CENG501 — Deep Learning

Week 5
Fall 2024

Sinan Kalkan

Dept. of Computer Engineering, METU

y
Disgaé’?/a ntages of MLPs:
Rfmensionality

O
4\
<
Y « The number of parameters in an MLP is high for practical problems

* e.g., for grayscale images with 1000x1000 resolution, a fully-connected layer with 1000 neurons
requires 10° parameters.

 The number of parameters in an MLP increases quadratically with an increase in input
dimensionality

* For example, for a fully-connected layer with n;,, input neurons and n,,,; output neurons:
* Number of parameters: n;,; X Nyt

« Assuming proportional decrease in layer size, e.g. gy = N/ 10, gives: Ny, X gy = n2, /10
* Increasing n;, by d yields a change of 0(d?).

* This is a problem because:
* More parameters => larger model size & more computational complexity.

CENG501

<>°\’
Equm‘anance VS. Invariance

\~\
0\9 Equwarlant problem: image segmentation.

. Hg(x) = g(f(x)

https://www.mathworks.com/discovery/image-segmentation.html

* Invariant problem: object recognition.
* f(g(x)) = f(x)

* Pooling provides invariance, convolution
provides equivariance.

f(g(x)): “cat”

CENG501

R

)¢
Anofé;??ernative to MLPs

o"*o
S§fPution: Neocognitron (Fukushima, 1979):

&

A neural network model unaffected by shift
in position, applied to Japanese
handwritten character recognition.

S (simple) cells: local feature extraction.

* C (complex) cells: provide tolerance to
deformation, e.g. shift.

* Self-organized learning method.

CENG501

I
I
I
I

L
I
'
I
I

Y

Uca z
input
pattern

shared connections
= spatial filtering
= convolution

feature _ .
extraction pooling recognition

(S-cells) (C-cells) (classification)

Figure: Fukushima (2019), Recent advances in the deep
CNN neocognitron.

o

CNNsPvs. MLPs: Curse of Dimensionality

NN

<
o\ 82
Q,A a O ° When things go deep, an output may depend on

<
R all or most of the input:

OOy O¥ONO.
oRcR0R¢C

3 2 ') :

Z1 Z2 Z3 T4

CENG501

Figure: Goodfellow et al., “Deep Learning”, MIT Press, 2016.

v:1805.07883v1 [stat. ML] 21 May 2018

How Many Samples are Needed to Learn a
Convolutional Neural Network?

Simon S. Du*!, Yining Wane*!, Xiyu Zhai?, Sivaraman Balakrishnan®, Ruslan
7 (=] (=] 3 ? ?
Salakhutdinov!, and Aarti Singh®

"Machine Learning Department, Carnegie Mellon University
2University of Cambridge
*Department of Statistics, Carnegie Mellon University

May 22, 2018

Abstract

A widespread folklore for explaining the success of convolutional neural network (CNN) is
that CNN is a more compact representation than the fully connected neural network (FNN)
and thus requires fewer samples for learning. We initiate the study of rigorously characterizing
the sample complexity of learning convolutional neural networks. We show that for learning
an m-dimensional convolutional filter with linear activation acting on a_d-dimensional input,
the sample complexity of achieving population prediction error of € is O(m/e2)!, whereas its
FNN counterpart needs at least Q(d/e?) samples. Since m < d, this result demonstrates the
advantage of using CNN. We further consider the sample complexity of learning a one-hidden-
layer CNN with linear activation where both the m-dimensional convolutional filter and the
r-dimensional output weights are unknown. For this model, we show the sample complexity
is O ((m+7)/€%) when the ratio between the stride size and the filter size is a constant. For
both models, we also present lower bounds showing our sample complexities are tight up to
logarithmic factors. Our main tools for deriving these results are localized empirical process
and a new lemma characterizing the convolutional structure. We believe these tools may inspire
further developments in understanding CNN.

CENG501

y
&&"Q Size of the next layer

. A\Lgﬂga dimension:

O« W: Size of the input
3

Q‘Q, e F:Size of the receptive field

e §:Stride
 P: Amount of zero-padding

* Then: the number of neurons as the output of a convolution layer:
W—F+2P L1

S

 If this number is not an integer, your strides are incorrect and your neurons cannot tile
nicely to cover the input volume

Weights:

1 0 || -1

0 1 2 || -1 11[-3(O

CENG501

Zero padding http://cs231n.github.io/convolutional-networks/

s"c’&
Tyges of Convolution
ANY

2)

©
P Unshared

* Dilated

* Transposed

* 3D

* 1x1

e Separable and Depth-wise Separable

* Group

 Deformable

e Position-sensitive

CENG501

Y

\\

QY

o
< Pooling

o°
&‘kample

* Pooling layer with filters of size 2x2

e With stride =2
* Discards 75% of the activations
* Depth dimension remains unchanged

* Max pooling with F=3, S=2 or F=2, S=2 are quite common.

* Pooling with bigger receptive field sizes can be destructive

Figure: Goodfellow et al., “Deep Learning”, MIT Press, 2016.

* Avg pooling is an obsolete choice. Max pooling is shown to work better in

practice.

224x224x64

112x112x64

pool

—_— X

l l

Single depth slice

1

2

4

max pool with 2x2 filters
and stride 2 6 8

> B 112
224 downsampling

224

CENG501

5
3
1

1
6
2
2

7
1
3

8
0
4

http://cs231n.github.io/convolutional-networks/

(gRTormalization
C

Batch Norm Layer Norm Instance Norm Group Norm

H,W

DR

L RS
VEATKREN Gy

N A SR

2, N
R

=+ Batch Norm
For each channel independently. z'*ﬁm”""“
£ 30
EZE'
26
Hy— = —— F—
2y 16 8 4 2

batch size (images per worker)

https://medium.com/syncedreview/facebook-ai-proposes-group-normalization-alternative-to-
batch-normalization-fb0699bffae7

CENG501

e"’&
Al;t<éfrnat|ve to FC: Global Average Pooling

“Network In Network”, https://arxiv.org/pdf/1312.4400.pdf

flatten FC layers FC
> » Classes 0.80.10.2 » Classes

A

Sum
of Each
Channel

0.80.10.2

CENG501

e"c’&
A Btueprint for CNNs
AN

XY
Q‘Q} INPUT -> [[CONV —-> RELU]*N -> POOL?]*M -> [FC -> RELU]*K -> FC
where the * indicates repetition, and the pooL? indicates an optional pooling layer. Moreover, N >= 0 (and

usually N <= 3), M >= 0, K >= 0 (and usually & < 3). For example, here are some common ConvNet
architectures you may see that follow this pattern:

e INPUT -> FC ,implements a linear classifler Here N = M = K = 0.

e INPUT -> CONV -> RELU —> FC

® INPUT -> [CONV -> RELU -> POOL]*2 -> FC -> RELU —> FC .Here we see that there is a single
CONV layer between every POOL layer.

e INPUT -> [CONV —-> RELU —-> CONV -> RELU -> POOL]*3 —-> [FC —-> RELU]*2 -> FC Here we see
two CONV layers stacked before every POOL layer. This is generally a good idea for larger and deeper
networks, because multiple stacked CONV layers can develop more complex features of the input volume
before the destructive pooling operation.

http://cs231n.github.io/convolutional-networks/

CENG501

Y
&
Q
o
\\
o
S
sBetween filter size and number of layers (depth)

Q‘z * Keep the layer widths fixed.

» “When the time complexity is roughly the same, the deeper
networks with smaller filters show better results than the
shallower networks with larger filters.”

* Between layer width and number of layers (depth)

* Keep the size of the filters fixed.

* “We find that increasing the depth leads to considerable gains,
even the width needs to be properly reduced.”

* Between filter size and layer width
* Keep the number of layers (depth) fixed.
* No significant difference

CENG501

Trade-offs in architecture

This CVPR2015 paper is the Open Access version, provided by the Computer Vision Foundation.
The authoritative version of this paper is available in [EEE Xplore.

Convolutional Neural Networks at Constrained Time Cost

Kaiming He Jian Sun

Microsoft Research

{kahe, jiansun}fmicrosoft.com

4.4. Is Deeper Always Better?

The above results have shown the priority of depth for
improving accuracy. With the above trade-offs, we can have
a much deeper model if we further decrease width/filter
sizes and increase depth. However, in experiments we find
that the accuracy is stagnant or even reduced in some of our
very deep attempts. There are two possible explanations:
(1) the width/filter sizes are reduced overly and may harm
the accuracy, or (2) overly increasing the depth will degrade
the accuracy even if the other factors are not traded. To
understand the main reason, in this subsection we do not
constrain the time complexity but solely increase the depth
without other changes.

\ .
%eo"Q Finetuning
C

1.If*t%°e new dataset is small and similar to the original dataset used to train the CNN:
2 ¢ Finetuning the whole network may lead to overfitting
& ¢ Just train the newly added layer
¥
2.1f the new dataset is big and similar to the original dataset:
* The more, the merrier: go ahead and train the whole network

3.I1f the new dataset is small and different from the original dataset:
* Not a good idea to train the whole network

* However, add your new layer not to the top of the network, since those parts are very dataset
(problem) specific

* Add your layer to earlier parts of the network

4.1f the new dataset is big and different from the original dataset:
* We can “finetune” the whole network
* This amounts to a new training problem by initializing the weights with those of another network

CENG501

Many mechanisms for visualization

* Visualize layer activations
* Visualize the weights (i.e., filters)

* Visualize examples that maximally activate a neuron

* Visualize a 2D embedding of the inputs based on their CNN codes
* Occlude parts of the window and see how the prediction is affected
* Data gradients

CENG501

Q@“‘Data gradients

\A
\O‘Phe gradient with respect to the input is high
Q@ for pixels which are on the object

We start with a motivational example. Consider the linear score model for the class o
S.(I) =wlI+b,, (2)

where the image [is represented in the vectorised (one-dimensional) form, and w,. and b, are respec-
tively the weight vector and the bias of the model. In this case. it 1s easy to see that the magnitude
of elements of w defines the importance of the corresponding pixels of I for the class ¢

In the case of deep ConvNets, the class score S.(]) is a highly non-linear function of I, so the
reasoning of the previous paragraph can not be immediately applied. However, given an image
I, we can approximate S.(I) with a linear function in the neighbourhood of Iy by computing the
first-order Taylor expansion:

Se(I) m~ wl I +b, (3)
where w is the derivative of 5. with respect to the image [at the point (image) [
a8, |
= ——| . 4
u ar |, (

Deep Inside Convolutional Networks: Visualising
Image Classification Models and Saliency Maps

Karen Simonyan Andrea Vedaldi Andrew Zisserman
Visual Geometry Group, University of Oxford

{karen,vedaldi, az}@robots.ox.ac.uk 2014 CENG501

o

ST
CleSs Activation
ANY

0%
Q'@?Veighted combination

of the feature maps
before GAP:

M(xy) =) wifi(x,y)
k

‘+‘W2*

<Z200

<Z00

<Z00
<zZo0n

N

Class Activation Mapping

b ¢

—|— —l—Wn*

Olw [0
Australian
O W2\>‘ terrier
ofe |0
B
Y
Class
= Activation
Map
‘ . (Australian terrier)

Figure 2. Class Activation Mapping: the predicted class score is mapped back to the previous convolutional layer to generate the class

activation maps (CAMs). The CAM highlights the class-specific discriminative regions.

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep features for discriminative localization,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2921-2929.

CENG501

¢

Fg\c}ﬁng ConvNets

N
X 0‘9
\)

Q% Given an image [labeled as [, find
minimum “r” (noise) such that I + r is
classified as a different label, [,.

* |.e., minimize:

argmin loss(I +r,1,) + c|r]
r

+.007 x

.

“panda”
57.7% confidence

: =2 T+
Sign(Vad(0,2,9) ion(v,J(6,,y))
“nematode” “gibbon™
8.2% confidence 99.3 % confidence

CENG501

Publizhed as a conference paper at ICLE 2015

EXPLAINING AND HARNESSING
ADVERSARIAL EXAMPLES

lan J. Goodfellow, Jonathon Shlens & Christian Szegedy
Google Inc., Mountain View, CA
{goodfellow, shlens, szegedy}@google. com

Intriguing properties of neural networks

Christian Szegedy Wojciech Zaremba Ilya Sutskever Joan Bruna

Google Inc. Mew York University Google Inc. Mew York University
Dumitru Erhan Ian Goodfellow Kob Fergus
Google Inc. University of Montreal New York University
Facebook Inc.

Ostrich

Today

* CNNs

* Popular CNN architectures
* Sequence Modeling

e Recurrent Neural Networks
* Long Short Term Memory (LSTM)

* App
* App
* App

ication: Language Modeling
ication: Image Captioning
ication: Machine Translation

 Echo State Networks

Administrative Notes

* No quiz today

* Hopfield Networks, Boltzmann Machines and the Associated Nobel
Prize

* Today at 18:30 in “Cavid Erginsoy Salonu” in the Dept. of Physics

* Paper Selection

* Feedback provided
e Deadline: This Sunday

CENG501

Popular
CNN models

CCCCCCC

PROC OF THE IEEE, NOVEMBER 1888

Gradient-Based Learning Applied to Document
Le N et (1 9 9 8) Recognition

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner

e For reading zip codes and digits

C3:f. maps 16@10x10
C1: feature maps S4:f. maps 16@5x5

INPUT
6@28x28 .
e I§|325c:llayer F6: layer OUTPUT EUC“dean RBF:
10

32x32
. oy 2
W= E{J:j — wy;)~
J

S2: f. maps
6@14x14

‘ ‘ Full coanection ‘ Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

F=5x5

5=1 F=2x2 F=5x5 F=2x2 F=5yE
P=0 S=2 S=1 S=2 5=1
B sigm(a X avg + b) p=g sigm(a X avg + b) b=0
a & b: trainable a & b: trainable

CENG501

A ImageNet Classification with Deep Convolutional
| ex N et (2 O 1 2) Neural Networks

Alex Krizhevsky Ilva Suiskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
zflcs. utoronto. oa ilvafos.utoronto. ca hintonfcs.utoronto

Popularized CNN in computer vision & pattern recognition
ImageNet ILSVRC challenge 2012 winner

Similar to LeNet
* Deeper & bigger

 Many CONV layers on top of each other (rather than adding
immediately a pooling layer after a CONV layer)

* Uses GPU
650K neurons. 60M parameters. Trained on 2 GPUs for a
week.
P) Q EAV i ! S T\
T\ 3| AN AN
192 .' 192 128 \ / Jomm \ / soag \dense
- . }{__ — A \
13 13 / \ a H
. .'-‘.?‘___ q'n\ﬁ / \ \\
- 'H_Q 4 1. / 1
j RN E 2 1 s dense’| |[dense
1000
192 192 128 Max]]
Max 128 Max pooling 2948 2048
pooling pooling

CENG501

AlexNet (2012) Details

o 3
o N \ 4 \
i - 3 - Ay / 1 "? !
| . \ / o/ \
. g -
192 192 128 -\‘_‘f' 2048 \ / 2048 "-?EHSE
. Y
_.". '\' III,-'l "." Il'l
13 IIII.'II \ .."' "-_‘ i
- A / \'-.
. / .
1 3 L L'
[13 dense | [dense
1000
192 192 128 Max L -
; 2048 .
Max 128 Max pooling 2048
pooling pooling

Since the network is too big to fit in on GPU, it is divided into two.

Note the cross connections between the “pathways”.

Uses ReLU as non-linearity after every convolutional and fully-connected layer.
Normalization layer is placed after the first & the second convolutional layers.

Max-pooling layer is placed only after the normalization layers & the fifth convolutional layer.
Last layer is a soft-max.

CENG501

AlexNet (2012) Training

- 3] . ; L o e \ : 4 '.I".
’ 3N \ A \
I '\ l,."lll L '\.\\ ,."lll - '-,II dense
192 192 128 -.\{,r' 2048 \\{s 2048 \
A K FA A
i 13 / 7 "\ ;.-' ‘-\I‘\ Y
N /N \
| 3. |
Al 13 dense | [dense
1000
192 192 128 Max L] ||
Max 138 Max pooling 2948 2048
pooling pooling

Data augmentation & dropout are used during training to avoid overfitting.

Stochastic Gradient Descent with a batchsize of 128 examples is used.

Momentum with coefficient 0.9 is employed.

Weight decay (L2 regularization cost) with factor 0.0005 is also used in the loss function.
Weights are initialized from a zero-mean Gaussian distribution with 0.01 std.

Learning rate started with 0.01 and manually divided by 10 when the validation error rate
stopped improving.

Trained on 1.2 million images, which took 5-6 days on two GPUs.

CENG501

AlexNet (2012): The learned filters

* Do you notice anything strange with the filters?

Figure 3: 96 convolutional kernels of size
11x 11 x 3 learned by the first convolutional
layer on the 224 x 224 % 3 input images. The
top 48 kernels were learned on GPU 1 while

the bottom 48 kernels were learned on GPU
2. See Section 6.1 for details.

Figure 3 shows the convolutional kernels learned by the network’s two data-connected layers. The
network has learned a variety of frequency- and orientation-selective kernels, as well as various col-
ored blobs. Notice the specialization exhibited by the two GPUs, a result of the restricted connec-
tivity described in Section 3.5. The kernels on GPU 1 are largely color-agnostic, while the kernels
on on GPU 2 are largely color-specific. This kind of specialization occurs during every run and is
independent of any particular random weight ifiitfaiization (modulo a renumbering of the GPUs).

G O Og | e N et (2 O 1 4) Going deeper with convolutions

Christian Szegedy Wei Liu Yangqing Jia
Google Inc. University of North Carolina, Chapel Hill Google Inc.
* ImageNet 2014 winner Googlelne. Univrstyof Mickigsn Google e, Googie T
e Contributions: M e e
* Inception module
* Dramatically reduced parameters (from 60M in AlexNet to 4M)
* Avg Pooling at the top, instead of fully-connected layer =»
Reduced number of parameters
* Motivation:
* Going bigger (in depth or width) means too many i 5
parameters. - | . I 5 EE E'ﬁg@'fﬂﬂg]u
* Go bigger by maintaining sparse connections. I E 1 p& mmﬂwﬁw'ﬂﬂw id
aajajaiigiiggiiggglintantyy B B
85887 "0 g BE B8 I @ae
B B8 HE § e
EEEE
Convolution
Pooling
Other

CENG501

Inception module: “network in network”
(inspired from Lin et al., 2013)

Filtor

p— W < 1 ' - Y —
- = = 33 convolutions 5x5 convolutions 1x1 convolutions
1x1 convolutions 3x3 convolutions Sx5 convolutions 33 max pooling 1x1 convolutions - L. =t = L. = ¢
R ¢ i c R - g ; X 1x1 convolutions 1x1 convolutions 3x3 max pooling
V - X AN 4 — — = -
15 B3 i =
Previous kx
Previous layer yor

(a) Inception module, naive version (b) Inception module with dimension reductions

* Concatenation is performed along the “columns” (depth).
* The output of inception layers must have the same size.

* The naive version has a tendency to blow up in number of channels.

* Why? Max-pooling does not change the number of channels. When concatenated with other filter responses, number of channels
increase with every layer.

e Solution: Do 1x1 convolution to decrease the number of channels.
e Also called “bottleneck”.

* In order to decrease the computational complexity of 3x3 and 5x5 pooling, they are also preceded by 1x1
convolution (i.e., the number of channels are reduced).

CENG501

g fesye
~—]
E B 25 =
pazeff sl s oy
==
B i kS
e e e
==
=
]

EEEEERE

E
Ex
-

B N 2R B B
|~
B3

v B EE S

S S R
-]

B 9 B
5 2R 23 29
[
B = B
= BR BN 2
[eemen]
=]
o
=y B gy b
-
(-
s - e e
ety
s R !

Convolution
Pooling

Other

One of the main beneficial aspects of this architecture is that it allows for increasing the number of
units at each stage significantly without an uncontrolled blow-up in computational complexity. The
ubiquitous use of dimension reduction allows for shielding the large number of input filters of the
last stage to the next layer, first reducing their dimension before convolving over them with a large
patch size. Another practically useful aspect of this design is that it aligns with the intuition that
visual information should be processed at various scales and then aggregated so that the next stage
can abstract features from different scales simultaneously.

 Since the intermediate
layers learn to discriminate
features specific to a class,
we can directly link them
to the loss term.

* Encourages these layers to
become more discriminative

* Increases propagation of
gradient signal to earlier
stages

Conv \ Conwv
1x1+1(s) 1x1+1(s)

MaxPool
3x3+1(s)

Conv
1x1+1(s)

MaxPool AveragePool

e
3x3+1(s) 5x5+3(V)

CENG501

GoogleNet: More Details

RelLU after all layers
* Max pooling in inception modules as well as a whole layer occasionally

* Avg pooling instead of fully-connected layers

* Only a minor change in the accuracy (0.6%)
* However, less number of parameters

Other usual tricks (e.g., dropout, augmentation etc.) are used.

Trained on CPUs using a distributed machine learning system.
SGD with momentum (0.9).
Fixed learning rate scheme with 4% decrease every 8 epochs

* They trained many different models with different initializations and parameters.
They combined these models using different methods and tricks. There is no single
training method that yields the results they achieved.

VGGNet (2014)

* ImageNet runner up in 2014

e Contribution:

e Use small RFs & increase depth as much as possible
e 16 CONV/FC layers.
* 3x3 CONVs and 2x2 pooling from beginning to the end

* Although performs slightly worse than GoogleNet in image
classification, VGGNet may perform better at other tasks (such as
transfer learning problems).

* Downside: Needs a lot of memory & parameters (140M)

Table 1: ConvNet configurations (shown in columns). The depth of the configurations increases
from the left (A) to the right (E). as more layers are added (the added layers are shown in bold). The

convolutional layer parameters are denoted as “conv(receptive ficld size)-(number of channels)™.
The ReLU activation function is not shown for brevity.

ConvNet Configuration
A A-TRN B C D E
11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers
mput (224 x 224 RGB image)

conv3-64 conv3-64 conv3-64 conv3i-64 conv3-64 conv3i-64
LRN conv3-64 convi-64 conv3-64 conv3-64

maxpool
conv3-128 | conv3-128 | comv3-128 | conv3-128 | comw3-128 convi-128
conv3-128 | conv3-128 | comv3-128 | conv3-128

maxpool
conv3-256 | conv3-236 | conv3-256 | comv3-256 | comv3-236 | comvi-236
conv3i-226 | conv3-236 | conv3-256 | comnw3-236 | comv3-236 | comvi-236
convl-256 | conv3-256 | comv3-256
conv3-256

maxpool
conv3-312 | conv3-512 | conv3-512 | comw3-212 | comv3-512 | conv3-512
conv3-312 | conv3-512 | comv3-512 | conv3-312 | comwv3-312 | conv3-512
convl-512 | conv3-512 | comv3-512
conv3-512

maxpool
conv3i-312 | conv3-512 | conv3-512 | conw3-212 | comv3-512 | convi-512
conv3-312 | conw3-512 | conv3-512 | conw3-312 | conv3-512 | convi-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool

FC-4096

FC-4096

FC-1000

soft-max

Network

Table 2: Number of parameters (in millions).
AATRN B :

C D

Number of parameters

(‘}:%IBG 501 133

134 | 138

144

ResNet (2015)

* Increasing the depth naively may not give
you better performance after a number of
depths

e Why?

* This is shown to be not due to overfitting (since
training error also gets worse) or vanishing
gradients (suitable non-linearities used)

e Accuracy is somehow saturated. Though
reported in several studies.

e Solution: Make shortcut connections

CENG501

Deep Residual Learning for Image Recognition

Kaiming He

Xiangyu Zhang

Shaoging Ren
Microsoft Research

{kahe, v-xiangz, v-shren, jiansun } @microsoft.com

Jian Sun

20-laver

i M
" .'II o -‘I'-"ﬁ"-_.-d
— Vi |
o | |
= —_— |
— | s
- o
o 10 ¥ ., g 10
=N} o
= M\ S6-layer 2
E W B
s =
= 20-laver
e+ ; T+
iter. (1ed) iter. (1e4)

5

Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain™ networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

VGEGE-15 34-layer plain 34-layer residual

(ST age age
S [(eeeme]
[ot |
— s, /2
esNet T
[T I [T e ez | [z |
¥ ¥ ¥
— ﬁ-o-o‘t.rz ﬁ-o-n#.u e, /2
Hre B8 [micwi= | [maeewsr | (T _|_
[h!cu:u,).ﬁ | [h_h:cr:u,sl | [Mmtu,st |_
. . [[(mai= | [[(omme | [eewe]
* Residual (shortcut t - : :
esiaual \SNortcut) connections — — (——
[T [M-T-«G‘]
[(mema]| [(ews]
¥ e
X — rn-o-c;:rz I | ETrr T "
h 4 @2 R aemsn | I [ma::\q,JB]
R ¥ ey
WEIght Iayer | .i.;nn;w,s:z] [#deeew,228 | | mm:,us |>
.F(X) rEIU [xsm‘-ru,su | [3deeew, 128 | [a3 coew, B |__
A 4 .4 [m3mewszn | [T _|
weight layer . . a X
identity [memim | [meem |
=T [emwns |
[3@enwim | [m.::m,ua |_>
- P, /2 [S | [Mnm;xs..rzl"
T [3dewew.256 | [Mm-m-.z&l
[_usmt.,su | [_usm:,zss | T _|
| .usm:\..su] | .\n.%m:..zss] [Mm:um |__
[T (EE = [3 cow 335 _|
¥ ¥
[33eew 58| I
¥ ——
[emenzs | [MTM]
T [3 comn. =5 |>
¥ —
[33eew 5 | I
¥
[.\nsm;«..zsﬁ | [Mmm.m_l_
T [30 coen. =8 _|_
¥
¥ L
P g, /2 [(EBmmzmiaz | [(EEamemin | ™
¥ ¥ T
| 33 ooew, 3137 | | 33 coww, 517 |
e R ——
. . . a3 coew, 512 33 =12
Figure 5. A deeper residual function F for ImageNet. Left: a —m— A |>
T) . Tl coew, 502 Sl coew, 512
building block (on 5656 feature maps) as in Fig. 3 for ResNet-] [T
34. Right: a “bottleneck™ building block for ResNet-50/101/152.] e
w -

—
‘:“i‘:"" A aun:od iw:o-ol

CENG501 [eams] [ewn] [rewon]

method top-1 err. top-3 err.
VGG [41] (ILSVRC' 14) i 8431
Re S N et (2 O 1 5) GoogleNet [44] (ILSVRC' 14) i 7.89
VGG [41] (v5) 24.4 71
PReLU-net [13] 21.59 571
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 571
ResNet-34 C 21.53 5.60
* Residual (shortcut) connections Resiet:30 074
ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except ¥ reported on the test set).

Wy ——— - ———_= === = - == == = =
Festet-20 = residual-110
i FesMet-32 —residnal-1202
—HesMat-244
=—TResMat-58
w':_-E l‘-h-_.-"‘\m_/"‘-_,,_‘___,___,_J E-? 6?
wl-———— — — =\ =l T] = clF-F-—-—-—-———-—=—=-—
B i 20-layer = =
11 o o T e —
__________________ =4 e — — e — — — . — =,
plain-20 -
plain-32 (P ! T
——plin-5§ (=N p——-——-—-—-——————
ol gt : . . . :)] , s Eoooo o .
0 1 2 3 4 5 § 0 1 2 3 4 5]) 5
iter. (1ad) iter. {led) iter. (1ed)

Figure 6. Training on CIFAR-10. Dashed lines denote training error, and bold lines denote testing error. Left: plain networks. The error
of plain-110 is higher than 60% and not displayed. Middle: ResNets. Righ(t::E'{l{éeés(lj\lets with 110 and 1202 layers.

Effect of residual connections

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The vertical axis is
logarithmic to show dynamic range. The proposed filter normalization scheme is used to enable
comparisons of sharpness/flatness between the two figures.

VISUALIZING THE LOSS LANDSCAPE OF NEURAL NETS

2018
Hao Li', Zheng Xu', Gavin Taylor?, Christoph Studer?, Tom Goldstein'
"University of Maryland, College Park, *United States Naval Academy, *Cornell University
{r@@@sRuzh, tomg}Bces. umd. edu, taylor@usna.edu, studer@cornell .edu

Residual Networks Behave Like Ensembles of

Re S N et : E n S e m b | e Of Relatively Shallow Networks

Andreas Veit Michael Wilber Serge Belongie
Department of Computer Science & Cornell Tech
Cornell University 2 O 1 6

{av443, mjw285, sjb344}Q@cornell.edu

Building block

Skip
connection

LTSI

Residual
module

(a) Conventional 3-block residual network (b) Unraveled view of (a)

Figure 1: Residual Networks are conventionally shown as (a), which is a natural representation of
Equation (1). When we expand this formulation to Equation (6), we obtain an unraveled view of a
3-block residual network (b). Circular nodes represent additions. From this view, it is apparent that
residual networks have O(2") implicit paths connecting input and output and that adding a block
doubles the number of paths.

CENG501

Dynamical Isometry and a Mean Field Theory of CNNs:
How to Train 10,000-Layer Vanilla Convolutional Neural Networks

Lechao Xiao'? Yasaman Bahri'? Jascha Sohl-Dickstein! Samuel S. Schoenholz ! Jeffrey Pennington

Abstract

In recent years, state-of-the-art methods in com-
puter vision have utilized increasingly deep con-
volutional neural network architectures (CNNs),
with some of the most successful models employ-
ing hundreds or even thousands of layers. A va-
riety of pathologies such as vanishing/exploding
gradients make training such deep networks chal-
lenging. While residual connections and batch
normalization do enable training at these depths,
it has remained unclear whether such specialized
architecture designs are truly necessary to train
deep CNNs. In this work, we demonstrate that it is
possible to train vanilla CNNs with ten thousand
layers or more simply by using an appropriate
initialization scheme. We derive this initialization
scheme theoretically by developing a mean field
theory for signal propagation and by character-
izing the conditions for dynamical isometry, the
equilibration of singular values of the input-output
Jacobian matrix. These conditions require that the
convolution operator be an orthogonal transfor-
mation in the sense that it is norm-preserving.
We present an algorithm for generating such ran-
dom initial orthogonal convolution kernels and
demonstrate empirically that they enable efficient
training of extremely deep architectures.

10 ——
o
os
LE
a7
[¥]
0 as
O os
L]
o 04 — k1250
. — IS 00
eSS0 00
0z — degti=10000
01
19 1 10 10
1o Pl
0% 7
ax_ gn?
os
5
oor
0 os
o os
[w]
o 04
o e — degii=ES 00
degth=5000
] - — degt=10000
a1

hlag 1 1o* 18

Steps

Fipure 1. Extremely deep CNNs can be trained without the use
of batch normalization or residual connections simply by using
a Delta-Orthogonal initialization with critical weight and bias
variance and appropriate (in this case, tanh) nonlinearity. Test
(solid) and training (dashed) curves on MNIST (top) and CIFAR-
10 (bottom) for depths 1,250, 2,500, 5,000, and 10, 000,

Kim, 2014), and recently even the board game Go (Silver
etal., 2016; 2017).

The performance of deep convolutional networks has im-
nrowved as these netwnrke have heen made aver deener

CENG501

"Our initial results suggest that past a
certain depth, on the order of tens or
hundreds of layers, the test performance
for vanilla convolutional architecture
saturates. These observations suggest
that architectural features such as
residual connections and batch
normalization are likely to play an
important role in defining a good model
class, rather than simply enabling efficient
training."

DiracNets

SERGEY ZAGORUYKO AND NIKOS KOMODAKIS: DIRACNETS

“DiracNets: Training Very Deep Neural

5.14M 1 “Networks Without Skip-Connections
12.22M - -)
‘—%—- Sergey Zagoruyko Université Paris-Est, Ecole des Ponts
‘QQM “sergey.zagoruyko@enpc.fr ParisTech
“Nikos Komodakis Paris, France
3.06M —nikos.komodakis@enpc.fr
6.36M >
@)
wn Abstract
Q Deep neural networks with skip-connections, such as ResNet, show excellent perfor-
—— DiracNet, width=1 — mance in various image classification benchmarks. It is though observed that the initial
—— DiracNet, width=2 L motivation behind them - training deeper networks - does not actually hold true, and
—— DiracNet. width=4 > the benefits come from increased capacity, rather than from depth. Motivated by this,
:) i >0 and inspired from ResNet, we propose a simple Dirac weight parameterization, which
\ — DiracNet, width=8 >0 allows us to train very deep plain networks without skip-connections, and achieve nearly
3 ResNet, width=1 rr the same performance. This parameterization has a minor computational cost at training
88 " L.51M === ResNet, width=2 = time and no cost at all at inference. We're able to achieve 95.5% accuracy on CIFAR-10
1 ——= plain, no dirac :. with 34-layer deep plain network, surpassing 1001-layer deep ResNet, and approaching
87 ! O Wide ResNet. Our parameterization also mostly eliminates the need of careful initializa-
0 25 50 75 100 125 150 175 200 - tion in residual and non-residual networks. The code and models for our experiments are
~ available at https://github.com/szagoruyko/diracnets

CENG501

ResNext

l 256-d in 256-din
4 256, 1x1, 4\

256, 1x1,6 256, 1x1,4 256, 1x1,4 total 32
- \ - ¥ paths - \
64, 3x3, 64 | 4,3x3,4 4,3x3,4 LR 4,3x3,4 ‘
- | - - - [
64, 1x1, 256 / 4, 1x1, 256 4, 1x1, 256 4,1x1, 256 /
\v/256—d out .
+_/‘ —

256-d out

Figure 1. Left: A block of ResNet [14]. Right: A block of
ResNeXt with cardinality = 32, with roughly the same complex-
ity. A layer is shown as (# in channels, filter size, # out channels).

CENG501

Aggregated Residual Transformations for Deep Neural Networks

Saining Xie! Ross Girshick?

'UC San Diego

{s9xie, ztu}@ucsd. edu

Piotr Dolléir?

Zhuowen Tu!
2Facebook Al Research

{rbg, pdollar, kaiminghe}@fb.com

Kaiming He?

2017

| setting top-1 err (%) | top-3emr (%)

I = complexity references:

ResNet-101 1 = 64d 22.0 6.0
ResNe Xt-101 32 = 4d 21.2 5.6

2x complexity models follow:

ResNet-200 [15] 1 = 64d 217 5.8
ResNet-101, wider | 1 x 100d 213 57
ResNeXt-101 2 = 64d 2079 5.5
ResNeXt-101 64 = 4d 204 5.3

DenseNet

Densely Connected Convolutional Networks

Gao Huang* Zhuang Liu* Laurens van der Maaten
Cornell University Tsinghua University Facebook AT Research
gh349@cornell.edu liuzhuangl3@mails.tsinghua.edu.cn lvdmaaten@fb.com

Kilian Q. Weinberger

Cornell University 201 6’20 18

kgwd@cornell.edu

275 275
—4— ResNets —a— ResNets

265 0 265 —

£255 £255
Deraer 4

245 245

$ $
Densel
% 235 g 235
DenseNet-301 ResNeot-101 ResNet-101
225 ResNet-152 225 ResNet-152
DenseNet-264 DenseNet-264
A% 2 3 4 5 6 7 8 235 075 1 125 15 175 2 225 25
Fparametors x 10’ ; x 10"

Figure 3: Comparison of the DenseNets and ResNets top-1 error rates (single-crop
testing) on the ImageNet validation dataset as a function of learned parameters (left)
and FLOPs during test-time (right).

Highway networks

* This is a regular MLP with gated
units.

Highway Networks

Rupesh Kumar Srivastava RUPESH®IDSIA.CH
Klans Grefl ELAUSEIDSIA.CH
Jitrgen Schmidhuber TUERGEN E®IDSIA.CH

The Swiss Al Lab IDSIA
[stituto Dalle Molle di Studi sull’ Intelligenza Antificiale
Universith dzlla Svizzera italiana (UST)
Scuola universitaria professionale della Svizzera italiana (SUPSIT)
Gialleria 2, 6928 Manno-Lugano, Switzerland

CENG501

v = H(x, Wy). (1)

H 15 usually an affine transform followed by a non-linear
activation function, but in general 1t may take other forms.

For a highway network, we additionally define two non-
linear transforms T'(x, W) and C'{x. W) such that

y=H(x,Wy) T(xWyp)+x-Clx,Wg). (2)

We refer to T as the rransform gate and (' as the carry gate,
since they express how much of the output i1s produced by
transforming the input and carrving it, respectively. For
simplicity, in this paper we set C' =1 — T, giving

y = H{]{E WH} TILI_._ WT} + x- {1 — T{J{ WT;I} (3}

The dimensionality of x,y, H(x, Wg) and T(x, W)
must be the same for Equation (3) to be valid. Note that
this re-parametrization of the layer transformation is much
more flexible than Equation (1). In particular, observe that

v {}:._ if T(x, Wr) =0, "

H(x,Wyg), ifT(x,Wg)=1.

Highway Networks

sfage

https://www.researchgate.net/publication/311842587_ Highway_and_Residual_Networks_learn_Unrolled_Iterative_Estimation

— tmmmmmspemmeeeees dimensionality -
T change I _
: @ i o — e
Al I A I]
: I -)
A I 3 I]
i ;) [}
=]l ==
: ayer ' : gate ransform !
: 1 ' block ! 1] :
i N e
! i [l [] :
RSN BUST SUPPI—— [
residual nefwork highway network

CENG501

Comparison:

https://arxiv.org/pdf/1605.07678.pdf

Inception-v4 : ;
804 Y N SRR LR _____________ __________
Inception-v3 ’ . ResNet-152 ﬁ
ResNet-50 ' VGG-16 : :
75 ResNet-101
. ResNet-34
g 70 - ------Q--R—es—Net—lS ..
>
© Oo GooglLeNet
3 ENet
g B i
?} © BN-NIN | |
"~ 60 4 5M 35M 65M 95M 125M 155M
BN-AlexNet
55 “alexNet: @ (N - SRR (AR SRRERR (AR
50 Y
5 10 15 20 25 30 35 40

Top-1 accuracy density [%/M-Params]

Comparison:

https://arxiv.org/pdf/1605.07678.pdf

12 "
10 L
g .
v
6 1 v
4 4
2 b R 0 R 0
0 [
A2 A0 NN agh S (oD B AR N (&
‘4@6 .\166 \E'.*% P:\B'**\‘k $ei’x $e£ ‘000 5$31 ﬁoﬂ 5\..&31 s ev ?;&Rx D@’eﬁ %'c\
%) ?\Eﬁ’ ?\eﬁ‘ ! Q L \ LE»Q L L GO

CENG501

Going deep may not be the only answer

Shallow Networks for High-Accuracy Road Object-Detection

Khalid Ashraf, Bichen Wu, Forrest N. landola, , Mattthew W. Moskewicz, Kurt Keutzer
Electrical Engineering and Computer Sciences Department, UC Berkeley

{ashrafkhalid, bichenl}@berkeley.edun, {forresti, moskewcz, keutzerlleecs.berkeley.edu

Abstract

The ability to automatically detect other vehicles on the road is vital to the safety of partially-autonomous and fully-
autonomous vehicles. Most of the high-accunacy technigues for this task are based on B-CNN or one of its faster variants. In
the research commurnity, much emphasis has been applied to using 30 vision or complex B-CNN variants to achieve higher
accuracy. However, are there more straightforward modifications that conld deliver higher accuracy? Yes. We show that
increasing inpt image resolution (Le. wpsampling) offers up to 12 percentage-points higher accuracy compared to an off
the-shelf baseline. We also find situations where earlien’shallower lavers of CNN provide higher accuracy than laterideeper

layers We further show that shallow models and upsampled images vield competitive accuracy. Our findings contrast with
the current trend towards deeper and larger models to achieve high accuracy in domain specific detection tasks.

CENG501

Recent work

“Towards Principled Design of Deep Convolutional Networks: Introducing SimpNet”

. Maﬂ'or winning Convolutional Neural Networks (CNNs), such as VGGNet, ResNet, DenseNet, \etc,
include tens to hundreds of millions of parameters, which impose considerable computation and
memory overheads. This limits their practical usage in training and optimizing for real-world
applications. On the contrary, light-weight architectures, such as SqueezeNet, are being proposed
to address this issue. However, they mainly suffer from low accuracy, as they have comFromised
between the processing power and efficiency. These inefficiencies mostly stem from following an
ad-hoc designing procedure. In this work, we discuss and propose several crucial design principles
for an efficient architecture design and elaborate intuitions concerning different aspects of the
design Iprocedure. Furthermore, we introduce a new layer called {\it SAF-pooling} to improve the
generalization power of the network while keeping it simple by choosing best features. Based on
such ﬁrinciples, we propose a simple architecture called {\it SimpNet}. We empirically show that
SimpNet provides a good trade-off between the computation/memory efficiency and the
accuracy solely based on these primitive but crucial principles. SimpNet outperforms the deeper
and more complex architectures such as VGGNet, ResNet, WideResidualNet \etc, on several well-
known benchmarks, while having 2 to 25 times fewer number of parameters and operations. We
obtain state-of-the-art results (in terms of a balance between the accuracy and the number of
involved parameters) on standard datasets, such as CIFAR10, CIFAR100, MNIST and SVHN. The
implementations are available at \href{url{this https URL}.

https://arxiv.org/fabs/1802.06205

https://github.com/Coderx7/SimpNet

Binary networks

XNOR-Net: ImageNet Classification Using Binary
Convolutional Neural Networks

Mohammad RastegariT, Vicente Ordonez, Joseph Redmon®, Ali Farhadi*

Allen Institute for AIT, University of Washington®
{mohammadr, vicenteor}@allenai.org
{pjreddie, ali}@cs.washington.edu

Abstract. We propose two efficient approximations to standard convolutional
neural networks: Binary-Weight-Networks and XNOR-Networks. In Binary-Weight-
Networks, the filters are approximated with binary valves resulting in 32 x mem-
ory saving. In XNOR-Networks, both the filters and the input to convolutional
layers are binary. XNOR-Networks approximate convolutions using primarily bi-
nary operations. This results in 58 faster convolutional operations and 32 x
memory savings. XNOR-Nets offer the possibility of running state-of-the-art
networks on CPUs (rather than GPUs) in real-time. Our binary networks are
simple, accurate, efficient, and work on challenging visual tasks. We evaluate
our approach on the ImageNet classification task. The classification accuracy
with a Binary-Weight-Network version of AlexNet is only 2.9% less than the
full-precision AlexNet (in top-1 measure). We compare our method with recent
network binarization methods, BinaryConnect and BinaryNets, and outperform
these methods by large margins on ImageNet, more than 16% in top-1 accuracy.

CENG501

Binary networks

Standard
Convolution
Input
h Fin
. . Binary Weight
Weight [e
e Wi
BinaryWeight
Binary Input
(XNOR-Net)

Network Variations Operations
used in
Convolution

Real-Value Inputs

Real-Value Weights

0.11-021 .- -034"

| P X
-025061_. 0527
Real-Value Inputs
: ; Binary Weights
0.11-021 2034 R +,-
-025061.. 0.527 =
Binary Inputs)
Binary Weights
g XNOR,
1117 Ld.n17 -
A1 : bitcount

Memory Time Saving | Accuracy on
Saving on CPU ImageNet
(Inference) | (Inference) (AlexNet)
1x 1x %56.7
~32x% ~2% %53.8
~32x% ~58x %44.2

Fig. 1: We propose two efficient variations of convolutional neural networks. Binary-
Weight-Networks, when the weight filters contains binary values. XNOR-Networks,
when both weigh and input have binary values. These networks are very efficient in
terms of memory and computation, while being very accurate in natural image classifi-
cation. This offers the possibility of using accurate vision techniques in portable devices

with limited resources.

CENG501

V] 8 Apr 2019

-
b

904.01569v2 [cs.C

Exploring Randomly Wired Neural Networks for Image Recognition

Saining Xie

Alexander Kirillov

Ross Girshick Kaiming He

Facebook Al Research (FAIR)

Abstract

Neural networks for image recognition have evolved
through extensive manual design from simple chain-like
models to structures with multiple wiring paths. The suc-
cess of ResNets [11] and DenseNets [16] is due in large
part to their innovative wiring plans. Now, neural architec-
ture search (NAS) studies are exploring the joint optimiza-
tion of wiring and operation types, however, the space of
possible wirings is constrained and still driven by manual
design despite being searched. In this paper, we explore a
more diverse set of connectivity patterns through the lens of
randomly wired neural networks. To do this, we first define
the concepr of a stochastic network generator thar encap-
sulates the entire network generation process. Encapsula-
tion provides a unified view of NAS and randomly wired net-
works. Then, we use three classical random graph models
to generate randomly wired graphs for networks. The re-
sults are surprising: several variants of these random gen-
erators vield nerwork instances that have competitive ac-
curacy on the ImageNet benchmark. These results suggest
that new efforts focusing on designing better network gen-
erators may lead to new breakthroughs by exploring less
constrained search spaces with more room for novel design.

1 Tavtbmncdazndine

CENG501

l BT T 3) |
L
- .nl
£ A . i L
- 1% gy i
i .
W v s .
TP ' B
T V(s | 7
A % v -
=3 [i
bl i ’
=
[classified [classificq

Figure 1. Randomly wired neural networks generated by the
classical Watts-Strogatz (WS) [50] model: these three instances
of random networks achieve (left-to-right) 79.1%, 79.1%, 79.0%
classification accuracy on ImageNet under a similar computational
budget to ResNet-30, which has 77.1% accuracy.

CNNSs:
summary & future directions

* Less parameters
* Allows going deeper
* High flexibility

* |[n operations
* In organization of layers
* In the overall architecture etc.

e Future directions:
* Understanding them better
* Making them deeper, faster and more efficient
e Compressing a big network into a smaller & cheaper one.

CENG501

Sequence Labeling/Modeling: Motivation

CCCCCCC

Why do we need them?

?07% %}/é/‘ el FOREIGN MINISTER,

W“’ —p THE SOUND OF

CENG501
A. Graves, “Supervised Sequence Labelling with Recurrent Neural Networks”, 2012.

Different types of sequence learning /
recognition problems

* Sequence Classification
* A sequence to a label
* E.g., recognizing a single spoken word
* Length of the sequence is fixed AL A2~
* Why RNNs then? Because sequential modeling provides
robustness against translations and distortions.
y Seg me nt Cl dsSs Ifl Cat|0 n A. Graves, “Supervised Sequence Labelling with Recurrent
. Neural Networks”, 2012.
» Segments in a sequence correspond to labels

e Temporal Classification

* General case: sequence (input) to sequence (label) modeling.
* No clue about where input or label starts.

is clearly legible. However the letter ‘n’ in isolation is ambiguous.

CENG501

Fig. 2.3 Importance of context in segment classification. The word ‘defence’

Different types of sequence learning /
recognition problems

one to one one to many many to one many to many many to many

http://karpathy.github.10/2015/05/21/rnn-effectiveness/

CENG501

Recurrent Neural Networks

CCCCCCC

Recurrent Neural Networks (RNNs)

o o * RNNs are very powerful because:

2 2 * Distributed hidden state that allows them
to store a lot of information about the
past efficiently.

= = * Non-linear dynamics that allows them to

=3 2 update their hidden state in complicated

- f’ ways.

I * With enough neurons and time, RNNs

3 3 can compute anything that can be

a = computed by your computer.

* More formally, RNNs are Turing
Feed-forward Recurrent complete.
networks networks

CENG501
Adapted from Hinton

Some examples
— "'Tbm?ofb& yava T‘QCCGMIAOY\ |
:@ ' INPGTL , WRUTA), 1WOPUTS , ..., INPUT +
' , = euﬂﬂ‘g:;:
- e.q., $f¢¢c£\1!caan4
ﬁ e.%, everdt Naognd'sa\-

Q.a, ng*tﬁal khﬁauuzt athwaﬁhu;

PLAN D SUTRUT L SoThLsT)
ouTPUTR, ..., ourt 4

é;%é btﬂu"dﬂﬂ+ﬂ“
c.qy P)anmﬁ and ad‘tnj

CENG501

Slide: Michael Mozer

Some examples

“context”’ neurons

_\I
L

Jordan Networks Elman Networks

Figs: David Kriesel

CENG501

Challenge

* Back propagation is designed for feedforward nets

* What would it mean to back propagate through a recurrent
network?

e error signal would have to travel back in time

CENG501
Slide: Michael Mozer

Unfolding

output [¢—{ hidden [€— input
output [¢— hidden [€— input
output [hidden [€— input

an

=

=

2

S

-
output hidden input
output [<—{ hidden [¢— input

t=1 t=2

t=0

Recurrent

Feed-forward

time -2

networks

networks

CENG501

Unfolding (another example)

one to one one to many many to one many to many many to many

http://karpathy.github.10/2015/05/21/rnn-effectiveness/

CENG501

How an RNN works

Tprojections
(activities x weights)

activities

(//” O (vectors of values)

|_————_, Learned representation of
sequence.

the

cat

sat

on

the

mat

CENG501

*t‘ hidden to hidden
f input to hidden

Alec Radford

You can stack them too

» cat
\ B L) \ “
=4 = < o B

j i t 1 1 j f hidden to output
o :

the cat sat on the mat ' hidden to hidden
T input to hidden

CENG501

Alec Radford

Unfolding implications

* Entails duplication of weights => weight sharing

* Sharing weights means their gradients will be accumulated
over time and reflected on the weights

* Unfolded network has the same dynamics of the RNN for a
fixed number of time steps!

CENG501

Back-propagation Through Time

CCCCCCC

Feedforward through Vanilla RNN

Ly L,
' "
h, = tanh(Xy + W hy) .: |
¥, = softmax(W" - h,) |
Ly = CE(Y1,¥1) Y1 Y2
why why

Ln— 1 Ln
Vn-1 Yn
why why

CENG501

Feedforward through Vanilla RNN

The Vanilla RNN Model
First time-step (t = 1):
h, = tanh(W*" - x; + W - hy) Ly L Ly Ly
1 = softmax(W" - h;) I | I
Ly = CE(¥1,¥1)
In general:
h; = tanh(W*" - x, + W' - h,_,)
¥; = softmax(W" - h,)
Ly = CE(Ye, Yt)

In total:

,[:== :zizlgt
t

CENG501

Backpropagation in general

§ h, = tanh(W*" - x, + Wt - h,_,)
- =

through Vanilla RNN = 5= softmax(w? b
né L =CE¥:Yt)
E In total:
é’ L= z L,

0L , G

owhy -
Ly Ly Ly Ly
oL 0y, 0L 09, 1 oL 09, |

+ .

= 3ga 0w oy, owm T oy, awhy

_ z dL 0y
— L. g owhy

t=1..n

CENG501

Backpropagation
through Vanilla RNN

0L ,
JWW hh o
oL dh, 0L dh,_4 0L 0dhy

= Oh, aWmE T on,_ awrk T T on awn

0L 9L dY, 9L Ohyyy

oh, 9y,0h, | 9h... oh,

CENG501

The Vanilla RNN Model

In general:

ht = tanh(th : Xt =F Whh : ht—l)

y: = softmax(W"” - h,)
Ly = CE(Y:,¥o)

In total:

L=2Lt
t

IC; ~— IC; Dhy Ohy here e _ ﬁ O hy
OW 2= Oh: Oy OW Ohy — AL Oy

Cho: From Sequence Modeling to Translation CENG501

Backpropagation
through Vanilla RNN

0L
—
awxh)
JL oh, JrL oh,_4 JL ohy

= Oh, awxR " on, . aw T T On, awan

0L 0L 0F, . 0L oOh,yq
oh, o0y,0h, 0h,.,; Oh,

(calculated before)

CENG501

The Vanilla RNN Model

In general:

ht = tanh(th : Xt =F Whh : ht—l)

y: = softmax(W"” - h,)
Ly = CE(Y:,¥o)

In total:

L=2Lt
t

Initial hidden state

* We need to specify the initial activity state of all the hidden units.
* We could just fix these initial states to have some default value like 0.5.
* But it is better to treat the initial states as learned parameters.

* We learn them in the same way as we learn the weights.

 Start off with an initial random guess for the initial states.

* At the end of each training sequence, backpropagate through time all the way
to the initial states to get the gradient of the error function with respect to
each initial state.

e Adjust the initial states by following the negative gradient.

CENG501 Shde: Hinton

Initializing parameters

* Since an unfolded RNN is a deep MLP, we can use Xavier initialization.

CENG501

The problem of exploding or vanishing
gradients

* What happens to the magnitude of e In an RNN trained on long
the gradients as we backpropagate sequences (e.g. 100 time steps) the
through many layers? gradients can easily explode or
— If the weights are small, the vanish.
gradients shrink exponentially. — We can avoid this by initializing the
— If the weights are big the gradients weights very carefully
grow exponentially. * Even with good initial weights, its

very hard to detect that the current

* Typical feed-forward neural nets can target output depends on an input
cope with these exponential effects from many time-steps ago.

because they only have a few hidden — So RNNs have difficulty dealing with
layers. long-range dependencies.

CENG501 _ .
Slhide: Hinton

Exploding and vanishing
gradients problem

* Solution 1: Gradient clipping for exploding
gradients:

Algorithm 1 Pseudo-code for norm clipping

&+ 56
if ||g|| > threshold then
g Y threshold ;.

— T sl ©
end if

* For vanishing gradients: Regularization term that
penalizes changes in the magnitudes of back-
propagated gradients

HE OXpyi

HS 11 OXp
Q:ZE-};:Z XE+1 XLk
80
k k

[

OX k41

CENG501

On the difficulty of training recurrent neural networks

Razvan Pascanu PASCANURGIRO.UMONTREAL.CA
Université de Montréal, 2020, chemin de la Tour, Montréal, Québec, Canada, H3T 1J8

Tomas Mikolov T.MIKOLOV@GMAIL.COM
Speech@FIT, Brno University of Technology, Brno, Czech Republic

Yoshua Bengio YOSHUA.BENGIOGQUMONTREAL.CA
Université de Montréal, 2020, chemin de la Tour, Montréal, Québec, Canada, H3T 1J8

2012

Exploding and vanishing gradients
problem

e Solution 2:
e Use methods like LSTM

CENG501

Long Short Term

Memory (LSTM

CENG501

LONG SHORT-TERM MEMORY

NEURAL COMPUTATION 9(8):1735-1780, 1997

Sepp Hochreiter Jurgen Schmidhuber
Fakultat fur Informatik IDSIA
Technische Universitat M finchen Corso Elveza 36
80290 M Tinchen, Germany 6900 Lugano, Switzerland
hochreit@informatik.tu-muenchen.de juergen@idsia.ch
http: //www7 informatik tu-muenchen.de/ hochreit http:/ /www.idsia.ch/ juergen
Abstract

Learning to store information over extended time intervals via recurrent backpropagation
takes a very long time, mostly due to insufficient, decaying error back flow. We briefly review
Hochreiter's 1991 analysis of this problem, then address it by introducing a novel, efficient,
gradient-based method called “Long Short-Term Memory” (LSTM). Truncating the gradient
where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000
discrete time steps by enforcing constant error flow through “constant error carrousels” within
special units. Multiplicative gate units learn to open and close access to the constant error
flow. LSTM islocal in space and time; its computational complexity per time step and weight
is O(1), Our experiments with artificial data invelve local, distributed, real-valued, and noisy
patiern representations. In comparisons with RTRL, BPTT, Recurrent Cascade-Correlaiion,
Elman neis, and Neural Sequence Chunking, LSTM leads to many more successful runs, and
learns much faster. LSTM also solves complex, artificial long time lag tasks that have never
been solved by previous recurrent neiwork algorithms.

RNN

e Basic block diagram

>
‘b!-\

] o — > <
rk Pointwise Vector Concatenate Copy

LLLLL

eration Transfer
CENG501

Key Problem

ng-term dependencies

ing lo
I

e Learni

6 6 ©

1

b
1

A mMH— A M— A

o o

Long Short Term Memory (LSTM)

* Hochreiter & Schmidhuber < Information gets into the
(1997) solved the problem cell whenever its “write”
of getting an RNN to gate is on.

remember things for a

. . * The information stays in
long time (like hundreds of :
Hma stepsS. the cell so long as its

hev d 4 “keep” gate is on.
* They designed a memory . .
cell using Togistic and Information can be read

linear units with . }‘{;)[lr;e’cgcel”cge;[cleoy turning on
multiplicative interactions. ‘

CENG501 Shde: Hinton

Meet LSTMSs

 How about we explicitly encode memory?

T A
~ N\ ()
> —® ® >
@I
A ¢
o] (o] (&) (o]
_ DRAN| Ui

k Pomtw!se Vector Concatenate Copy

eration Transfer
CENG501

LLLLL

LSTM in detail

We first compute an activation vector, a:
a= M/xxt + Whht—l + b

Split this into four vectors of the same size:
a;, as, Ay, Ag < a

We then compute the values of the gates:
i=o0(a)) f=o(ar) o=0(a,) g =tanh(ay)
where o is the sigmoid.

The next cell state ¢; and the hidden state h;:

¢ =f0Oc1+10g
h; = o O tanh(c;)

where (© is the element-wise product of vectors

CENG501

' s
—O——® >
X
)—P h;
@ Image: C. Olah

Alternative formulation:
i = g(Waizs + Whihe + b;)
Je = g(Wepzs + Wishy 1 + by)

O = Q[Wzamt + Whnht—l + bﬂ)

Eqgs: Karpathy

LSTMs Intuition: Memory

* Cell State / Memory

CENG501

LSTMs Intuition: Forget Gate

* Should we continue to remember this “bit” of information or not?

ftT fe=0Wy-[hs—1,2¢] + by)

CENG501

LSTMs Intuition: Input Gate

* Should we update this “bit” of information or not?
* |If so, with what?

it =0 (Wi-lhi—1,2¢] + b;)
C, = tanh(W¢ - |hi—1,2¢] + bo)

CENG501

LSTMs Intuition: Memory Update

* Forget that + memorize this

ftT Ztr-%§ Ci = fi % Cy_q + iy + C

CENG501

LSTMs Intuition: Output Gate

* Should we output this “bit” of information to “deeper” layers?

O — U(Wo [ht—laxt] + bo)
h; = o; * tanh (C})

CENG501

LSTMS

* A pretty sophisticated cell

T A
~ N\ ()
> —® ® »>
@D
A ¢
(o] (o] (&) (o]
_ PRaN o>

k Pomtw!se Vector Concatenate Copy

eration Transfer
CENG501

LLLLL

LSTM Variants #1: Peephole Connections

* Let gates see the cell state / memory

ft — U(Wf'[ct—l,ht—hﬂ?t] + bf)
it = 0 (W;-|Cy=1,hi—1,2¢] + b;)
L | J Ot = U(Wo'[ctaht—lafﬁt] + bo)

CENG501

LSTM Variants #2: Coupled Gates

* Only memorize new if forgetting old

P‘@" Ct:ft*ct—1+(1—ft)*ét

CENG501

LSTM Variants #3: Gated Recurrent Units

* Changes:

* No explicit memory; memory = hidden output

 Z=memorize new and forget old

x|

2z =0 (W, - [hi—1,x¢])
ry =0 (W« [he—1,2¢])
he = tanh (W - [ry % he_1, z4))
h; = (1—zt)>i<ht_1—|—zt>kﬁt

CENG501

LSTM vs. GRU

Accepted as a short paper in ACL 2018

On the Practical Computational Power of Finite Precision RNNs
for Language Recognition

Eran Yahav
Technion, Israel

Gail Weiss
Technion, Israel

Yoav Goldberg
Bar-Tlan University, Israel

{sgailw, yahave}@cs.technion.ac.il
yogeolcs.biu.ac.il

1000
800
800 1
400
200
o ——
- T T T T T T 60 r T T T T T
o 250 500 750 1000 1250 1500 1750 2000] 50 100 150 200 250 300
(a) a®b”-LSTM on '00051000 (b) a™b™c™-LSTM on 90100100
100 100 1
0.75 4 0.75 4
0.50 4 0.50 4
025 4 025 4
0.00 4 0.00 4
-0.25 -0.25
=0.50 -0.50 4
-0.75 -0.75 1
-1.00 4 ¢ -1.00 4

0 20 500 750

(c) a™b™-GRU on a!200p1000

000 1250 1500 1750 2000

0 50 100 150 200 250 300

(d) a™b™c"-GRU on a!%0p100,100

Figure 1: Activations — ¢ for LSTM and h for GRU — for networks trained on a™b™ and a™b"¢c™. The
LSTM has clearly learned to use an explicit counting mechanism, in contrast with the GRU.

CENG501

ConvLSTM

hirl

Convolutional LSTM Network: A Machine Learning
Approach for Precipitation Nowcasting

Cir-1]

ConvLSTM

oitl

[]

tanh

Ht+lyct+l

X7

https://medium.com/neuronio/an-introduction-to-convistm-55c¢9025563a7

Xingjian Shi Zhourong Chen Hao Wang Dit-Yan Yeung
Department of Computer Science and Engineering
Hong Kong University of Science and Technology
{xshiab, zchenbb, hwangaz, dyyeung}@cse .ust.hk

Wai-kin Wong Wang-chun Woo
Hong Kong Observatory 2 O 1 5
Hong Kong, China
{wkwong, wewoo}@hko.gov.hk

Figure 2: Inner structure of ConvLSTM

Reference

* A very detailed explanation with nice figures

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

CENG501

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

CNN vs RNN

UT—29T_ 1YT

Qutput
d=14

Hidden
=2

Hidden

// im

Input

rg Tl T IT_oTT_1 IT

(a)

An Empirical Evaluation of Generic Convolutional and Recurrent Networks
for Sequence Modeling

Shaojie Bai' J. Zico Kolter® Viadlen Koltun *

Abstract chine translation (van den Oord et al.. 2016; Kalchbrenner
;) i, 2016 i 2017; i 2 :

o0 For most deep learning practitioners, sequence E-rlhaj __I:IJ ﬁh:}auphu_l ot f Lrilhrrﬂ;tmng etal., 20 l;‘a,h‘.l.

y— modeling is synonymous with recurrent networks. 15 raises the question of whet &5 sticoesses of con-

- Yet recent results indicate that convolutional ar- volutional sequence modeling are confined to specific ap-

] chitectures can outperform recurrent networks on plication domains or whether a broader reconsideration of

=] tasks such as audio synthesis and machine trans- the a'“m'?“,{'“ between sequence processing and recurrent

— lation. Given a new sequence modeling task or metworks is in onder.

- dataset. which architecture should one use? We Wi address this question by conducting a systematic empiri-

-t conduct a systematic evaluation of generic como- cdl evaluation of convelutional and recument architectunes

hitirvmal and meormnk architasctarnse Froe coomanma S NN N F N R L

20 = (20, 2l
[oTTemImEmmmmmmmmsmsemmsssssssSssssssssstsssfesssssss " T T T T g AT H
Residual block (k, d) : iResidual block (k=3, d=1) .(1) .(1) i
; P “T—1*T ;
: D t + H ' i
: o i i Convolutional Filter . :
; Rett ; i Identity Map (or 1x1 Conv) AN
: WeightNorm H E ol
: L : i \i
E Dilated Causal Conv E E \i
H t 1x1 Conv E H ‘.E
H Dropout (optional) ' ; /i
! 4 H ' /o
i RelU E ' // E
! + ! E /s H
H Weighthorm H ! / |
' ¢ : ! ¥ :
E Dilated Causal Conv H E H
L o P To 11 rp_1 T 5
N T i(f—n)]
(b) (c)

Figure 1. Architectural elements in a TCN. (a) A dilated causal convolution with dilation factors d = 1, 2, 4 and filter size k = 3. The
receptive field is able to cover all values from the input sequence. (b) TCN residual block. An 1x1 convolution is added when residual
input and output have different dimensions. (c) An example of residual connection in a TCN. The blue lines are filters in the residual

function, and the green lines are identity mappings.

CENG501

Example: Character-level Text
Modeling

CCCCCCC

Character-level Text Modeling

* Problem definition: Find ¢, ;1 given ¢4, C5, ..., Cyy.

* Modelling:
p(cn+1 | Cno ""Cl)

* |[n general, we just take the last N characters:
p(cn+1 | Cny ooy Cn—(N—l))

* Learn p(c4q1 = 'a’ | "Ankar") from data such that
p(cper ='a’ | '"Ankar’) > p(c,41 = '0'| 'Ankar’)

CENG501

one to one one to many many to one many to many many to many

http://karpathy.github.i0/2015/05/21/rnn-effectiveness/

CENG501

A simple scenario

target chars: "¢’ i ¢ “I” o
1.0 0.5 0.1 0.2
2.2 0.3 0.5 1.5
output layer S 1.0 1.9 0.1
4.1 12 1.1 2.2
e Alphabet: h, e, |, 0 T T T TW—"Y
e Text to train to predict: 03 10 il . [
“hello” hidden layer | -0.1 ~ 0.3 > 05— 0.9
0.9 0.1 0.3 0.7
R R L
1 0 0 0
. 0 1 0 0
input layer 0 0 1 1
0 0 0 0

)

input CharSI uhn 9 u'n nln

CENG501
http://karpathy.github.i0/2015/05/21/rnn-effectiveness/

Sampling: Greedy

* Greedy sampling: Take the most likely word at each step

0 Ba =~ U B e

1@
11
12
13
14
15
16
17
18
19
28
£1
22
£3

from numpy import array
from numpy import argmax

greedy decoder

def greedy_decoder(data):
index for largest probability each row
return [argmax(s) for s in data]

define a sequence of 1@ words over a vocab of 5 words

data = [[0.1, @.2, 0.3, 0.4, 0.5],
[8.5, 9.4, 8.3, 9.2, @.1],
[6.1, ©.2, 0.3, 0.4, 0.5],
[@.5, 0.4, 0.3, 0.2, 0.1],
[0.1, 0.2, ©.3, 0.4, 0.5],
[0.5, 0.4, 9.3, 0.2, 0.1],
[0.1, 0.2, ©.3, 0.4, 0.5],
[0.5, 0.4, 9.3, 0.2, 0.1],
[0.1, 8.2, 8.3, 0.4, 0.5],
[6.5, 0.4, 0.3, 0.2, 0.1]]

data = array(data)

decode sequence

result = greedy_decoder{data)
print{result)

Running the example outputs a sequence of integers that could then be mapped back to

words in the vocabulary.

(1 [4, @, 4, @, 4, @, 4, @, 4, @]

CENG501

Code: https://machinelearningmastery.com/beam-search-decoder-
natural-language-processing/

Sampling: Beam Search

* What happens if we want k most likely sequences instead of one?

 Beam search: Consider k most likely words at each step, and expand search.

likes

-:]%-

loves Mary

- EN is fond of

John
HEN : M
= <El:l ary

likes O

John

Il
Johny

(.
Mary

Figure: http://mttalks.ufal.ms.mff.cuni.cz/index.php

<EMD=
cat <"{5[}%}

(30%]) meowed <EMND=

a (50%) ” (100%)
(25%] <END>

dog (80%)
(70%]) barked <END=

(20%) > (100%)

<5TART

CENG501

<END=>

cat (50%)
(27%) meowed <END=>
— %
the (50%) (100%6)
(75%) <END>
dog (75%)
(73%) barked <END>
(25%) ” (100%)

Figure: https://geekyisawesome.blogspot.com.tr/2016/10/using-
beam-search-to-generate-most.html

Sampling: Beam Search

* Beam search: Consider k most likely words at each step, and expand search.

(take log for numerical stability; take —log() for minimizing the score)

: 23 # define a sequence of 10 words over a vocab of 5 words
At R 24 data - L[0.1, 0.2, 0.3, 0.4, 0.5].
2 from numpy import array 55 [0.5 0.4 0.3 0.2, 0.1]
S from numpy import argmax 26 [0.1, 0.2, 0.3, 0.4, 0.5],
o 27 [0.5, 0.4, 0.3, 0.2, 0.1],
5 # beam search 28 [0.1, 0.2, 0.3, 0.4, 0.5],
6 def beam_search_decoder(data, k): 29 [@.5, 0.4, 0.3, 0.2, 0.1],
7 seguences = [[list(), ©9.0]] 30 [0.1, 0.2, 0.3, 0.4, 0.5],
B # walk over each step in seguence 31 [@.5, 0.4, 0.3, 0.2, 0.1],
9 for row in data: 32 [0.1, 0.2, 0.3, 0.4, 0.5],
10 all_candidates = list() 33 [0.5, 0.4, 8.3, 0.2, 0.1]]

. 34 data = array(data)

11 W expand each current candidate 35 # decode sequence
1z for 1 in range(len(sequences)): 36 result = beam_search_decoder(data, 3)
13 seq, score = sequences[i] 37 # print result
14 for j in range(len(row)): 38 for seq in result:
15 candidate = [seq + [j], score - log(row[j])] 39 print(seq)
16 all_candidates.append({candidate)
17 # order all candidates by score
18 ordered = sorted(all_candidates, key=lambda tup:tup[1]) 1 [[4, 0, 4, 0, 4, 0, 4, 0, 4, 0], 6.931471805599453]
19 # select k best 2 [[4, @, 4, 0, 4, @, 4, @, 4, 1], 7.154615356913663]
20 sequences = ordered[:k] 3 [[4, @, 4,0, 4,0, 4, @, 3, 0], 7.154615356913663]
Fa return sequences

Code: https://machinelearningmastery.com/beam-search-decoder-
CENG501 natural-language-processing/

More on beam search

e Beam search is applied during inference.

* With modifications on the training procedure, it is possible to use it
during training as well.

Sequence-to-Sequence Learning
as Beam-Search Optimization

Sam Wiseman and Alexander M. Rush
School of Engineering and Applied Sciences
Harvard University
Cambridge, MA, USA
{swiseman, srush}@seas.harvard.edu

2016

https://arxiv.org/abs/1606.02960

CENG501

A sub-tree in the tree of all character strings

There are
exponentially many
nodes in the tree of
all character strings
of length N.

In an RNN, each
node is a hidden
state vector. The
next character
must transform this
to a new node.

* If the nodes are implemented as hidden states in an RNN, different nodes
can share structure because they use distributed representations.

* The next hidden representation needs to depend on the conjunction of the
current character and the current hidden representation.
Shide: Hinton

CENG501

Modeling text: Advantages of working with
characters

* The web is composed of character strings.

* Any learning method powerful enough to understand the world by
reading the web ought to find it trivial to learn which strings make
words (this turns out to be true, as we shall see).

* Pre-processing text to get words is a big hassle
 What about morphemes (prefixes, suffixes etc)
* What about subtle effects like “sn” words?
 What about New York?
 What about Finnish?
ymmartamattomyydellansakaan

CENG501 Slide: Hinton

Sample predictions
(when trained on the works of Shakespeare):

PANDARUS :
2las, I think he shall be come approached and the day

When little srain would be attain'd into being never fed,

¢ 3_Ieve| RNN With 512 2nd who is but a chain and subjects of his death,
hidden nodes in each A
|ayer Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DURE WINCENTIOC:

Well, your wit is in the care of side and that.

Second Lord:
They would be ruled after thi= chamber, and
my fair nue=s begun out of the fact, to be conveyed,

Whose nobkle souls I']1]1 have the heart of the wars.

Clown:

Come, =2ir, I will make did behold your worship.

VIOL&A:

I'1l drink it.
CENG501

http://karpathy.github.i0/2015/05/21/rnn-effectiveness/

Sample predictions
(when trained on Wikipedia):

* Using LSTM

MNaturalism and decision for the majority of Zrab countries" capitalide was grounded
by the Irish language by [[John Clair]], [[Zn Imperial Japanese Rewolt]], associated
with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal
in the [[Protestant Imminener=]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Zntioch, Perth, ©October 25|21]] to note, the Eingdom

of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known
in western [[Scotland]], near Italy to the conguest of India with the conflict.
Copyright was the succes=sion of independence in the slop of Syrian influence that
waz a famous German movement based on a more popular servicious, non—-doctrinal

and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],

that is sympathetic to be to the [[Punjab Resolution]]

{(PJ3) [http://www.humah.yahoo.com/guardian.

cfm/7754800786d17551563=89.htm Official economics Adjoint for the Nazi=sm, Montgomery
was swear to advance to the resources for those Socialism's rule,

was starting to signing a major tripad of aid exile.]]

CENG501
http://karpathy.github.i0/2015/05/21/rnn-effectiveness/

Sample predictions
(when trained on Latex documents):

* Using multi-layer LSTM

For @"=l _____ m Where L., = 0, hence we can find a closed subset H in H and
any sets F on X, U is a closed immersion of S, then U — T is a separated algebraic
space.

Proof. Proof of (1). It also start we get

S=Spec(1?)=U><xU><_\'U
and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xy U — V. Consider the maps M along the set of points
Schypps and U — U is the fibre category of S in U in Section, ?? and the fact that

any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(R’) — S is smooth or an

U= U U,' Xs; U,'
which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Ox . is a scheme where z. 2, s"” € S’ such that Ox »» — OY,, ., is

separated. By Algebra, Lemma ?? we can define a map of complexes GLg/(2'/S")
and we win.

To prove study we see that F|y is a covering of A”, and T; is an object of Fy/s for
i > 0 and F, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular F = U/F we have to show that

M =1 ®spec(k) Os,s — ix' F)
is a unique morphism of algebraic stacks. Note that
Arrows = (Sch/S)h - (Sch/S) fpps

and

V =T(S,0) — (U, Spec(A))
is an open subset of X. Thus U is affine. This is a continuous map of X is the
inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets. O

The result for prove any open covering follows from the less of Example ??7. It may
replace S by Xpaces.ctale Which gives an open subspace of X and 7' equal to Szar,
see Descent, Lemma ?7. Namely, by Lemma ?? we see that R is geometrically
regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.

Suppose X = lim|X| (by the formal open covering X and a single map Proj, (A) =
Spec(B) over U compatible with the complex
Set(A) = F(X O,\’_ox)‘
When in this case of to show that Q — Cz/x is stable under the following result
in the second conditions of (1), and (3). This finishes the proof. By Definition 7?7
(without element is when the closed subschemes are catenary. If T is surjective we
may assume that T is connected with residue fields of S. Moreover there exists a
closed subspace Z C X of X where U in X' is proper (some defining as a closed
subset of the uniqueness it suffices to check the fact that the following theorem
(1) f is locally of finite type. Since S = Spec(R) and Y = Spec(R).

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a
surjective étale morphism U — X. Let UNU =[] . Ui be the scheme X over
S at the schemes X; — X and U = lim; X;.

i=l....,
The following lemma surjective restrocomposes of this implies that F,, = F,, =

Lemma 0.2. Let X be a locally Noetherian scheme over S, E = Fxs. Set T =
Ji1 CIZ),. Since I™ CI™ are nonzero overip < p is a subset of T, 00 Ay works.

Lemma 0.3. In Situation ??. Hence we may assume q' = 0.

Proof. We will use the property we see that p is the mext functor (??). On the
other hand, by Lemma ?? we see that

D(Ox+) = Ox(D)

where K is an F-algebra where §,,1; is a scheme over S. m]

CENG501
http://karpathy.github.i0/2015/05/21/rnn-effectiveness/

From Ilya Sutskever (using a variant of character-level RNN)

He was elected President during the Revolutionary
War and forgave Opus Paul at Rome. The regime
of his crew of England, is now Arab women's icons
In and the demons that use something between
the characters’ sisters in lower coll trains were
always operated on the line of the ephemerable
street, respectively, the graphic or other facility for
deformation of a given proportion of large
segments at RTUS). The B every chord was a
"strongly cold internal palette pour even the white
blade.”

Shde: Hinton

Some completions produced by the model

* Sheila thrunges (most frequent)
* People thrunge (most frequent next character is space)
 Shiela, Thrungelini del Rey (first try)

* The meaning of life is literary recognition. (6% try)

* The meaning of life is the tradition of the ancient human reproduction: it
is less favorable to the good boy for when to remove her bigger.
(one of the first 10 tries for a model trained for longer).

CENG501 Slide: Hinton

What does it know?

It knows a huge number of words and a lot about proper names, dates, and
numbers.
It is good at balancing quotes and brackets.

— It can count brackets: none, one, many
It knows a lot about syntax but its very hard to pin down exactly what form this
knowledge has.

— Its syntactic knowledge is not modular.

It knows a lot of weak semantic associations

— E.g. it knows Plato is associated with Wittgenstein and cabbage is associated
with vegetable.

Slide: Hinton

Example: Word-level Text
Modeling

CCCCCCC

Word-level Text Modeling

* Problem definition: Find w,, 41 given w{, w,, ..., Wy,.

* Modelling:
p(wn+1 | Wn, ...,(1)1)

* |n general, we just take the last N words:
p(wni1 | @y, oo, wn—(N—l))

. Lﬁarn p(wn+1 = Turkey' | 'Ankara is the capital of ") from data such
that:

p(wy4q = 'Turkey' | 'Ankara is the capital of) > p(wp4q ='UK' | 'Ankarais the capital of ")

CENG501

A handicap

* The number of characters is low enough to handle without doing anything
extra.

* English has 26 characters.

* The situation is very different for words.
* English has ~ 170,000 different words!

* This increases dimensionality and makes it difficult to capture “semantics”.

* Solution: Map words to a lower dimensional space, a.k.a. word embedding
(word2vec).

A two dimensional reduction of the vector space model using t-SNE

92
fc
https http
i feel p
ey right
92 irthda shoftlfh ?ﬁ ﬁgl'e Hhain 87 opA
i jav;n mm ?ngr % g r%
iss </S> make
u14314b1 Mg 899 do USD gnow, SN same Ca_ " pigronatit
beeg, |l alpeyer 98 if like e a3 up M& ove fyc@s
wheratdonn newouldlidnn w?} bout nqus®! ,.{'Imao get with .
doe PrUR o iaBi9ht snoubepg, gse@ég'&gemm Fhoes 28f
when babgve évef“” imipn on?, bi o€§ more yo fohobod
e1ui141 dat i th:a nuny mu:m too carejmout g R w ass "me y
nOdathemese ' one"y goingtl ok}? ask ove, “ q, fim hit game
a all y day witoays will stay™ % 3, alfk" jont
- ¢ fromgot, o gl See b noxt hoe "’ w;f' wanna 2
bi_ Cdedp o nigga (¥°“ ﬁ?py BellRjna"" toniohty takE" give WaRbed &
€ 1 refod e 3{? moneygegone finna think
3%4 7 " h salafostl" sé?(teem "
falmpout c8" a4 8 b Q{;gy‘ people
; een we
heis 92_“§Y c1
ut
db_tﬁgs

Word Embedding (word2vec)

CENG501
Fig: http://www.languagejones.com/blog-1/2015/11/1/word-embedding

Why do we embed words?

* 1-of-n encoding is not suitable to learn from
* |tis sparse
* Similar words have different representations
* Compare this with the pixel-based representation of images: Similar images/objects have similar
pixels
* Embedding words in a map allows
* Encoding them with fixed-length vectors
e “Similar” words having similar representations

* Allows complex reasoning between words:
* king - man + woman = queen

EXPRESSION NEAREST TOKEN
Paris - France + Italy Rome
bigger - big + cold colder
sushi - Japan + Germany bratwurst
Cu - copper + gold Au
Windows - Microsoft + Google Android
Montral Canadiens - Montreal + Toronto Toronto Maple Leafs

Table 1: Mikolov et al. [3] showcase simple additive properties of their word embeddings.

Table: https://devblogs.nvidia.com/parallelforall/understanding-natural-language-deep-neural-networks-using-torch/
CENG501

More examples

Male-Female

walked

ot swam
O

walking 5

o

swimming

Verb tense

CENG501

DR e
Ankara

Russia
Moscow
Canada Ottawa
Japan
P Tokyo
Vietnam Hanoi
China Beijing

Country-Capital

More examples

*Geopolitics: Iraq - Violence = Jordan
Distinction: Human - Animal = Ethics
*President - Power = Prime Minister
Library - Books = Hall

http://deeplearning4ij,org/word2vec

More examples

B o four w3 Oguatro (four)
N wif Cuno (one)
- ofive - ocinco (five)
ol o
o naf Otres “hrﬂe}

a -4
Othree
018 Ddp
a2 {1}
" Odos (two)
u{‘hl IW‘"I-| an [} &) o4 s ns ar ; -Df_., o 23 o4 a% (1] 1 LI,
[+ B L]
(s
an horse 04 o caballo (horse)
o1} 03 Ovaca (cow)
.| O cow Bz pergp (dog)
0 O pig © dog aif
-0asF] O ecerdo {p|gJ
it -0
-018p 02t
ozt 03t
-03F o cat -u4f @ gato (cat)
- %I.! -D...IE -'.'IIJ. EI.II!| -l'.'l‘.' G-I:I!| l.:ﬁ D:.'|!| IZI‘II !I.:I!n n—%a. -d.ll -3 —QIIE‘ -0 EI l:.II Dlz ﬂla 04 -1

http://deeplearning4j,org/word2vec

word2vec

* “Similarity” to Sweden (cosine distance between their vector
representations)

Word Cosine distance

norway 0.760124
denmark 0.715460
finland 0.620022
switzerland 0.588132
belgium 0.585835
netherlands 0.574631
iceland 0.562368
estonia 0.547621
slovenia 0.531408

http://deeplearningéjerg/word2vec

Two different ways to train

1.Using context to predict a target
word (~ continuous bag-of-words)

2.Using word to predict a target
context (skip-gram)

* If the vector for a word cannot
predict the context, the mapping
to the vector space is adjusted

* Since similar words should predict
the same or similar contexts, their
vector representations should end
up being similar

v: vocabulary size
d: hidden dimension

INPFUT PROJECTION OuUTPUT INFUT FROJECTION OUTPUT

w(t-2) wit-2)
w1 E Rde 1 |
w, €ER -
wit-1) wit-1)
. SUM vXxd L
w, o | w; ER A
L W,

wt+1)

=
=

o e \
- 2
. 1

wit+2)

cBOW Skip-gram

CENG501

http://deeplearning4j.org/word2vec

Note that the weight matrix is a look-up table

* In both approaches, the weight matrix is used as follows:

NP Wy P ddwn
\ VvV AXN |«
(01 0]fe = cd] [e§qh]
e | q h | =
¢y koL
L. o -

https://medium.com/@zafaralibagh6/a-simple-word2vec-tutorial-61e64e38a6al

CENG501

Two different ways to train

1.Using context to predict a target word (~ continuous bag-of-words)

Softmax classifier @ @ @ @ -
2
Q
3
()]
Q
=3
<
Hidden layer 5
o
=
> g(embeddings

Projection layer the cat sits on the |mat
\ J \)

! !
context/history h target w;

CENG501
https://www .tensorflow.org/versions/r0.7/tutorials/word2vec/index.html

Two different ways to train

2.Using word to predict a target context (skip-gram)

* Given a sentence:
the quick brown fox jumped over the lazy dog
* For each word, take context to be
(N-words to the left, N-words to the right)
e If N =1 (context, word):
([the, brown], quick), ([quick, fox], brown), ([brown, jumped], fox), ...

CENG501

Note that the weight matrix is a look-up table

Wy v D _______/_,___-) 3 NP W i dden
Vl E : Wi wwy = | ¥ v V!t.i Ve nd
AN (o1 o]fe > cd] [efaqh]
uNpws 10-!-3:1" N = dary - e & !‘.3 |r1 -
one-hok haddan \ounrs S g :’ oL
W, B
gx'tp-%ram C x v-dima

Ouvrpns

https://medium.com/@zafaralibagh6/a-simple-word2vec-tutorial-61e64e38a6al
CENG501

Two different ways to train

2.Using word to
predict a target
context (skip-gram)

Window

Size Text Skip-grams

wide, the
[The wide road shimmered] in the hot sun. wide, road
wide, shimmered

shimmered, wide
shimmered, road
shimmered, in
shimmered, the

The [wide road shimmered in the] hot sun.

sun, the

The wide road shimmered in [the hot sun]. sun. hot

wide, the

wide, road
wide, shimmered
wide, in

[The wide road shimmered in] the hot sun.

shimmered, the
shimmered, wide
shimmered, road
shimmered, in
shimmered, the
shimmered, hot

3 [The wide road shimmered in the hot] sun.

sun, in
The wide road shimmered [in the hot sun]. sun, the
sun, hot

https://Waww.tensorflow.org/tutorials/text/word2vec

Some notes

* CBOW is called continuous BOW since the context is regarded as a BOW and it
is continuous.

* |n both approaches, the networks are composed of linear units
* The output units are usually normalized with the softmax

e According to Mikolov:

e “Skip-gram: works well with small amount of the training data, represents well even rare
words or phrases.

 CBOW: several times faster to train than the skip-gram, slightly better accuracy for the
frequent words”

a bench sitting on a patch of grass next to
a sidewalk

a train is traveling down the tracks at a
a man is playing tennis on a tennis court train station a cake with a slice cut out of it

Fig: https://github.com/karpathy/neuraltalk2

Example: Image Captionin,

CENG501

Demo video

https://vimeo.com/146492001

CENG501

Overview

“straw” “hat” END
Y
Won
X . hy
vV CNNe. o Wi)
,C_:Tlr—fféﬁ ‘vh:
=) |
Y J START “straw” “hat”

Pre-trained CNN
(e.g., on imagenet)

CENG501

Pre-trained
word
embedding
is also used

Image: Karpathy

one to one one to many many to one many to many many to many

http://karpathy.github.i0/2015/05/21/rnn-effectiveness/

CENG501

Training

conv-64
conv-64

maxpool
conv-128
conv-128
maxpool

. conv-256

'tmanSE.
maxpool
conv-512
conv-512
maxpool
conv-512
conv-512
maxpool

FC-4096
FC-4096

FC-1000
;oﬂK\ax

“straw hat”

yQ y1 y2
hO h1 h2
s | 2| | =

RT=

<START> straw

hat

CENG501

training example

before:
h0 = max(0, Wxh * x0)

now:
h0 = max(0, Wxh * x0 + Wih * v)

Slide: Karpathy

= - test image
conv-64
conv-64
maxpool

conv-128

conv-128
maxpool

. conv-256

 conv-256
maxpool I

conv-512
_ conv-512 sample!
maxpool hO
 conv-512
L com512.] I
maxpool

FC-4096
x0

<5TA 1
FC-4096 i x

<START>

Slide: Karpathy

CENG501

conv-64
conv-64
maxpool
conv-128
conv-128

' maxpool '

 conv-256

. conv-256
maxpool
conv-512
conv-512

conv-512
conv-512
maxpool

FC-4096
FC-4096

y0 y1

hO —»{ h1

x0

=5TA straw

RT=
<START>

CENG501

test image

Slide: Karpathy

o - test image
conv-64
conv-64
maxpool

conv-128

conv-128
maxpool

 conv-256 y0

- conv-256

—_ [

conv-512

conv-512 Sa mple!

hO —»{ h1

conv-512
conv-512 I I
maxpool
FC-4096

x0

<STA sir hat
FC-4096 ST aw

<START>

Slide: Karpathy

CENG501

test image

conv-256 _‘,r'l'J

———— A
— T 1 T\ sample!

<END> token

conv-512
_ conv-512 =~ fini
— o f>f mt || n2 => finish.

. conv-512

conv-512 T I ‘l
_ maxpool

FC-4096 -

FC-4096 =T = hat

<START>

Slide: Karpathy

CENG501

Learning Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation

Kyunghyun Cho
Bart van Merriénboer Caglar Gulcehre Dzmitry Bahdanau
Universilé de Montréal Jacobs University, Germany
firstname. lastname@umontreal. ca d.bahdanaufjacobs-university.de
Fethi Bougares Holger Schwenk Yoshua Bengio
Université du Maine, France Université de Montréal, CIFAR Senior Fellow
firstname.lastnameflium.univ-lemans.fr find. mefon. the.web

2014

Example: Neural Machine Translation

CENG501

Neural Machine Translation

* Model

Each box is an LSTM or GRU cell.

> =
>
_{
M~
M
m
o
o
W

A B C <EQS5> W X

Sutskever et al. 2014

CENG501 Haitham Elmarakeby

one to one one to many many to one many to many many to many

http://karpathy.github.i0/2015/05/21/rnn-effectiveness/

CENG501

. croissance, économique, s'est, ralentie, ces, derniéres, années, .)

f=(L

st]

Neural Machine + H B E 1T -
' : o [- = w
Translation T 7 e
A B O Q
o \H \ E = o
O \H 0] @
“ B - } 3

Confinuous-space

|-of-K coding Word Represe
=
=

Cho: From Sequence Modeling to Translation e = (Economic. growth, has. slowed. down, in, recent, years, .)

CENG501

Neural Machine Translation

* Model- encoder

ford Representation State

Cont
W
~
—
e
1
=
e
=g
-
e

1-of-K coding

e = (Economic, growth, has, slowed, down, 1n, recent, years, .)

CENG501

Cho: From Sequence Modeling to Translation Haitham Elmarakeby

Neural Machine Translation

* Model- decoder

J=(La, croissance, économique, s'est, ralentie, ces, dernieres, annees, .)
[] [

=

Word Probability
—[T T T | T T 1]

Word Ssample

[T~
T -1 T

;,4||||||§,.||

—HIIIIIIE

T T

.—?-IIIIIII—EH]]]]]

.—*4||||||?

.2, .
) ? ,/‘

e = (Economic, growth, has, slowed, down, in, recent, years, .)

CENG501 .
Cho: From Sequence Modeling to Translation Haitham Elmarakeby

Decoder in more detail

G ive N J= (La, croissance, économique, s'est, ralentie, ces, dermieres, années, .)
(i) the “summary” (h) of the input sequence, “;u " u n
(ii) the previous output / word (f;_1) : O 0 N N
po O\ [n -
the hidden state of the decoder is: SR U Ve O Ve W S
Z; = RNN(Z¢-4, ft-1,h) 1370

e = (Economic, growth, has, slowed, down, in, recent, years, .)

Then, we can find the most likely next
word:

P(ft | ft—lift—zr ,h) = p(ft | Zt'ft—li h)

CENG501

Encoder-decoder

Decoder

e Jointly trained to maximize

ma - zlagpe Vo | %0).

n=1

CENG501

NMT can be done at char-level too

 http://arxiv.org/abs/1603.06147

CENG501

Convolutional Sequence to Sequence Learning

Jonas Gehring

This can be e
done with
CNNs

Facebook Al Research 20 1 7

la maison de Lea <end>

CENG501

Check the following tutorial

* http://smerity.com/articles/2016/google nmt_arch.html

CENG501

	Slide 1: CENG501 – Deep Learning
	Slide 2: Disadvantages of MLPs: Dimensionality
	Slide 3: Equivariance vs. Invariance
	Slide 4: An Alternative to MLPs
	Slide 5: CNNs vs. MLPs: Curse of Dimensionality
	Slide 6: Motivation
	Slide 7: Size of the next layer
	Slide 8: Types of Convolution
	Slide 9: Pooling
	Slide 10: Normalization
	Slide 11: Alternative to FC: Global Average Pooling
	Slide 12: A Blueprint for CNNs
	Slide 13: Trade-offs in architecture
	Slide 14: Finetuning
	Slide 15: Many mechanisms for visualization
	Slide 16: Data gradients
	Slide 17: Class Activation Maps
	Slide 18: Fooling ConvNets
	Slide 19: Today
	Slide 20: Administrative Notes
	Slide 21: Popular CNN models
	Slide 22: LeNet (1998)
	Slide 23: AlexNet (2012)
	Slide 24: AlexNet (2012) Details
	Slide 25: AlexNet (2012) Training
	Slide 26: AlexNet (2012): The learned filters
	Slide 28: GoogleNet (2014)
	Slide 29: Inception module: “network in network” (inspired from Lin et al., 2013)
	Slide 30
	Slide 32
	Slide 33: GoogleNet: More Details
	Slide 34: VGGNet (2014)
	Slide 35
	Slide 37: ResNet (2015)
	Slide 38: ResNet (2015)
	Slide 39: ResNet (2015)
	Slide 40: Effect of residual connections
	Slide 41: ResNet: Ensemble of Shallow Networks
	Slide 42
	Slide 43: DiracNets
	Slide 45: ResNext
	Slide 46: DenseNet
	Slide 49: Highway networks
	Slide 50: Highway Networks
	Slide 51: Comparison:
	Slide 52: Comparison:
	Slide 53: Going deep may not be the only answer
	Slide 54: Recent work
	Slide 55: Binary networks
	Slide 56: Binary networks
	Slide 57
	Slide 58: CNNs: summary & future directions
	Slide 59: Sequence Labeling/Modeling: Motivation
	Slide 60: Why do we need them?
	Slide 61: Different types of sequence learning / recognition problems
	Slide 62: Different types of sequence learning / recognition problems
	Slide 63: Recurrent Neural Networks
	Slide 64: Recurrent Neural Networks (RNNs)
	Slide 66: Some examples
	Slide 67: Some examples
	Slide 69: Challenge
	Slide 70: Unfolding
	Slide 71: Unfolding (another example)
	Slide 72
	Slide 73
	Slide 74
	Slide 75: Unfolding implications
	Slide 76: Back-propagation Through Time
	Slide 79: Feedforward through Vanilla RNN
	Slide 80: Feedforward through Vanilla RNN
	Slide 81: Backpropagation through Vanilla RNN
	Slide 82: Backpropagation through Vanilla RNN
	Slide 83
	Slide 84: Backpropagation through Vanilla RNN
	Slide 86: Initial hidden state
	Slide 87: Initializing parameters
	Slide 95: The problem of exploding or vanishing gradients
	Slide 100: Exploding and vanishing gradients problem
	Slide 101: Exploding and vanishing gradients problem
	Slide 103: Long Short Term Memory (LSTM)
	Slide 104: RNN
	Slide 105: Key Problem
	Slide 106: Long Short Term Memory (LSTM)
	Slide 107: Meet LSTMs
	Slide 108: LSTM in detail
	Slide 109: LSTMs Intuition: Memory
	Slide 110: LSTMs Intuition: Forget Gate
	Slide 111: LSTMs Intuition: Input Gate
	Slide 112: LSTMs Intuition: Memory Update
	Slide 113: LSTMs Intuition: Output Gate
	Slide 114: LSTMs
	Slide 115: LSTM Variants #1: Peephole Connections
	Slide 116: LSTM Variants #2: Coupled Gates
	Slide 117: LSTM Variants #3: Gated Recurrent Units
	Slide 119: LSTM vs. GRU
	Slide 120: ConvLSTM
	Slide 122: Reference
	Slide 123: CNN vs RNN
	Slide 124: Example: Character-level Text Modeling
	Slide 125: Character-level Text Modeling
	Slide 126
	Slide 127: A simple scenario
	Slide 128: Sampling: Greedy
	Slide 129: Sampling: Beam Search
	Slide 130: Sampling: Beam Search
	Slide 132: More on beam search
	Slide 133: A sub-tree in the tree of all character strings
	Slide 134: Modeling text: Advantages of working with characters
	Slide 136: Sample predictions (when trained on the works of Shakespeare):
	Slide 137: Sample predictions (when trained on Wikipedia):
	Slide 138: Sample predictions (when trained on Latex documents):
	Slide 139
	Slide 140: Some completions produced by the model
	Slide 141: What does it know?
	Slide 144: Example: Word-level Text Modeling
	Slide 145: Word-level Text Modeling
	Slide 146: A handicap
	Slide 147: Word Embedding (word2vec)
	Slide 148: Why do we embed words?
	Slide 149: More examples
	Slide 150: More examples
	Slide 151: More examples
	Slide 155: word2vec
	Slide 156: Two different ways to train
	Slide 157: Note that the weight matrix is a look-up table
	Slide 158: Two different ways to train
	Slide 159: Two different ways to train
	Slide 160: Note that the weight matrix is a look-up table
	Slide 162: Two different ways to train
	Slide 163: Some notes
	Slide 164: Example: Image Captioning
	Slide 165: Demo video
	Slide 166: Overview
	Slide 167
	Slide 168: Training
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173: Example: Neural Machine Translation
	Slide 175: Neural Machine Translation
	Slide 176
	Slide 177: Neural Machine Translation
	Slide 178: Neural Machine Translation
	Slide 179: Neural Machine Translation
	Slide 180: Decoder in more detail
	Slide 181: Encoder-decoder
	Slide 182: NMT can be done at char-level too
	Slide 183: This can be done with CNNs
	Slide 184: Check the following tutorial

