
CENG501 – Deep Learning
Week 5
Fall 2024

Sinan Kalkan

Dept. of Computer Engineering, METU

Disadvantages of MLPs:
Dimensionality

• The number of parameters in an MLP is high for practical problems
• e.g., for grayscale images with 1000x1000 resolution, a fully-connected layer with 1000 neurons

requires 109 parameters.

• The number of parameters in an MLP increases quadratically with an increase in input
dimensionality

• For example, for a fully-connected layer with 𝑛𝑖𝑛 input neurons and 𝑛𝑜𝑢𝑡 output neurons:
• Number of parameters: 𝑛𝑖𝑛 × 𝑛𝑜𝑢𝑡

• Assuming proportional decrease in layer size, e.g. 𝑛𝑜𝑢𝑡 = 𝑛𝑖𝑛/10, gives: 𝑛𝑖𝑛 × 𝑛𝑜𝑢𝑡 = 𝑛𝑖𝑛
2 /10

• Increasing 𝑛𝑖𝑛 by 𝑑 yields a change of 𝒪(𝑑2).

• This is a problem because:
• More parameters => larger model size & more computational complexity.

• Teaser for CNNs:
• Input size does not affect model size (in general)

CENG501

Equivariance vs. Invariance

• Equivariant problem: image segmentation.
• f(g(x)) = g(f(x))

• Invariant problem: object recognition.
• f(g(x)) = f(x)

• Pooling provides invariance, convolution
provides equivariance.

CENG501

https://www.mathworks.com/discovery/image-segmentation.html

f(x): “cat” f(g(x)): “cat”

g(x)

An Alternative to MLPs

Solution: Neocognitron (Fukushima, 1979):

A neural network model unaffected by shift
in position, applied to Japanese
handwritten character recognition.

• S (simple) cells: local feature extraction.

• C (complex) cells: provide tolerance to
deformation, e.g. shift.

• Self-organized learning method.

CENG501

Figure: Fukushima (2019), Recent advances in the deep
CNN neocognitron.

When things go deep, an output may depend on
all or most of the input:

Figure: Goodfellow et al., “Deep Learning”, MIT Press, 2016.

CNNs vs. MLPs: Curse of Dimensionality

CENG501

Motivation

CENG501

Size of the next layer
• Along a dimension:

• 𝑊: Size of the input

• 𝐹: Size of the receptive field

• 𝑆: Stride

• 𝑃: Amount of zero-padding

• Then: the number of neurons as the output of a convolution layer:
𝑊 − 𝐹 + 2𝑃

𝑆
+ 1

• If this number is not an integer, your strides are incorrect and your neurons cannot tile
nicely to cover the input volume

http://cs231n.github.io/convolutional-networks/Zero padding

Weights:

CENG501

Types of Convolution

• Unshared

• Dilated

• Transposed

• 3D

• 1x1

• Separable and Depth-wise Separable

• Group

• Deformable

• Position-sensitive

CENG501

Pooling

• Example
• Pooling layer with filters of size 2x2
• With stride = 2
• Discards 75% of the activations
• Depth dimension remains unchanged

• Max pooling with F=3, S=2 or F=2, S=2 are quite common.
• Pooling with bigger receptive field sizes can be destructive

• Avg pooling is an obsolete choice. Max pooling is shown to work better in
practice.

http://cs231n.github.io/convolutional-networks/

CENG501

Figure: Goodfellow et al., “Deep Learning”, MIT Press, 2016.

Normalization

https://medium.com/syncedreview/facebook-ai-proposes-group-normalization-alternative-to-
batch-normalization-fb0699bffae7

CENG501

For each channel independently.

CENG501

flatten FC layers FC
Classes

0.8 0.1 0.2 0.1

Sum
of Each
Channel

0.8 0.1 0.2 0.1 Classes

Alternative to FC: Global Average Pooling
“Network In Network”, https://arxiv.org/pdf/1312.4400.pdf

A Blueprint for CNNs

http://cs231n.github.io/convolutional-networks/

CENG501

Trade-offs in architecture

• Between filter size and number of layers (depth)
• Keep the layer widths fixed.
• “When the time complexity is roughly the same, the deeper

networks with smaller filters show better results than the
shallower networks with larger filters.”

• Between layer width and number of layers (depth)
• Keep the size of the filters fixed.
• “We find that increasing the depth leads to considerable gains,

even the width needs to be properly reduced.”

• Between filter size and layer width
• Keep the number of layers (depth) fixed.

• No significant difference

CENG501

Finetuning
1.If the new dataset is small and similar to the original dataset used to train the CNN:

• Finetuning the whole network may lead to overfitting
• Just train the newly added layer

2.If the new dataset is big and similar to the original dataset:
• The more, the merrier: go ahead and train the whole network

3.If the new dataset is small and different from the original dataset:
• Not a good idea to train the whole network
• However, add your new layer not to the top of the network, since those parts are very dataset

(problem) specific
• Add your layer to earlier parts of the network

4.If the new dataset is big and different from the original dataset:
• We can “finetune” the whole network
• This amounts to a new training problem by initializing the weights with those of another network

CENG501

Many mechanisms for visualization

• Visualize layer activations

• Visualize the weights (i.e., filters)

• Visualize examples that maximally activate a neuron

• Visualize a 2D embedding of the inputs based on their CNN codes

• Occlude parts of the window and see how the prediction is affected

• Data gradients

CENG501

Data gradients

• The gradient with respect to the input is high
for pixels which are on the object

CENG5012014

Class Activation Maps

• Weighted combination
of the feature maps
before GAP:

𝑀 𝑥, 𝑦 = ෍

𝑘

𝑤𝑘
𝑐𝑓𝑘(𝑥, 𝑦)

CENG501

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep features for discriminative localization,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2921–2929.

Fooling ConvNets

• Given an image 𝐼 labeled as 𝑙1, find
minimum “𝑟” (noise) such that 𝐼 + 𝑟 is
classified as a different label, 𝑙2.

• I.e., minimize:
arg min

𝑟
𝑙𝑜𝑠𝑠 𝐼 + 𝑟, 𝑙2 + 𝑐 𝑟

O
st

ri
ch

CENG501

Today

• CNNs
• Popular CNN architectures

• Sequence Modeling

• Recurrent Neural Networks

• Long Short Term Memory (LSTM)

• Application: Language Modeling

• Application: Image Captioning

• Application: Machine Translation

• Echo State Networks

CENG501

Administrative Notes

• No quiz today

• Hopfield Networks, Boltzmann Machines and the Associated Nobel
Prize
• Today at 18:30 in “Cavid Erginsoy Salonu” in the Dept. of Physics

• Paper Selection
• Feedback provided
• Deadline: This Sunday

CENG501

Popular
CNN models

CENG501

LeNet (1998)

• For reading zip codes and digits

F=5x5
S=1
P=0

F=2x2
S=2

sigm(𝛼 × 𝑎𝑣𝑔 + 𝑏)
𝛼 & b: trainable

F=5x5
S=1
P=0

F=2x2
S=2

sigm(𝛼 × 𝑎𝑣𝑔 + 𝑏)
𝛼 & b: trainable

F=5x5
S=1
P=0

Euclidean RBF:

CENG501

AlexNet (2012)
• Popularized CNN in computer vision & pattern recognition

• ImageNet ILSVRC challenge 2012 winner

• Similar to LeNet
• Deeper & bigger
• Many CONV layers on top of each other (rather than adding

immediately a pooling layer after a CONV layer)
• Uses GPU

• 650K neurons. 60M parameters. Trained on 2 GPUs for a
week.

CENG501

AlexNet (2012) Details

• Since the network is too big to fit in on GPU, it is divided into two.
• Note the cross connections between the “pathways”.
• Uses ReLU as non-linearity after every convolutional and fully-connected layer.
• Normalization layer is placed after the first & the second convolutional layers.
• Max-pooling layer is placed only after the normalization layers & the fifth convolutional layer.
• Last layer is a soft-max.

CENG501

AlexNet (2012) Training

• Data augmentation & dropout are used during training to avoid overfitting.
• Stochastic Gradient Descent with a batchsize of 128 examples is used.
• Momentum with coefficient 0.9 is employed.
• Weight decay (L2 regularization cost) with factor 0.0005 is also used in the loss function.
• Weights are initialized from a zero-mean Gaussian distribution with 0.01 std.
• Learning rate started with 0.01 and manually divided by 10 when the validation error rate

stopped improving.
• Trained on 1.2 million images, which took 5-6 days on two GPUs.

CENG501

AlexNet (2012): The learned filters

• Do you notice anything strange with the filters?

CENG501

GoogleNet (2014)

• ImageNet 2014 winner

• Contributions:
• Inception module

• Dramatically reduced parameters (from 60M in AlexNet to 4M)

• Avg Pooling at the top, instead of fully-connected layer ➔
Reduced number of parameters

• Motivation:
• Going bigger (in depth or width) means too many

parameters.
• Go bigger by maintaining sparse connections.

CENG501

Inception module: “network in network”
(inspired from Lin et al., 2013)

• Concatenation is performed along the “columns” (depth).
• The output of inception layers must have the same size.

• The naïve version has a tendency to blow up in number of channels.
• Why? Max-pooling does not change the number of channels. When concatenated with other filter responses, number of channels

increase with every layer.
• Solution: Do 1x1 convolution to decrease the number of channels.

• Also called “bottleneck”.

• In order to decrease the computational complexity of 3x3 and 5x5 pooling, they are also preceded by 1x1
convolution (i.e., the number of channels are reduced).

CENG501

CENG501

• Since the intermediate
layers learn to discriminate
features specific to a class,
we can directly link them
to the loss term.
• Encourages these layers to

become more discriminative
• Increases propagation of

gradient signal to earlier
stages

CENG501

GoogleNet: More Details

• ReLU after all layers

• Max pooling in inception modules as well as a whole layer occasionally

• Avg pooling instead of fully-connected layers
• Only a minor change in the accuracy (0.6%)

• However, less number of parameters

• Other usual tricks (e.g., dropout, augmentation etc.) are used.

• Trained on CPUs using a distributed machine learning system.

• SGD with momentum (0.9).

• Fixed learning rate scheme with 4% decrease every 8 epochs

• They trained many different models with different initializations and parameters.
They combined these models using different methods and tricks. There is no single
training method that yields the results they achieved.

CENG501

VGGNet (2014)

• ImageNet runner up in 2014

• Contribution:
• Use small RFs & increase depth as much as possible

• 16 CONV/FC layers.

• 3x3 CONVs and 2x2 pooling from beginning to the end

• Although performs slightly worse than GoogleNet in image
classification, VGGNet may perform better at other tasks (such as
transfer learning problems).

• Downside: Needs a lot of memory & parameters (140M)

CENG501

CENG501

ResNet (2015)

• Increasing the depth naively may not give
you better performance after a number of
depths

• Why?
• This is shown to be not due to overfitting (since

training error also gets worse) or vanishing
gradients (suitable non-linearities used)

• Accuracy is somehow saturated. Though
reported in several studies.

• Solution: Make shortcut connections

CENG501

ResNet (2015)

• Residual (shortcut) connections

CENG501

ResNet (2015)

• Residual (shortcut) connections

CENG501

Effect of residual connections

2018

CENG501

ResNet: Ensemble of
Shallow Networks

CENG501

2016

"Our initial results suggest that past a

certain depth, on the order of tens or

hundreds of layers, the test performance

for vanilla convolutional architecture

saturates. These observations suggest
that architectural features such as

residual connections and batch

normalization are likely to play an

important role in defining a good model

class, rather than simply enabling efficient
training."

CENG501

DiracNets

CENG501

ResNext
2017

CENG501

DenseNet
2016;2018

CENG501

Highway networks

• This is a regular MLP with gated
units.

CENG501

Highway Networks

https://www.researchgate.net/publication/311842587_Highway_and_Residual_Networks_learn_Unrolled_Iterative_Estimation
CENG501

Comparison:
https://arxiv.org/pdf/1605.07678.pdf

CENG501

Comparison:
https://arxiv.org/pdf/1605.07678.pdf

CENG501

Going deep may not be the only answer

CENG501

Recent work

“Towards Principled Design of Deep Convolutional Networks: Introducing SimpNet”

• Major winning Convolutional Neural Networks (CNNs), such as VGGNet, ResNet, DenseNet, \etc,
include tens to hundreds of millions of parameters, which impose considerable computation and
memory overheads. This limits their practical usage in training and optimizing for real-world
applications. On the contrary, light-weight architectures, such as SqueezeNet, are being proposed
to address this issue. However, they mainly suffer from low accuracy, as they have compromised
between the processing power and efficiency. These inefficiencies mostly stem from following an
ad-hoc designing procedure. In this work, we discuss and propose several crucial design principles
for an efficient architecture design and elaborate intuitions concerning different aspects of the
design procedure. Furthermore, we introduce a new layer called {\it SAF-pooling} to improve the
generalization power of the network while keeping it simple by choosing best features. Based on
such principles, we propose a simple architecture called {\it SimpNet}. We empirically show that
SimpNet provides a good trade-off between the computation/memory efficiency and the
accuracy solely based on these primitive but crucial principles. SimpNet outperforms the deeper
and more complex architectures such as VGGNet, ResNet, WideResidualNet \etc, on several well-
known benchmarks, while having 2 to 25 times fewer number of parameters and operations. We
obtain state-of-the-art results (in terms of a balance between the accuracy and the number of
involved parameters) on standard datasets, such as CIFAR10, CIFAR100, MNIST and SVHN. The
implementations are available at \href{url}{this https URL}.

https://arxiv.org/abs/1802.06205CENG501

https://github.com/Coderx7/SimpNet

Binary networks

CENG501

Binary networks

CENG501

CENG501

CNNs:
summary & future directions

• Less parameters

• Allows going deeper

• High flexibility
• In operations
• In organization of layers
• In the overall architecture etc.

• Future directions:
• Understanding them better
• Making them deeper, faster and more efficient
• Compressing a big network into a smaller & cheaper one.
• …

CENG501

Sequence Labeling/Modeling: Motivation

CENG501

Why do we need them?

A. Graves, “Supervised Sequence Labelling with Recurrent Neural Networks”, 2012.
CENG501

Different types of sequence learning /
recognition problems

• Sequence Classification
• A sequence to a label

• E.g., recognizing a single spoken word

• Length of the sequence is fixed

• Why RNNs then? Because sequential modeling provides
robustness against translations and distortions.

• Segment Classification
• Segments in a sequence correspond to labels

• Temporal Classification
• General case: sequence (input) to sequence (label) modeling.

• No clue about where input or label starts.

A. Graves, “Supervised Sequence Labelling with Recurrent

Neural Networks”, 2012.

CENG501

Different types of sequence learning /
recognition problems

CENG501

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Recurrent Neural Networks

CENG501

Recurrent Neural Networks (RNNs)

• RNNs are very powerful because:
• Distributed hidden state that allows them

to store a lot of information about the
past efficiently.

• Non-linear dynamics that allows them to
update their hidden state in complicated
ways.

• With enough neurons and time, RNNs
can compute anything that can be
computed by your computer.

• More formally, RNNs are Turing
complete.

in
p
u

t
h

id
d

e
n

o
u

tp
u
t

in
p
u

t
h

id
d

e
n

o
u

tp
u
t

Feed-forward
networks

Recurrent
networks

Adapted from Hinton
CENG501

Some examples

Slide: Michael MozerCENG501

Some examples

Jordan Networks

“context” neurons

Elman Networks

Figs: David Kriesel

CENG501

Challenge

• Back propagation is designed for feedforward nets

• What would it mean to back propagate through a recurrent
network?
• error signal would have to travel back in time

Slide: Michael Mozer
CENG501

Unfolding

time →

in
p
u

t
h

id
d

e
n

o
u

tp
u
t

in
p
u

t
h

id
d

e
n

o
u

tp
u
t

Feed-forward
networks

Recurrent
networks

Unfolding

in
p
u

t
h

id
d

e
n

o
u

tp
u
t

t=0

in
p
u

t
h

id
d

e
n

o
u

tp
u
t

t=1

in
p
u

t
h

id
d

e
n

o
u

tp
u
t

t=2

…

CENG501

Unfolding (another example)

Figure: Michael MozerCENG501

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

CENG501

Alec Radford
CENG501

Alec Radford
CENG501

Unfolding implications

• Entails duplication of weights => weight sharing

• Sharing weights means their gradients will be accumulated
over time and reflected on the weights

• Unfolded network has the same dynamics of the RNN for a
fixed number of time steps!

CENG501

Back-propagation Through Time

CENG501

Feedforward through Vanilla RNN

𝐱1

𝐡1 𝐡2

𝐱2

ො𝐲1 ො𝐲2

… 𝐡𝑛−1

𝐱𝑛−1

ො𝐲𝑛−1

𝑊𝑥ℎ

𝑊ℎℎ

𝑊ℎ𝑦

𝑊𝑥ℎ 𝑊𝑥ℎ

𝑊ℎ𝑦 𝑊ℎ𝑦

𝑊ℎℎ 𝑊ℎℎ 𝑊ℎℎ

ℒ1 ℒ2 ℒ𝑛−1

𝐡0

𝐡1 = 𝑡𝑎𝑛ℎ 𝑊 𝑥ℎ ⋅ 𝐱1 + 𝑊ℎℎ ⋅ 𝐡0

ො𝐲1 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊ℎ𝑦 ⋅ 𝐡1

ℒ1 = 𝐶𝐸(ො𝐲1, 𝐲1)

𝐡𝑛

𝐱𝑛

ො𝐲𝑛

𝑊𝑥ℎ

𝑊ℎ𝑦

𝑊ℎℎ

ℒ𝑛

CENG501

Feedforward through Vanilla RNN
The Vanilla RNN Model

First time-step (𝑡 = 1):

𝐡1 = 𝑡𝑎𝑛ℎ 𝑊𝑥ℎ ⋅ 𝐱1 + 𝑊ℎℎ ⋅ 𝐡0

ො𝐲1 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊ℎ𝑦 ⋅ 𝐡1

ℒ1 = 𝐶𝐸(ො𝐲1, 𝐲1)

In general:

𝐡t = 𝑡𝑎𝑛ℎ 𝑊𝑥ℎ ⋅ 𝐱𝑡 + 𝑊ℎℎ ⋅ 𝐡𝑡−1

ො𝐲𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊ℎ𝑦 ⋅ 𝐡𝑡

ℒ𝑡 = 𝐶𝐸(ො𝐲𝑡, 𝐲t)

In total:

ℒ = ෍

𝑡

ℒ𝑡

CENG501

𝐱1

𝐡1 𝐡2

𝐱2

𝐲1 𝐲2

… 𝐡𝑛−1

𝐱𝑛−1

𝐲𝑛−1

𝑊𝑥ℎ

𝑊ℎℎ

𝑊ℎ𝑦

𝑊𝑥ℎ
𝑊𝑥ℎ

𝑊ℎ𝑦 𝑊ℎ𝑦

𝑊ℎℎ 𝑊ℎℎ 𝑊ℎℎ

ℒ1 ℒ2 ℒ𝑛−1

𝐡0 𝐡𝑛

𝐱𝑛

𝐲𝑛

𝑊𝑥ℎ

𝑊ℎ𝑦

𝑊ℎℎ

ℒ𝑛

Backpropagation
through Vanilla RNN

In general:

𝐡t = 𝑡𝑎𝑛ℎ 𝑊 𝑥ℎ ⋅ 𝐱𝑡 + 𝑊ℎℎ ⋅ 𝐡𝑡−1

ො𝐲𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊ℎ𝑦 ⋅ 𝐡𝑡

ℒ𝑡 = 𝐶𝐸(ො𝐲𝑡 , 𝐲t)

In total:

ℒ = ෍

𝑡

ℒ𝑡

T
h

e
 V

a
n

il
la

 R
N

N
 M

o
d

e
l

𝜕ℒ

𝜕𝑊ℎ𝑦
=?

=
𝜕ℒ

𝜕 ො𝐲𝑛

𝜕 ො𝐲𝑛

𝜕𝑊ℎ𝑦 +
𝜕ℒ

𝜕 ො𝐲𝑛−1

𝜕 ො𝐲𝑛−1

𝜕𝑊ℎ𝑦 + ⋯ +
𝜕ℒ

𝜕 ො𝐲1

𝜕 ො𝐲1

𝜕𝑊ℎ𝑦

= ෍

𝑡=1..𝑛

𝜕ℒ

𝜕 ො𝐲𝑡

𝜕 ො𝐲𝑡

𝜕𝑊ℎ𝑦

CENG501

𝐱1

𝐡1 𝐡2

𝐱2

𝐲1 𝐲2

… 𝐡𝑛−1

𝐱𝑛−1

𝐲𝑛−1

𝑊𝑥ℎ

𝑊ℎℎ

𝑊ℎ𝑦

𝑊𝑥ℎ
𝑊𝑥ℎ

𝑊ℎ𝑦 𝑊ℎ𝑦

𝑊ℎℎ 𝑊ℎℎ 𝑊ℎℎ

ℒ1 ℒ2 ℒ𝑛−1

𝐡0 𝐡𝑛

𝐱𝑛

𝐲𝑛

𝑊𝑥ℎ

𝑊ℎ𝑦

𝑊ℎℎ

ℒ𝑛

Backpropagation
through Vanilla RNN

𝜕ℒ

𝜕𝑊ℎℎ
=?

=
𝜕ℒ

𝜕𝐡𝑛

𝜕𝐡𝑛

𝜕𝑊ℎℎ +
𝜕ℒ

𝜕𝐡𝑛−1

𝜕𝐡𝑛−1

𝜕𝑊ℎℎ + ⋯ +
𝜕ℒ

𝜕𝐡1

𝜕𝐡1

𝜕𝑊ℎℎ

𝜕ℒ

𝜕𝐡𝑡
=

𝜕ℒ

𝜕 ො𝐲𝑡

𝜕 ො𝐲𝑡

𝜕𝐡𝑡
+

𝜕ℒ

𝜕𝐡𝑡+1

𝜕𝐡𝑡+1

𝜕𝐡𝑡

CENG501

In general:

𝐡t = 𝑡𝑎𝑛ℎ 𝑊 𝑥ℎ ⋅ 𝐱𝑡 + 𝑊ℎℎ ⋅ 𝐡𝑡−1

ො𝐲𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊ℎ𝑦 ⋅ 𝐡𝑡

ℒ𝑡 = 𝐶𝐸(ො𝐲𝑡 , 𝐲t)

In total:

ℒ = ෍

𝑡

ℒ𝑡

T
h

e
 V

a
n

il
la

 R
N

N
 M

o
d

e
l

𝐱1

𝐡1 𝐡2

𝐱2

𝐲1 𝐲2

… 𝐡𝑛−1

𝐱𝑛−1

𝐲𝑛−1

𝑊𝑥ℎ

𝑊ℎℎ

𝑊ℎ𝑦

𝑊𝑥ℎ
𝑊𝑥ℎ

𝑊ℎ𝑦 𝑊ℎ𝑦

𝑊ℎℎ 𝑊ℎℎ 𝑊ℎℎ

ℒ1 ℒ2 ℒ𝑛−1

𝐡0 𝐡𝑛

𝐱𝑛

𝐲𝑛

𝑊𝑥ℎ

𝑊ℎ𝑦

𝑊ℎℎ

ℒ𝑛

Cho: From Sequence Modeling to Translation CENG501

Backpropagation
through Vanilla RNN

𝜕ℒ

𝜕𝑊𝑥ℎ
=?

=
𝜕ℒ

𝜕𝐡𝑛

𝜕𝐡𝑛

𝜕𝑊𝑥ℎ +
𝜕ℒ

𝜕𝐡𝑛−1

𝜕𝐡𝑛−1

𝜕𝑊𝑥ℎ + ⋯ +
𝜕ℒ

𝜕𝐡1

𝜕𝐡1

𝜕𝑊𝑥ℎ

𝜕ℒ

𝜕𝐡𝑡
=

𝜕ℒ

𝜕 ො𝐲𝑡

𝜕 ො𝐲𝑡

𝜕𝐡𝑡
+

𝜕ℒ

𝜕𝐡𝑡+1

𝜕𝐡𝑡+1

𝜕𝐡𝑡

(calculated before)

CENG501

In general:

𝐡t = 𝑡𝑎𝑛ℎ 𝑊 𝑥ℎ ⋅ 𝐱𝑡 + 𝑊ℎℎ ⋅ 𝐡𝑡−1

ො𝐲𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊ℎ𝑦 ⋅ 𝐡𝑡

ℒ𝑡 = 𝐶𝐸(ො𝐲𝑡 , 𝐲t)

In total:

ℒ = ෍

𝑡

ℒ𝑡

T
h

e
 V

a
n

il
la

 R
N

N
 M

o
d

e
l

𝐱1

𝐡1 𝐡2

𝐱2

𝐲1 𝐲2

… 𝐡𝑛−1

𝐱𝑛−1

𝐲𝑛−1

𝑊𝑥ℎ

𝑊ℎℎ

𝑊ℎ𝑦

𝑊𝑥ℎ
𝑊𝑥ℎ

𝑊ℎ𝑦 𝑊ℎ𝑦

𝑊ℎℎ 𝑊ℎℎ 𝑊ℎℎ

ℒ1 ℒ2 ℒ𝑛−1

𝐡0 𝐡𝑛

𝐱𝑛

𝐲𝑛

𝑊𝑥ℎ

𝑊ℎ𝑦

𝑊ℎℎ

ℒ𝑛

Initial hidden state

• We need to specify the initial activity state of all the hidden units.

• We could just fix these initial states to have some default value like 0.5.

• But it is better to treat the initial states as learned parameters.

• We learn them in the same way as we learn the weights.
• Start off with an initial random guess for the initial states.
• At the end of each training sequence, backpropagate through time all the way

to the initial states to get the gradient of the error function with respect to
each initial state.

• Adjust the initial states by following the negative gradient.

Slide: HintonCENG501

Initializing parameters

• Since an unfolded RNN is a deep MLP, we can use Xavier initialization.

CENG501

The problem of exploding or vanishing
gradients

• What happens to the magnitude of
the gradients as we backpropagate
through many layers?

– If the weights are small, the
gradients shrink exponentially.

– If the weights are big the gradients
grow exponentially.

• Typical feed-forward neural nets can
cope with these exponential effects
because they only have a few hidden
layers.

• In an RNN trained on long
sequences (e.g. 100 time steps) the
gradients can easily explode or
vanish.
– We can avoid this by initializing the

weights very carefully.

• Even with good initial weights, its
very hard to detect that the current
target output depends on an input
from many time-steps ago.
– So RNNs have difficulty dealing with

long-range dependencies.

Slide: Hinton
CENG501

Exploding and vanishing
gradients problem

• Solution 1: Gradient clipping for exploding
gradients:

• For vanishing gradients: Regularization term that
penalizes changes in the magnitudes of back-
propagated gradients

2012

CENG501

Exploding and vanishing gradients
problem

• Solution 2:
• Use methods like LSTM

CENG501

Long Short Term
Memory (LSTM)

CENG501

RNN

• Basic block diagram

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

CENG501

Key Problem

• Learning long-term dependencies is hard

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

CENG501

Long Short Term Memory (LSTM)

• Hochreiter & Schmidhuber
(1997) solved the problem
of getting an RNN to
remember things for a
long time (like hundreds of
time steps).

• They designed a memory
cell using logistic and
linear units with
multiplicative interactions.

• Information gets into the
cell whenever its “write”
gate is on.

• The information stays in
the cell so long as its
“keep” gate is on.

• Information can be read
from the cell by turning on
its “read” gate.

Slide: HintonCENG501

Meet LSTMs

• How about we explicitly encode memory?

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

CENG501

LSTM in detail

• We first compute an activation vector, 𝑎:
𝑎 = 𝑊𝑥𝑥𝑡 + 𝑊ℎℎ𝑡−1 + 𝑏

• Split this into four vectors of the same size:
𝑎𝑖, 𝑎𝑓, 𝑎𝑜, 𝑎𝑔 ← 𝑎

• We then compute the values of the gates:

 𝑖 = 𝜎 𝑎𝑖 𝑓 = 𝜎(𝑎𝑓) 𝑜 = 𝜎 𝑎𝑜 𝑔 = tanh(𝑎𝑔)

 where 𝜎 is the sigmoid.

• The next cell state 𝑐𝑡 and the hidden state ℎ𝑡:

 𝑐𝑡 = 𝑓 ⊙ 𝑐𝑡−1 + 𝑖 ⊙ 𝑔
ℎ𝑡 = 𝑜 ⊙ tanh(𝑐𝑡)

where ⊙ is the element-wise product of vectors

𝑐𝑡−1

ℎ𝑡−1

𝑐𝑡

ℎ𝑡

Eqs: Karpathy

Image: C. Olah

Alternative formulation:

CENG501

LSTMs Intuition: Memory

• Cell State / Memory

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

CENG501

LSTMs Intuition: Forget Gate

• Should we continue to remember this “bit” of information or not?

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

CENG501

LSTMs Intuition: Input Gate

• Should we update this “bit” of information or not?
• If so, with what?

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

CENG501

LSTMs Intuition: Memory Update

• Forget that + memorize this

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

CENG501

LSTMs Intuition: Output Gate

• Should we output this “bit” of information to “deeper” layers?

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

CENG501

LSTMs

• A pretty sophisticated cell

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

CENG501

LSTM Variants #1: Peephole Connections

• Let gates see the cell state / memory

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

CENG501

LSTM Variants #2: Coupled Gates

• Only memorize new if forgetting old

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

CENG501

LSTM Variants #3: Gated Recurrent Units

• Changes:
• No explicit memory; memory = hidden output

• Z = memorize new and forget old

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

CENG501

LSTM vs. GRU

CENG501

ConvLSTM

2015

https://medium.com/neuronio/an-introduction-to-convlstm-55c9025563a7

CENG501

Reference

• A very detailed explanation with nice figures

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

CENG501

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

CNN vs RNN

CENG501

Example: Character-level Text
Modeling

CENG501

Character-level Text Modeling

• Problem definition: Find 𝑐𝑛+1 given 𝑐1, 𝑐2, …, 𝑐𝑛.

• Modelling:
𝑝 𝑐𝑛+1 𝑐𝑛, … , 𝑐1)

• In general, we just take the last 𝑁 characters:
𝑝 𝑐𝑛+1 𝑐𝑛, … , 𝑐𝑛−(𝑁−1))

• Learn 𝑝 𝑐𝑛+1 = ′𝑎′ ′𝐴𝑛𝑘𝑎𝑟′) from data such that
𝑝 𝑐𝑛+1 = ′𝑎′ ′𝐴𝑛𝑘𝑎𝑟′) > 𝑝 𝑐𝑛+1 = ′𝑜′ ′𝐴𝑛𝑘𝑎𝑟′)

CENG501

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

CENG501

A simple scenario

• Alphabet: h, e, l, o
• Text to train to predict:

“hello”

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

CENG501

Sampling: Greedy

• Greedy sampling: Take the most likely word at each step

Code: https://machinelearningmastery.com/beam-search-decoder-
natural-language-processing/

CENG501

Sampling: Beam Search

• What happens if we want k most likely sequences instead of one?

• Beam search: Consider k most likely words at each step, and expand search.

Figure: http://mttalks.ufal.ms.mff.cuni.cz/index.php Figure: https://geekyisawesome.blogspot.com.tr/2016/10/using-
beam-search-to-generate-most.html

CENG501

Sampling: Beam Search

• Beam search: Consider k most likely words at each step, and expand search.

 (take log for numerical stability; take –log() for minimizing the score)

Code: https://machinelearningmastery.com/beam-search-decoder-
natural-language-processing/CENG501

More on beam search

• Beam search is applied during inference.

• With modifications on the training procedure, it is possible to use it
during training as well.

https://arxiv.org/abs/1606.02960
CENG501

A sub-tree in the tree of all character strings

• If the nodes are implemented as hidden states in an RNN, different nodes
can share structure because they use distributed representations.

• The next hidden representation needs to depend on the conjunction of the
current character and the current hidden representation.

...fix

…fixi

…fixin

i e

n

In an RNN, each

node is a hidden

state vector. The

next character

must transform this

to a new node.

…fixe

There are

exponentially many

nodes in the tree of

all character strings

of length N.

Slide: Hinton

CENG501

Modeling text: Advantages of working with
characters

• The web is composed of character strings.

• Any learning method powerful enough to understand the world by
reading the web ought to find it trivial to learn which strings make
words (this turns out to be true, as we shall see).

• Pre-processing text to get words is a big hassle
• What about morphemes (prefixes, suffixes etc)

• What about subtle effects like “sn” words?

• What about New York?

• What about Finnish?

Slide: HintonCENG501

Sample predictions
(when trained on the works of Shakespeare):

• 3-level RNN with 512
hidden nodes in each
layer

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

CENG501

Sample predictions
(when trained on Wikipedia):

• Using LSTM

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

CENG501

Sample predictions
(when trained on Latex documents):

• Using multi-layer LSTM

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

CENG501

He was elected President during the Revolutionary

War and forgave Opus Paul at Rome. The regime

of his crew of England, is now Arab women's icons

in and the demons that use something between

the characters‘ sisters in lower coil trains were

always operated on the line of the ephemerable

street, respectively, the graphic or other facility for

deformation of a given proportion of large

segments at RTUS). The B every chord was a

"strongly cold internal palette pour even the white

blade.”

Slide: Hinton

From Ilya Sutskever (using a variant of character-level RNN)

CENG501

Some completions produced by the model

• Sheila thrunges (most frequent)

• People thrunge (most frequent next character is space)

• Shiela, Thrungelini del Rey (first try)

• The meaning of life is literary recognition. (6th try)

• The meaning of life is the tradition of the ancient human reproduction: it
is less favorable to the good boy for when to remove her bigger.
(one of the first 10 tries for a model trained for longer).

Slide: HintonCENG501

What does it know?

• It knows a huge number of words and a lot about proper names, dates, and
numbers.

• It is good at balancing quotes and brackets.

– It can count brackets: none, one, many

• It knows a lot about syntax but its very hard to pin down exactly what form this
knowledge has.

– Its syntactic knowledge is not modular.

• It knows a lot of weak semantic associations

– E.g. it knows Plato is associated with Wittgenstein and cabbage is associated
with vegetable.

Slide: HintonCENG501

Example: Word-level Text
Modeling

CENG501

Word-level Text Modeling

• Problem definition: Find 𝜔𝑛+1 given 𝜔1, 𝜔2, …, 𝜔𝑛.

• Modelling:
𝑝 𝜔𝑛+1 𝜔𝑛, … , 𝜔1)

• In general, we just take the last 𝑁 words:
𝑝 𝜔𝑛+1 𝜔𝑛, … , 𝜔𝑛−(𝑁−1))

• Learn 𝑝 𝜔𝑛+1 = ′𝑇𝑢𝑟𝑘𝑒𝑦′ ′𝐴𝑛𝑘𝑎𝑟𝑎 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 𝑜𝑓 ′) from data such
that:

𝑝 𝜔𝑛+1 = ′𝑇𝑢𝑟𝑘𝑒𝑦′ ′𝐴𝑛𝑘𝑎𝑟𝑎 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 𝑜𝑓 ′) > 𝑝 𝜔𝑛+1 = ′𝑈𝐾′ ′𝐴𝑛𝑘𝑎𝑟𝑎 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 𝑜𝑓 ′)

CENG501

A handicap

• The number of characters is low enough to handle without doing anything
extra.
• English has 26 characters.

• The situation is very different for words.
• English has ~ 170,000 different words!

• This increases dimensionality and makes it difficult to capture “semantics”.

• Solution: Map words to a lower dimensional space, a.k.a. word embedding
(word2vec).

CENG501

Word Embedding (word2vec)

Fig: http://www.languagejones.com/blog-1/2015/11/1/word-embedding

CENG501

Why do we embed words?
• 1-of-n encoding is not suitable to learn from

• It is sparse

• Similar words have different representations

• Compare this with the pixel-based representation of images: Similar images/objects have similar
pixels

• Embedding words in a map allows
• Encoding them with fixed-length vectors

• “Similar” words having similar representations

• Allows complex reasoning between words:
• king - man + woman = queen

Table: https://devblogs.nvidia.com/parallelforall/understanding-natural-language-deep-neural-networks-using-torch/
CENG501

More examples

CENG501

More examples

•Geopolitics: Iraq - Violence = Jordan
•Distinction: Human - Animal = Ethics
•President - Power = Prime Minister
•Library - Books = Hall

http://deeplearning4j.org/word2vecCENG501

More examples

http://deeplearning4j.org/word2vecCENG501

word2vec

• “Similarity” to Sweden (cosine distance between their vector
representations)

http://deeplearning4j.org/word2vecCENG501

Two different ways to train

1.Using context to predict a target
word (~ continuous bag-of-words)

2.Using word to predict a target
context (skip-gram)

• If the vector for a word cannot
predict the context, the mapping
to the vector space is adjusted

• Since similar words should predict
the same or similar contexts, their
vector representations should end
up being similar

http://deeplearning4j.org/word2vec

CENG501

𝐰1

𝐰1

𝐰1

𝐰2 ∈ ℝ𝑑×𝑣

𝐰2

𝐰2

𝐰2

𝐰1 ∈ ℝ𝑣×𝑑

𝑣: vocabulary size
𝑑: hidden dimension

𝐰2 ∈ ℝ𝑑×𝑣

𝐰1 ∈ ℝ𝑣×𝑑

Note that the weight matrix is a look-up table

• In both approaches, the weight matrix is used as follows:

https://medium.com/@zafaralibagh6/a-simple-word2vec-tutorial-61e64e38a6a1

CENG501

Two different ways to train

1.Using context to predict a target word (~ continuous bag-of-words)

https://www.tensorflow.org/versions/r0.7/tutorials/word2vec/index.html

CENG501

Two different ways to train

2.Using word to predict a target context (skip-gram)

• Given a sentence:

the quick brown fox jumped over the lazy dog

• For each word, take context to be

(N-words to the left, N-words to the right)

• If N = 1 (context, word):

([the, brown], quick), ([quick, fox], brown), ([brown, jumped], fox), ...

CENG501

Note that the weight matrix is a look-up table

https://medium.com/@zafaralibagh6/a-simple-word2vec-tutorial-61e64e38a6a1
CENG501

Two different ways to train

2.Using word to
predict a target
context (skip-gram)

https://www.tensorflow.org/tutorials/text/word2vecCENG501

Some notes

• CBOW is called continuous BOW since the context is regarded as a BOW and it
is continuous.

• In both approaches, the networks are composed of linear units

• The output units are usually normalized with the softmax

• According to Mikolov:
• “Skip-gram: works well with small amount of the training data, represents well even rare

words or phrases.

• CBOW: several times faster to train than the skip-gram, slightly better accuracy for the
frequent words”

CENG501

Example: Image Captioning

Fig: https://github.com/karpathy/neuraltalk2

CENG501

Demo video

https://vimeo.com/146492001

CENG501

Overview

Pre-trained
word

embedding
is also used

Pre-trained CNN
(e.g., on imagenet)

Image: KarpathyCENG501

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

CENG501

Slide: Karpathy

Training

CENG501

Slide: Karpathy
CENG501

Slide: Karpathy
CENG501

Slide: Karpathy
CENG501

Slide: Karpathy
CENG501

Example: Neural Machine Translation

2014

CENG501

Neural Machine Translation

• Model

Sutskever et al. 2014

Haitham Elmarakeby

Each box is an LSTM or GRU cell.

CENG501

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

CENG501

Neural Machine
Translation

Cho: From Sequence Modeling to Translation

CENG501

Neural Machine Translation

• Model- encoder

Cho: From Sequence Modeling to Translation Haitham Elmarakeby
CENG501

Neural Machine Translation

• Model- decoder

Cho: From Sequence Modeling to Translation Haitham Elmarakeby
CENG501

Decoder in more detail

Given
(i) the “summary” (𝐡) of the input sequence,

(ii) the previous output / word (𝑓𝑡−1)

(iii) the previous state (𝐳𝑡−1)

the hidden state of the decoder is:
𝐳𝑡 = 𝑅𝑁𝑁(𝐳𝑡−1, 𝑓𝑡−1, 𝐡)

Then, we can find the most likely next
word:

𝑃 𝑓𝑡 𝑓𝑡−1, 𝑓𝑡−2, … , 𝐡) = 𝑝(𝑓𝑡 | 𝐳𝑡, 𝑓𝑡−1, 𝐡)

CENG501

Encoder-decoder

• Jointly trained to maximize

CENG501

NMT can be done at char-level too

• http://arxiv.org/abs/1603.06147

CENG501

This can be
done with
CNNs

2017

CENG501

Check the following tutorial

• http://smerity.com/articles/2016/google_nmt_arch.html

CENG501

	Slide 1: CENG501 – Deep Learning
	Slide 2: Disadvantages of MLPs: Dimensionality
	Slide 3: Equivariance vs. Invariance
	Slide 4: An Alternative to MLPs
	Slide 5: CNNs vs. MLPs: Curse of Dimensionality
	Slide 6: Motivation
	Slide 7: Size of the next layer
	Slide 8: Types of Convolution
	Slide 9: Pooling
	Slide 10: Normalization
	Slide 11: Alternative to FC: Global Average Pooling
	Slide 12: A Blueprint for CNNs
	Slide 13: Trade-offs in architecture
	Slide 14: Finetuning
	Slide 15: Many mechanisms for visualization
	Slide 16: Data gradients
	Slide 17: Class Activation Maps
	Slide 18: Fooling ConvNets
	Slide 19: Today
	Slide 20: Administrative Notes
	Slide 21: Popular CNN models
	Slide 22: LeNet (1998)
	Slide 23: AlexNet (2012)
	Slide 24: AlexNet (2012) Details
	Slide 25: AlexNet (2012) Training
	Slide 26: AlexNet (2012): The learned filters
	Slide 28: GoogleNet (2014)
	Slide 29: Inception module: “network in network” (inspired from Lin et al., 2013)
	Slide 30
	Slide 32
	Slide 33: GoogleNet: More Details
	Slide 34: VGGNet (2014)
	Slide 35
	Slide 37: ResNet (2015)
	Slide 38: ResNet (2015)
	Slide 39: ResNet (2015)
	Slide 40: Effect of residual connections
	Slide 41: ResNet: Ensemble of Shallow Networks
	Slide 42
	Slide 43: DiracNets
	Slide 45: ResNext
	Slide 46: DenseNet
	Slide 49: Highway networks
	Slide 50: Highway Networks
	Slide 51: Comparison:
	Slide 52: Comparison:
	Slide 53: Going deep may not be the only answer
	Slide 54: Recent work
	Slide 55: Binary networks
	Slide 56: Binary networks
	Slide 57
	Slide 58: CNNs: summary & future directions
	Slide 59: Sequence Labeling/Modeling: Motivation
	Slide 60: Why do we need them?
	Slide 61: Different types of sequence learning / recognition problems
	Slide 62: Different types of sequence learning / recognition problems
	Slide 63: Recurrent Neural Networks
	Slide 64: Recurrent Neural Networks (RNNs)
	Slide 66: Some examples
	Slide 67: Some examples
	Slide 69: Challenge
	Slide 70: Unfolding
	Slide 71: Unfolding (another example)
	Slide 72
	Slide 73
	Slide 74
	Slide 75: Unfolding implications
	Slide 76: Back-propagation Through Time
	Slide 79: Feedforward through Vanilla RNN
	Slide 80: Feedforward through Vanilla RNN
	Slide 81: Backpropagation through Vanilla RNN
	Slide 82: Backpropagation through Vanilla RNN
	Slide 83
	Slide 84: Backpropagation through Vanilla RNN
	Slide 86: Initial hidden state
	Slide 87: Initializing parameters
	Slide 95: The problem of exploding or vanishing gradients
	Slide 100: Exploding and vanishing gradients problem
	Slide 101: Exploding and vanishing gradients problem
	Slide 103: Long Short Term Memory (LSTM)
	Slide 104: RNN
	Slide 105: Key Problem
	Slide 106: Long Short Term Memory (LSTM)
	Slide 107: Meet LSTMs
	Slide 108: LSTM in detail
	Slide 109: LSTMs Intuition: Memory
	Slide 110: LSTMs Intuition: Forget Gate
	Slide 111: LSTMs Intuition: Input Gate
	Slide 112: LSTMs Intuition: Memory Update
	Slide 113: LSTMs Intuition: Output Gate
	Slide 114: LSTMs
	Slide 115: LSTM Variants #1: Peephole Connections
	Slide 116: LSTM Variants #2: Coupled Gates
	Slide 117: LSTM Variants #3: Gated Recurrent Units
	Slide 119: LSTM vs. GRU
	Slide 120: ConvLSTM
	Slide 122: Reference
	Slide 123: CNN vs RNN
	Slide 124: Example: Character-level Text Modeling
	Slide 125: Character-level Text Modeling
	Slide 126
	Slide 127: A simple scenario
	Slide 128: Sampling: Greedy
	Slide 129: Sampling: Beam Search
	Slide 130: Sampling: Beam Search
	Slide 132: More on beam search
	Slide 133: A sub-tree in the tree of all character strings
	Slide 134: Modeling text: Advantages of working with characters
	Slide 136: Sample predictions (when trained on the works of Shakespeare):
	Slide 137: Sample predictions (when trained on Wikipedia):
	Slide 138: Sample predictions (when trained on Latex documents):
	Slide 139
	Slide 140: Some completions produced by the model
	Slide 141: What does it know?
	Slide 144: Example: Word-level Text Modeling
	Slide 145: Word-level Text Modeling
	Slide 146: A handicap
	Slide 147: Word Embedding (word2vec)
	Slide 148: Why do we embed words?
	Slide 149: More examples
	Slide 150: More examples
	Slide 151: More examples
	Slide 155: word2vec
	Slide 156: Two different ways to train
	Slide 157: Note that the weight matrix is a look-up table
	Slide 158: Two different ways to train
	Slide 159: Two different ways to train
	Slide 160: Note that the weight matrix is a look-up table
	Slide 162: Two different ways to train
	Slide 163: Some notes
	Slide 164: Example: Image Captioning
	Slide 165: Demo video
	Slide 166: Overview
	Slide 167
	Slide 168: Training
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173: Example: Neural Machine Translation
	Slide 175: Neural Machine Translation
	Slide 176
	Slide 177: Neural Machine Translation
	Slide 178: Neural Machine Translation
	Slide 179: Neural Machine Translation
	Slide 180: Decoder in more detail
	Slide 181: Encoder-decoder
	Slide 182: NMT can be done at char-level too
	Slide 183: This can be done with CNNs
	Slide 184: Check the following tutorial

