑦 ⋅ 𝐡𝑡

ℒ𝑡 = 𝐶𝐸( ො𝐲𝑡 , 𝐲t)

In total:

ℒ = ෍

𝑡

ℒ𝑡
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𝜕𝑊ℎ𝑦 +
𝜕ℒ

𝜕 ො𝐲𝑛−1

𝜕 ො𝐲𝑛−1

𝜕𝑊ℎ𝑦 + ⋯ +
𝜕ℒ

𝜕 ො𝐲1

𝜕 ො𝐲1

𝜕𝑊ℎ𝑦

= ෍

𝑡=1..𝑛

𝜕ℒ

𝜕 ො𝐲𝑡

𝜕 ො𝐲𝑡

𝜕𝑊ℎ𝑦
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Backpropagation 
through Vanilla RNN

𝜕ℒ

𝜕𝑊ℎℎ
=?

=
𝜕ℒ

𝜕𝐡𝑛

𝜕𝐡𝑛
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𝜕ℒ

𝜕𝐡𝑛−1

𝜕𝐡𝑛−1
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In general:

𝐡t = 𝑡𝑎𝑛ℎ 𝑊 𝑥ℎ ⋅ 𝐱𝑡 + 𝑊ℎℎ ⋅ 𝐡𝑡−1

ො𝐲𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊ℎ𝑦 ⋅ 𝐡𝑡

ℒ𝑡 = 𝐶𝐸( ො𝐲𝑡 , 𝐲t)

In total:
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Backpropagation 
through Vanilla RNN

𝜕ℒ

𝜕𝑊𝑥ℎ
=?

=
𝜕ℒ

𝜕𝐡𝑛

𝜕𝐡𝑛

𝜕𝑊𝑥ℎ +
𝜕ℒ

𝜕𝐡𝑛−1

𝜕𝐡𝑛−1

𝜕𝑊𝑥ℎ + ⋯ +
𝜕ℒ

𝜕𝐡1

𝜕𝐡1

𝜕𝑊𝑥ℎ

𝜕ℒ

𝜕𝐡𝑡
=

𝜕ℒ

𝜕 ො𝐲𝑡

𝜕 ො𝐲𝑡

𝜕𝐡𝑡
+

𝜕ℒ

𝜕𝐡𝑡+1

𝜕𝐡𝑡+1

𝜕𝐡𝑡

(calculated before)
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In general:

𝐡t = 𝑡𝑎𝑛ℎ 𝑊 𝑥ℎ ⋅ 𝐱𝑡 + 𝑊ℎℎ ⋅ 𝐡𝑡−1

ො𝐲𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊ℎ𝑦 ⋅ 𝐡𝑡

ℒ𝑡 = 𝐶𝐸( ො𝐲𝑡 , 𝐲t)

In total:

ℒ = ෍

𝑡

ℒ𝑡

T
h

e
 V

a
n

il
la

 R
N

N
 M

o
d

e
l

𝐱1

𝐡1 𝐡2

𝐱2

𝐲1 𝐲2

… 𝐡𝑛−1

𝐱𝑛−1

𝐲𝑛−1

𝑊𝑥ℎ

𝑊ℎℎ

𝑊ℎ𝑦

𝑊𝑥ℎ
𝑊𝑥ℎ

𝑊ℎ𝑦 𝑊ℎ𝑦

𝑊ℎℎ 𝑊ℎℎ 𝑊ℎℎ

ℒ1 ℒ2 ℒ𝑛−1

𝐡0 𝐡𝑛

𝐱𝑛

𝐲𝑛

𝑊𝑥ℎ

𝑊ℎ𝑦

𝑊ℎℎ

ℒ𝑛



Initial hidden state

• We need to specify the initial activity state of all the hidden units. 

• We could just fix these initial states to have some default value like 0.5.

• But it is better to treat the initial states as learned parameters.

• We learn them in the same way as we learn the weights.
• Start off with an initial random guess for the initial states.
• At the end of each training sequence, backpropagate through time all the way 

to the initial states  to get the gradient of the error function with respect to 
each initial state.

• Adjust the initial states by following the negative gradient.

Slide: HintonCENG501



Initializing parameters

• Since an unfolded RNN is a deep MLP, we can use Xavier initialization.

CENG501



The problem of exploding or vanishing 
gradients

• What happens to the magnitude of 
the gradients as we backpropagate 
through many layers? 

– If the weights are  small, the 
gradients shrink exponentially.

– If the weights are big the gradients 
grow exponentially.

• Typical feed-forward neural nets can 
cope with these exponential effects 
because they only have a few hidden 
layers.

• In an RNN trained on long 
sequences (e.g. 100 time steps) the 
gradients can easily explode or 
vanish.
– We can avoid this by initializing the 

weights very carefully.

• Even with good initial weights, its 
very hard to detect that the current 
target output depends on an input 
from many time-steps ago.
– So RNNs have difficulty dealing with 

long-range dependencies.

Slide: Hinton
CENG501



Exploding and vanishing 
gradients problem

• Solution 1: Gradient clipping for exploding 
gradients:

• For vanishing gradients: Regularization term that 
penalizes changes in the magnitudes of back-
propagated gradients

2012
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Exploding and vanishing gradients 
problem

• Solution 2:
• Use methods like LSTM

CENG501



Long Short Term 
Memory (LSTM)
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RNN

• Basic block diagram

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
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Key Problem

• Learning long-term dependencies is hard

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
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Long Short Term Memory (LSTM)

• Hochreiter & Schmidhuber 
(1997) solved the problem 
of getting an RNN to 
remember things for a 
long time (like hundreds of 
time steps). 

• They designed a memory 
cell using logistic and 
linear units with 
multiplicative interactions. 

• Information gets into the 
cell whenever its “write” 
gate is on.

• The information stays in 
the cell so long as its 
“keep” gate is on.

• Information can be read 
from the cell by turning on 
its “read” gate.

Slide: HintonCENG501



Meet LSTMs

• How about we explicitly encode memory? 

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

CENG501



LSTM in detail

• We first compute an activation vector, 𝑎:
𝑎 = 𝑊𝑥𝑥𝑡 + 𝑊ℎℎ𝑡−1 + 𝑏

• Split this into four vectors of the same size:
𝑎𝑖, 𝑎𝑓, 𝑎𝑜, 𝑎𝑔 ← 𝑎

• We then compute the values of the gates:

      𝑖 = 𝜎 𝑎𝑖      𝑓 = 𝜎(𝑎𝑓)    𝑜 = 𝜎 𝑎𝑜      𝑔 = tanh(𝑎𝑔)

     where 𝜎 is the sigmoid.

• The next cell state 𝑐𝑡 and the hidden state ℎ𝑡:

 𝑐𝑡 = 𝑓 ⊙ 𝑐𝑡−1 + 𝑖 ⊙ 𝑔
ℎ𝑡 = 𝑜 ⊙ tanh(𝑐𝑡)

where ⊙ is the element-wise product of vectors

𝑐𝑡−1

ℎ𝑡−1

𝑐𝑡

ℎ𝑡

Eqs: Karpathy

Image: C. Olah 

Alternative formulation:
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LSTMs Intuition: Memory

• Cell State / Memory

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
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LSTMs Intuition: Forget Gate

• Should we continue to remember this “bit” of information or not?

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
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LSTMs Intuition: Input Gate

• Should we update this “bit” of information or not?
• If so, with what?

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
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LSTMs Intuition: Memory Update

• Forget that + memorize this

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
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LSTMs Intuition: Output Gate

• Should we output this “bit” of information to “deeper” layers?

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
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LSTMs

• A pretty sophisticated cell

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
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LSTM Variants #1: Peephole Connections

• Let gates see the cell state / memory

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
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LSTM Variants #2: Coupled Gates

• Only memorize new if forgetting old

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
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LSTM Variants #3: Gated Recurrent Units

• Changes: 
• No explicit memory; memory = hidden output

• Z = memorize new and forget old

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
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LSTM vs. GRU
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ConvLSTM

2015

https://medium.com/neuronio/an-introduction-to-convlstm-55c9025563a7
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Reference

• A very detailed explanation with nice figures 

 

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

CENG501
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CNN vs RNN
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Example: Character-level Text 
Modeling
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Character-level Text Modeling

• Problem definition: Find 𝑐𝑛+1 given 𝑐1, 𝑐2, …, 𝑐𝑛.

• Modelling: 
𝑝 𝑐𝑛+1 𝑐𝑛, … , 𝑐1)

• In general, we just take the last 𝑁 characters: 
𝑝 𝑐𝑛+1 𝑐𝑛, … , 𝑐𝑛−(𝑁−1))

• Learn 𝑝 𝑐𝑛+1 = ′𝑎′ ′𝐴𝑛𝑘𝑎𝑟′) from data such that 
𝑝 𝑐𝑛+1 = ′𝑎′ ′𝐴𝑛𝑘𝑎𝑟′) > 𝑝 𝑐𝑛+1 = ′𝑜′  ′𝐴𝑛𝑘𝑎𝑟′)

CENG501



http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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A simple scenario

• Alphabet: h, e, l, o
• Text to train to predict: 

“hello”

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Sampling: Greedy

• Greedy sampling: Take the most likely word at each step

Code: https://machinelearningmastery.com/beam-search-decoder-
natural-language-processing/
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Sampling: Beam Search

• What happens if we want k most likely sequences instead of one?

• Beam search: Consider k most likely words at each step, and expand search.

Figure: http://mttalks.ufal.ms.mff.cuni.cz/index.php Figure: https://geekyisawesome.blogspot.com.tr/2016/10/using-
beam-search-to-generate-most.html
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Sampling: Beam Search

• Beam search: Consider k most likely words at each step, and expand search.

   (take log for numerical stability; take –log() for minimizing the score)

Code: https://machinelearningmastery.com/beam-search-decoder-
natural-language-processing/CENG501



More on beam search 

• Beam search is applied during inference.

• With modifications on the training procedure, it is possible to use it 
during training as well.

https://arxiv.org/abs/1606.02960
CENG501



A sub-tree in the tree of all character strings

• If the nodes are implemented as hidden states in an RNN, different nodes 
can share structure because they use distributed representations.

• The next hidden representation needs to depend on the conjunction of the 
current character and  the current hidden representation.

...fix

…fixi

…fixin

i e

n

In an RNN, each 

node is a hidden 

state vector. The 

next character 

must transform this 

to a new node.

…fixe

There are 

exponentially many 

nodes in the tree of 

all character strings 

of length N.

Slide: Hinton
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Modeling text: Advantages of working with 
characters

• The web is composed of character strings.

• Any learning method powerful enough to understand the world by 
reading the web ought to find it trivial to learn which strings make 
words (this turns out to be true, as we shall see).

• Pre-processing text to get words is a big hassle
• What about morphemes (prefixes, suffixes etc)

• What about subtle effects like “sn” words?

• What about New York?  

• What about Finnish?

Slide: HintonCENG501



Sample predictions 
(when trained on the works of Shakespeare):

• 3-level RNN with 512 
hidden nodes in each 
layer

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Sample predictions 
(when trained on Wikipedia):

• Using LSTM

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Sample predictions 
(when trained on Latex documents):

• Using multi-layer LSTM

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

CENG501



He was elected President during the Revolutionary 

War and forgave Opus Paul at Rome. The regime 

of his crew of England, is now Arab women's icons 

in  and the demons that use something between 

the characters‘ sisters in lower coil trains were 

always operated on the line of the ephemerable 

street, respectively, the graphic or other facility for 

deformation of a given proportion of large 

segments at RTUS). The B every chord was a 

"strongly cold internal palette pour even the white 

blade.”

Slide: Hinton

From Ilya Sutskever (using a variant of character-level RNN)
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Some completions produced by the model

• Sheila thrunges                               (most frequent)

• People thrunge    (most frequent next character is space)

• Shiela, Thrungelini del Rey                       (first try)

• The meaning of life is literary recognition.  (6th try)

• The meaning of life is the tradition of the ancient human reproduction: it 
is less favorable to the good boy for when to remove her bigger.                      
(one of the first 10 tries for a model trained for longer).

Slide: HintonCENG501



What does it know?

• It knows a huge number of words and a lot about proper names, dates, and 
numbers.

• It is good at balancing quotes and brackets.

– It can count brackets: none, one, many

• It knows a lot about syntax but its very hard to pin down exactly what form this 
knowledge has.

– Its syntactic knowledge is not modular.

• It knows a lot of weak semantic associations

– E.g. it knows Plato is associated with Wittgenstein and cabbage is associated 
with vegetable.

Slide: HintonCENG501



Example: Word-level Text 
Modeling
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Word-level Text Modeling

• Problem definition: Find 𝜔𝑛+1 given 𝜔1, 𝜔2, …, 𝜔𝑛.

• Modelling: 
𝑝 𝜔𝑛+1 𝜔𝑛, … , 𝜔1)

• In general, we just take the last 𝑁 words: 
𝑝 𝜔𝑛+1 𝜔𝑛, … , 𝜔𝑛−(𝑁−1))

• Learn 𝑝 𝜔𝑛+1 = ′𝑇𝑢𝑟𝑘𝑒𝑦′ ′𝐴𝑛𝑘𝑎𝑟𝑎 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 𝑜𝑓 ′) from data such 
that: 

𝑝 𝜔𝑛+1 = ′𝑇𝑢𝑟𝑘𝑒𝑦′ ′𝐴𝑛𝑘𝑎𝑟𝑎 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 𝑜𝑓 ′)  >  𝑝 𝜔𝑛+1 = ′𝑈𝐾′ ′𝐴𝑛𝑘𝑎𝑟𝑎 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 𝑜𝑓 ′)

CENG501



A handicap

• The number of characters is low enough to handle without doing anything 
extra.
• English has 26 characters.

• The situation is very different for words.
• English has ~ 170,000 different words!

• This increases dimensionality and makes it difficult to capture “semantics”.

• Solution: Map words to a lower dimensional space, a.k.a. word embedding 
(word2vec).

CENG501



Word Embedding (word2vec)

Fig: http://www.languagejones.com/blog-1/2015/11/1/word-embedding
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Why do we embed words?
• 1-of-n encoding is not suitable to learn from

• It is sparse

• Similar words have different representations

• Compare this with the pixel-based representation of images: Similar images/objects have similar 
pixels

• Embedding words in a map allows
• Encoding them with fixed-length vectors

• “Similar” words having similar representations

• Allows complex reasoning between words:
• king - man + woman = queen

Table: https://devblogs.nvidia.com/parallelforall/understanding-natural-language-deep-neural-networks-using-torch/
CENG501



More examples

CENG501



More examples

•Geopolitics: Iraq - Violence = Jordan 
•Distinction: Human - Animal = Ethics 
•President - Power = Prime Minister 
•Library - Books = Hall 

http://deeplearning4j.org/word2vecCENG501



More examples

http://deeplearning4j.org/word2vecCENG501



word2vec

• “Similarity” to Sweden (cosine distance between their vector 
representations)

http://deeplearning4j.org/word2vecCENG501



Two different ways to train

1.Using context to predict a target 
word (~ continuous bag-of-words)

2.Using word to predict a target 
context (skip-gram)

• If the vector for a word cannot 
predict the context, the mapping 
to the vector space is adjusted

• Since similar words should predict 
the same or similar contexts, their 
vector representations should end 
up being similar

http://deeplearning4j.org/word2vec

CENG501

𝐰1

𝐰1

𝐰1

𝐰2 ∈ ℝ𝑑×𝑣

𝐰2

𝐰2

𝐰2

𝐰1 ∈ ℝ𝑣×𝑑

𝑣: vocabulary size
𝑑: hidden dimension

𝐰2 ∈ ℝ𝑑×𝑣

𝐰1 ∈ ℝ𝑣×𝑑



Note that the weight matrix is a look-up table

• In both approaches, the weight matrix is used as follows:

https://medium.com/@zafaralibagh6/a-simple-word2vec-tutorial-61e64e38a6a1

CENG501



Two different ways to train

1.Using context to predict a target word (~ continuous bag-of-words)

https://www.tensorflow.org/versions/r0.7/tutorials/word2vec/index.html

CENG501



Two different ways to train

2.Using word to predict a target context (skip-gram)

• Given a sentence:

the quick brown fox jumped over the lazy dog

• For each word, take context to be 

(N-words to the left, N-words to the right)

• If N = 1 (context, word):

([the, brown], quick), ([quick, fox], brown), ([brown, jumped], fox), ...

CENG501



Note that the weight matrix is a look-up table

https://medium.com/@zafaralibagh6/a-simple-word2vec-tutorial-61e64e38a6a1
CENG501



Two different ways to train

2.Using word to 
predict a target 
context (skip-gram)

https://www.tensorflow.org/tutorials/text/word2vecCENG501



Some notes

• CBOW is called continuous BOW since the context is regarded as a BOW and it 
is continuous.

• In both approaches, the networks are composed of linear units

• The output units are usually normalized with the softmax

• According to Mikolov:
• “Skip-gram: works well with small amount of the training data, represents well even rare 

words or phrases.

• CBOW: several times faster to train than the skip-gram, slightly better accuracy for the 
frequent words”

CENG501



Example: Image Captioning

Fig: https://github.com/karpathy/neuraltalk2
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Demo video

https://vimeo.com/146492001

CENG501



Overview

Pre-trained 
word 

embedding 
is also used

Pre-trained CNN 
(e.g., on imagenet)

Image: KarpathyCENG501



http://karpathy.github.io/2015/05/21/rnn-effectiveness/

CENG501



Slide: Karpathy

Training
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Slide: Karpathy
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Slide: Karpathy
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Slide: Karpathy
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Slide: Karpathy
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Example: Neural Machine Translation

2014
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Neural Machine Translation

• Model

Sutskever et al. 2014

Haitham Elmarakeby

Each box is an LSTM or GRU cell.
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http://karpathy.github.io/2015/05/21/rnn-effectiveness/

CENG501



Neural Machine 
Translation

Cho: From Sequence Modeling to Translation
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Neural Machine Translation

• Model- encoder

Cho: From Sequence Modeling to Translation Haitham Elmarakeby
CENG501



Neural Machine Translation

• Model- decoder

Cho: From Sequence Modeling to Translation Haitham Elmarakeby
CENG501



Decoder in more detail

Given 
(i) the “summary” (𝐡) of the input sequence, 

(ii) the previous output / word (𝑓𝑡−1)

(iii) the previous state (𝐳𝑡−1)

the hidden state of the decoder is:
𝐳𝑡 = 𝑅𝑁𝑁(𝐳𝑡−1, 𝑓𝑡−1, 𝐡)

Then, we can find the most likely next 
word:

𝑃 𝑓𝑡 𝑓𝑡−1, 𝑓𝑡−2, … , 𝐡) = 𝑝(𝑓𝑡 | 𝐳𝑡, 𝑓𝑡−1, 𝐡)

CENG501



Encoder-decoder

• Jointly trained to maximize

CENG501



NMT can be done at char-level too

• http://arxiv.org/abs/1603.06147

CENG501



This can be 
done with 
CNNs

2017

CENG501



Check the following tutorial

• http://smerity.com/articles/2016/google_nmt_arch.html

CENG501
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