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N ImageNet Classification with Deep Convolutional
éﬁ ‘ eX N et ( 2 O 1 2 ) Neural Networks

Alex Krizhevsky Ilva Suiskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto

. (gb%ularized CNN in computer vision & pattern recognition

;\\o‘)lmageNet ILSVRC challenge 2012 winner
Q‘?’ * Similar to LeNet
* Deeper & bigger

 Many CONV layers on top of each other (rather than adding
immediately a pooling layer after a CONV layer)

* Uses GPU
* 650K neurons. 60M parameters. Trained on 2 GPUs for a
week.
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One of the main beneficial aspects of this architecture is that it allows for increasing the number of
units at each stage significantly without an uncontrolled blow-up in computational complexity. The
ubiquitous use of dimension reduction allows for shielding the large number of input filters of the
last stage to the next layer, first reducing their dimension before convolving over them with a large
patch size. Another practically useful aspect of this design is that it aligns with the intuition that
visual information should be processed at various scales and then aggregated so that the next stage
can abstract features from different scales simultaneously.




ConvNet Configuration

A A-TRN B C D E
11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers
mput (224 x 224 RGB image)

conv3-64 conv3-64 conv3-64 conv3i-64 conv3-64 conv3i-64
LRN conv3-64 convi-64 conv3-64 conv3-64

maxpool
conv3-128 | conv3-128 | comv3-128 | conv3-128 | comw3-128 convi-128
conv3-128 | conv3-128 | comv3-128 | conv3-128

maxpool
conv3-256 | conv3-236 | conv3-256 | comv3-256 | comv3-236 | comvi-236
conv3i-226 | conv3-236 | conv3-256 | comnw3-236 | comv3-236 | comvi-236
convl-256 | conv3-256 | comv3-256
conv3-256

maxpool
conv3-312 | conv3-512 | conv3-512 | comw3-212 | comv3-512 | conv3-512
conv3-312 | conv3-512 | comv3-512 | conv3-312 | comwv3-312 | conv3-512
convl-512 | conv3-512 | comv3-512
conv3-512

maxpool
conv3i-312 | conv3-512 | conv3-512 | conw3-212 | comv3-512 | convi-512
conv3-312 | conw3-512 | conv3-512 | conw3-312 | conv3-512 | convi-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool

FC-4096

FC-4096

FC-1000

soft-max

Network

Table 2: Number of parameters (in millions).
AATRN B :

C D

Number of parameters

(‘}:%IBG 501 133

134 | 138

144

Table 1: ConvNet configurations (shown in columns). The depth of the configurations increases
from the left (A) to the right (E), as more layers are added (the added layers are shown in bold). The

an

convolutional layer parameters are denoted as “conv(receptive ficld size)-(number of channels)™.
The ReLU activation function is not shown for brevity.
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§§ResNet 2015
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e Residual (shortcut) connections
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weight layer identity

Figure 5. A deeper residual function F for ImageNet. Left: a
building block (on 56:x 56 feature maps) as in Fig. 3 for ResNet-
34. Right: a “bottleneck™ building block for ResNet-50/101/152.
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(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The vertical axis is
logarithmic to show dynamic range. The proposed filter normalization scheme is used to enable
comparisons of sharpness/flatness between the two figures.

VISUALIZING THE LOSS LANDSCAPE OF NEURAL NETS

2018
Hao Li', Zheng Xu', Gavin Taylor?, Christoph Studer?, Tom Goldstein'
"University of Maryland, College Park, *United States Naval Academy, *Cornell University
{r@@@sRuzh, tomg}Bces. umd. edu, taylor@usna.edu, studer@cornell .edu



Residual Networks Behave Like Ensembles of

QY
Re &N"ét : E n S e m b | e Of Relatively Shallow Networks
§\|°I allow Networks e N =
O

{av443, mjw285, sjb344}Q@cornell.edu
3
¥

Building block

Skip
connection

LTSI

Residual
module

(a) Conventional 3-block residual network (b) Unraveled view of (a)

Figure 1: Residual Networks are conventionally shown as (a), which is a natural representation of
Equation (1). When we expand this formulation to Equation (6), we obtain an unraveled view of a
3-block residual network (b). Circular nodes represent additions. From this view, it is apparent that
residual networks have O(2") implicit paths connecting input and output and that adding a block
doubles the number of paths.
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Figure 1. Left: A block of ResNet [14]. Right: A block of
ResNeXt with cardinality = 32, with roughly the same complex-
ity. A layer is shown as (# in channels, filter size, # out channels).
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Aggregated Residual Transformations for Deep Neural Networks

Ross Girshick?
'UC San Diego

{s9xie, ztu}@ucsd. edu

Piotr Dolléir? Zhuowen Tu!
2Facebook Al Research

{rbg, pdollar, kaiminghe}@fb.com

Saining Xie! Kaiming He?

2017

| setting top-1 err (%) | top-3emr (%)

I = complexity references:

ResNet-101 1 = 64d 22.0 6.0
ResNe Xt-101 32 = 4d 21.2 5.6

2x complexity models follow:

ResNet-200 [15] 1 = 64d 217 5.8
ResNet-101, wider | 1 x 100d 213 57
ResNeXt-101 2 = 64d 2079 5.5
ResNeXt-101 64 = 4d 204 5.3
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lefeé;éht. types of sequence learning /
r%@ﬁgmtmn problems

&4\0
4

one to one one to many many to one many to many many to many

http://karpathy.github.10/2015/05/21/rnn-effectiveness/
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O
& Recurrent Neural Networks (RNNs)
\*oo
)
)
4\
&
? o o * RNNs are very powerful because:

g g * Distributed hidden state that allows them
to store a lot of information about the
past efficiently.

= = * Non-linear dynamics that allows them to

2 2 update their hidden state in complicated

C f’ ways.

[ * With enough neurons and time, RNNs

2 2 can compute anything that can be

& & computed by your computer.

* More formally, RNNs are Turing
Feed-forward Recurrent complete.
networks networks

CENG501
Adapted from Hinton
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seedforward through Vanilla RNN

T anilla RNN Model
N
Firsto @h%-step (t=1):
Q‘04m1 = tanh(WXh * X4 + Whh . ho) Ll [;2 L:l—l [in
1 = softmax(W" - h;)
Ly = CE(¥1,¥1)
In general:
ht - tanh(th . Xt + Whh . ht—l)
¥; = softmax(W" - h,)
L =CE¥: o)

In total:

L=2Lt
t
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* Learning long-term dependencies is hard
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L%ﬁ?l\/in detail C?

(@ R
. \A&\}irst compute an activation vector, a: Ct1 =P () @ | » C;
O a=Wex; +Wyhe_; +b
'
<t &
 Split this into four vectors of the same size:
a;, as, 0o, Ag < Q hiy =P J"’ he

* We then compute the values of the gates: @
Image: C. Olah

i=o0(a)) f=o(ar) o=0(a,) g =tanh(ay)
where o is the sigmoid.

- Alternative formulation:
* The next cell state ¢; and the hidden state h;: ernative formuiation

. e = g(Weits + Wighy_y + b;

Ct:fQCt_]_-I_l@g 1t Q[ zilt + h‘:h'tl—l_b)

hy = o © tanh(c;) fe = 9(Wagz: + Whghy_1 + by)

where @ is the element-wise product of vectors 0 = 9(Waos + Whohs_1 -+ bo)

Eqgs: Karpathy
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Choa«}%)cter—level Text Modeling

(o)
N
O

N
&

Q%Y * Problem definition: Find ¢,, 1 given ¢4, C5, ..., Cy,.

* Modelling:
p(c‘n+1 | Cno ""Cl)

* |[n general, we just take the last N characters:
p(c‘n+1 | Cny ooy Cn—(N—l))

* Learn p(c4q1 = 'a’ | "Ankar") from data such that
p(cper ='a’ | '"Ankar’) > p(c,41 = '0'| 'Ankar’)

CENG501



QY

A S| 2 e scenario

* Alphabet: h, e, |, 0

e Text to train to predict:

“hello”

target chars: "¢’
1.0
2.2
output layer
putiayer
4.1
03
hidden layer | -0.1
0.9
1
: 0
input layer
P y 0
0
input chars: “h”
CENG501
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http://karpathy.github.i0/2015/05/21/rnn-effectiveness/
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S
o&‘?ord—level Text Modeling

o)

Q%+ Problem definition: Find w,,,1 given wq, wo, ..., Wy,.

* Modelling:
p(wn+1 | Wn, ""wl)

* |n general, we just take the last N words:
p(wni1 | @y, oo, wn—(N—l))

. Lﬁarn p(wn+1 = Turkey' | 'Ankara is the capital of ") from data such
that:

p(wy4q = 'Turkey' | 'Ankara is the capital of ) > p(wp4q ='UK' | 'Ankarais the capital of ")

CENG501
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Q@" Two different ways to train

6°°(Jsmg context to predict a target
& word (~ continuous bag-of-words)

2.Using word to predict a target
context (skip-gram)

R

* If the vector for a word cannot
predict the context, the mapping
to the vector space is adjusted

* Since similar words should predict
the same or similar contexts, their
vector representations should end

up being similar

v: vocabulary size
d: hidden dimension

INPFUT PROJECTION OUTPUT INFUT FROJECTION OUTPUT

w(t-2)
w1 E Rde
w(t-1) wit-1)
. SUM vxd
wa\ | w; ER /

t wi(t) '—DL
o e \
i+ || 2
. 1

-3

cBOW Skip-gram

CENG501

http://deeplearning4j.org/word2vec
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START “straw” “hat”

Pre-trained CNN
(e.g., on imagenet)
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Pre-trained
word
embedding
is also used

Image: Karpathy
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Cho: From Sequence Modeling to Translation
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Today

* Echo State Networks
* Attention

* Self-attention

* Transformer

* Linear attention

e State-Space Models
* Mamba



Administrative Notes

e Paper Selection Finalized

* Time plan for the projects

1. Milestone (November 24, midnight):

e Github repo will be ready

* Read & understand the paper

 Download the datasets

* Prepare the Readme file excluding the results & conclusion
2. Milestone (December 8, midnight)

* The results of the first experiment
3. Milestone (January 5, midnight)

* Final report (Readme file)

* Repo with all code & trained models

* Sample Repo:
 https://github.com/CENG502-Projects/CENG502-Spring2023/tree/main/Topcuoglu

CENG501



Echo State Networks

Reservoir Computing

CENG501



Motivation

e “Schiller and Steil (2005) also showed that in traditional training methods for
RNNs, where all weights (not only the output weights) are adapted, the
dominant changes are in the output weights. In cognitive neuroscience, a
related mechanism has been investigated by Peter F. Dominey in the context of
modelling sequence processing in mammalian brains, especially speech
recognition in humans (e.qg., Dominey 1995, Dominey, Hoen and Inui 2006).
Dominey was the first to explicitly state the principle of reading out target
information from a randomly connected RNN. The basic idea also informed a

model of temporal input discrimination in biological neural networks
(Buonomano and Merzenich 1995).”

http://www.scholarpedia.org/arnticle/Echo_state_network


http://www.scholarpedia.org/article/Neuroscience
http://www.scholarpedia.org/article/Brain

Echo State Networks (ESN)

* Reservoir of a set of neurons

 Randomly initialized and fixed

* Run input sequence through the
network and keep the activations of

the reservoir neurons

e Calculate the “readout” weights

using linear regression.

 Has the benefits of recurrent

connections/networks

H input nodes

input weight internal weight output weight
in out
W > < W H_—“\be
(0@ — / PEEEEN > (O]
wQ|—— [ g (j” —>|On|g
3
WO___>x@\\m:§ 4———0”;
! feedback ' 8.
‘ weight : =
) —> <> Own
Input layer dynamical reservoir Output layer

Li et al., 2015.

* No problem of vanishing gradient

CENG501



The reservoir

Provides non-linear expansion
* This provides a “kernel” trick.

Acts as a memory

Parameters:

Win, W and «a (leaking rate).

Global parameters:

Number of neurons: The more the better.
Sparsity: Connect a neuron to a fixed but small number of neurons.

Distribution of the non-zero elements: Uniform or Gaussian distribution. W;,, is
denser than W.

Spectral radius of W: Maximum absolute eigenvalue of W, or the width of the
distribution of its non-zero elements.

* Should be less than 1. Otherwise, chaotic, periodic or multiple fixed-point behavior may be
observed.

* For problems with large memory requirements, it should be bigger than 1.
Scale of the input weights.

CENG501

Fig.1: An echo state network.

A Practical Guide to Applying

Echo State Networks

Mantas LukoSevi¢ius



A Practical Guide to Applying
Echo State Networks

Mantas Lukosevicius

x(n) = tanh (Wi" [1;u(n)] + Wx(n—1)), (2)
x(n) = (1 —a)x(n—1)+ ax(n), (3)

where x(n) € R™V= is a vector of reservoir neuron activations and %(n) € R™> is its update, all at time
step n, tanh(-) is applied element-wise, [-;-] stands for a vertical vector (or matrix) concatenation,
Wi ¢ RNxx(14+Na) and W € RV=*Mx are the input and recurrent weight matrices respectively, and
a € (0,1] is the leaking rate. Other sigmoid wrappers can be used besides the tanh, which however
1s the most common choice. The model is also sometimes used without the leaky integration, which
is a special case of @ =1 and thus x(n) = x(n).

y(n) = WO L u(n); x(n)],

Fig.1: An echo state network.

again stands for a vertical vector (or matrix) concatenation. An additional nonlinearity can be
applied to y(n) in (4), as well as feedback connectidr8/887® from y(n—1) to X(n) in (2). A graphical



Training ESN

target out
Y et = WX

Probably the most universal and stable solution to (8) in this context is ridge regression, also
known as regression with Tikhonov regularization:

out target T T -1
wout _ ytarget x (XX +,-31) , (9)

where 3 1s a regularization coeflicient explained in Section 4.2, and I i1s the identity matrix.

Overfitting (regularization):

Ny /T
WO — arg min ﬁi, Z Z (yi(n) — y; e (?1))2 + 3 ”W?UtHQ ;
Wont Y i=1 \n=1

CENG501



Beyond echo state networks

* Good aspects of ESNs * Bad aspects of ESNs
Echo state networks can be trained They need many more hidden
very fast because they just fit a units for a given task than an
linear model. RNN that learns the

* They demonstrate that it’s very hidden—>hidden weights.
important to initialize weights
sensibly.

 They can do impressive modeling of
one-dimensional time-series.

— but they cannot compete
seriously for high-dimensional
data.

Slide: Hinton

CENG501



Similar models

e Liquid State Machines (Maas et al., 2002)

* A spiking version of Echo-state networks

* Extreme Learning Machines

* Feed-forward network with a hidden layer.
* Input-to-hidden weights are randomly initialized and never updated



Attention
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BLEU: Bilingual Evaluation Understudy

https://cloud.google.com/translate/automl/docs/evaluatettbleu

Attention

20 | / ":\ | I | | | 1
Published as a conference paper at ICLR 2015 - : ; W :
N, | =™ Source text
: ; \. R
I SR ) £ I eference text |
NEURAL MACHINE TRANSLATION Eﬂ 153 : . “\
BY JOINTLY LEARNING TO ALIGN AND TRANSLATE o o : \] — — Both
Dzmitry Bahdanau n ; :
Jacobs University Bremen, Germany D 1 0 | :
KyungHyun Cho  Yoshua Bengio® m ’ .
Université de Montréal I'q . '
0 . |

| | | |
0 10 20 30 40 50 60 70 &0
Sentence length
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f=(La, croissance, économique, s'est, ralentie, ces, dernieres, années, .)
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Attention

Published as a conference paper at ICLR 2015

NEURAL MACHINE TRANSLATION
BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau
Jacobs University Bremen, Germany

KyungHyun Cho  Yoshua Bengio®
Université de Montréal

In a new model architecture, we define each conditional probability
in Eq. (2) as:

p(Yilys - - ¥i-1,%) = g(Yi—1, i, ¢i), @)
where s; is an RNN hidden state for time ¢, computed by

s; = f(Si—1,Yi—1,¢i)-

It should be noted that unlike the existing encoder—decoder ap-
proach (see Eq. (2)), here the probability is conditioned on a distinct
context vector ¢; for each target word y;. — — - .

The context vector c¢; depends on a sequence of annotations
(h1,--+, hr,) to which an encoder maps the input sentence. Each || /|| || = _ |-
annotation h; contains information about the whole input sequence [T hoT71 Dy he
with a strong focus on the parts surrounding the ¢-th word of the

input sequence. We explain in detail how the annotations are com- XXX X
puted in the next section.

Figure 1: The graphical illus-
The context vector ¢; is, then, computed as a weighted sum of these  tration of the proposed model

annotations h;: trying to generate the ¢-th tar-

T, get word y; given a source
€ = zaz’jhj- (5) sentence (z1,Z2,...,ZT).
Jj=1
The weight a;; of each annotation h; is computed by

exp (ei;)
Ty )
> ke exp (eik)

0y = (6)
where

eij = a(si—1,h;)
is an alignment model which scores how well the inputs around position j and the output at position

7 match. The score is based on the RNN hidden state s;_; (just before emitting y;, Eq. (4)) and the
j-th annotation £ ; of the input sentence.

We parametrize the alignment model a as a feedforward neural network which is jointly trained with
all the othencomponents of the proposed system. Note that unlike in traditional machine translation,



Attention

f= (La, croissance, ¢économique, s'est, ralentie, ces, derniéres, années, .)

=
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e = (Economic, growth, has, slowed, down, in, recent, years, .)

Attention mechanism: A two-layer neural network.
Input: z; and h;
Output: e;, a scalar for the importance of word j.
The scores of words are normalized: a; = softmax(e;)

https://devblogs.nvidia.com/introduction-nettalthachine-translation-gpus-part-3/



Attention
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Informatics Institute, University of Amsterdam, The Netherlands
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Attention Types

e Let’s rewrite Bahdanau et al.s attention model:

n

C = Z a;ih; ; Context vector for output y,
i=1

a;; = align(y;, x;) ; How well two words y, and x; are aligned.

exp(score(s;_1, h; ,
= ( -1, 52)) ; Softmax of some predefined alignment score..

D._; exp(score(s,—i, hy))

score(s;, ;) = v} tanh(W,[s,; k;])

where both v, and W, are weight matrices to be learned in the alignment model.

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
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Attention Types

Name Alignment score function Citation
Content- score(s;, h;) = cosine[s;, h;] Graves2014
base
attention
Additive(*) score(s,, k;) = v, tanh(W,[s,; h;]) Bahdanau2015
Location- a,; = softmax(W,s,) Luong2015
Base Note: This simplifies the softmax alignment to only depend on the target

position.
General score(s;, h;) = s W, h; Luong2015
where W, is a trainable weight matrix in the attention layer.
Dot-Product  score(s,, k;) = s h; Luong2015
= Thg i
Scaled Dot score(s,, h;) = ’\/_E Vaswani2017
Product(™)

Note: very similar to the dot-product attention except for a scaling
factor; where n is the dimension of the source hidden state.

(*) Referred to as “concat” in Luong, et al., 2015 and as “additive attention” in Vaswani, et al., 2017.
(™) It adds a scaling factor 1/4/n, motivated by the concern when the input is large, the softmax
function may have an extremely small gradient, hard for efficient learning.

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
CENG501



Vanilla Self-attention

, exp(ejTei)

7 Z‘m eXp(ezlei) g

€i

Sinan Kalkan
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Attention: Transformer

* Vanilla self attention:
T
, exp(ej ei)

e; €;
l 7 Zm eXp(ef;Lei) g

e Scaled-dot product attention:
o exp(k(ejT)q(ei)) §
l - Ymexp(k(emn)q(e;))

(ej)

QK*
Vi

Attention(Q, K, V') = softmax( )V

Sinan Kalkan

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research

avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones™* Aidan N. Gomez* | Lukasz Kaiser™
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin* *
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Multi-Head Attention

t

Scaled Dot-Product Attention

T Linear
MatMul ‘|‘
1 1 Concat
SoftMax )
* L
s o il
; H 1! t!
Scale A4 e ’
1 Linear Linear Linear
MatMul ¥ ry ¥
t 1

Q KV v K q
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Input

Embedding

Queries

Keys

Values

Thinking Machines

xil L X[
qi L] q: [ ]7]
K1 ko
vi L[] vo [ ]

https://jalammar.github.io/illustrated-transformer/

Sinan Kalkan
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Input Thinking Machines
Embedding X1 X2

Queries a1 q:

Keys K1 K2

Values V1 V2

Score gi * ki= qi* ko =

https://jalammar.github.io/illustrated-transformer/

Sinan Kalkan



Input

Embedding X1

Queries

Keys

Values

Score

Divide by 8 ( /dx. )

Softmax

Thinking

q1

V1

X2

qz

V2

Machines

https://jalammar.github.io/illustrated-transformer/

Sinan Kalkan
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Input

Embedding

Queries

Keys

Values

Score

Divide by 8 ( dy )

Softmax

Softmax
X
Value

Sum

Thinking

x1 [
q [T
SEN
vi [T
q1-k1=

v [
z 1]

Machines
2 I
q: [T
o [
v. [
q1.k2=
V2
zz I

https://jalammar.github.io/illustrated-transformer/

Sinan Kalkan
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Layer:

https://jalammar.github.io/illustrated-transformer/

5 5 Attention:

street_

because_

it_
was_
too_
tire

Input - Input

Sinan Kalkan

ik,
L3

The

animal_
didn_

streel_

because_

it_
was_
too_
tire

49



Qutput

Probabilities

7

Add & Norm

Add & Norm

1 3
f—“l Add & Norm |

Multi-Head
Attention

J) J) Nx
Add & Norm

Nx | —(7Add & Norm )

Masked
Multi-Head Multi-Head
Attention Attention
1t t
A\ — J o —)
Positional Positional
Encod ? ¢ .
ncoding y Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Multi-head attention

Linear

Concat

3

Scaled Dot-Product h
Attention

‘Ll' ‘Ll' l'
fom fam fom
Linear Linear Linear

¥ T

V K Q

Zoom-in!

Scaled dot-product attention

MatMul

Zoom-In!

Fig. 17. The full model architecture of the transformer. (Image source: Fig 1 & 2 in Vaswani, et al.,

2017)

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Sinan Kalkan
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Positional Encoding

_ pos
PE (pos,zi) = SiN T
10000 €

1I=0
=1
=2
=3
i=4

Po

pos =0

— d=5

Fig from: https://www.youtube.com/watch?v=dichlcUZfOw

Sinan Kalkan
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Position Embeddings

Positional Encoding

I—. —-— _I"’ ................................................................................................................
. [ 1 POS,
PE 05,2i) = sm( zi)
10000 €
Po, Ps C
Ps
1] 1 2 3 4 5 G 7 i
Po word position Ps Ps

Fig from: https://www.youtube.com/watch?v=dichlcUZfOw

Sinan Kalkan
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Positional Encoding

—

—_—

——

Position Embeddings

0 1 2 3 4 h
Po word position

i=0

i=1

i=2

i=3

i=4

Fig from: https://www.youtube.com/watch?v=dichlcUZfOw

Sinan Kalkan
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ENCODER #1

Skip Connections & Normalization

Output
Probabilities

Softmax

Linear

Add & Normalize

L

' ((Adoz Nom )
. Feed
Forward
. ( Feed Forward ) ‘ Feed
$§ -------- * ------------------- rf_"_lﬁj
AddF::mm Mult-Head | |
o Attention
,-p( Add & Normalize Forward - N~
1 ]
: 3
1 ) Nx | —»((Add & Norm ) s
' ( Self-Attention Multi-Head Multi-Head
k Attention Attention
LT EEEEEES * ------------------ - ‘ ’ ‘ ’
POSITIONAL s S .
ENCODING Positional : @ Positional
Encoding Encoding
Input Output
X1 | X2 Embedding Embedding
Thinking Ma I I
Inputs Outputs
(shifted right)

A A
Add & Normalize

A
‘eed Forward ) ( Feed Forward )
cee e e 4
z: N z>

4 Add & Normalize 4

LayerNorm( + )
A A

.

Self-Attention

) )

A A
x L . .....X LT
ONAL é é
DING
x¢ T p e I I
Thinking Machines

https://jalammar.github.io/illustrated-transformer/
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Skip Connections & Normalization

ENCODER #2

ENCODER #1

Softmax

7 )

Linear

7y

ey DECODER #2

,*( Add & Normalize

3
) E ( Feed Forward ) ( Feed Forward )
S|t | SEELLIeEE PP TIrr A
Add & Normalize ) = ,*( Add & Normalize
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Decoder

Decoding time step: 1@3 4 56

EMBEDDING
WITH TIME
SIGNAL

EMBEDDINGS

INPUT

OUTPUT
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— — — Kencdec Vencdec ( Linear + Softmax
ey T t
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Tutorial on transformers

e https://e2eml.school/transformers.html

e https://jalammar.github.io/illustrated-transformer/

Sinan Kalkan
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https://e2eml.school/transformers.html
https://jalammar.github.io/illustrated-transformer/

A Significant Issue with Self-Attention:
Complexity

o exp(k(e] )q(e)) ve))
l - Ymexp(k(eq)q(e))

* If there are n tokens/embeddings,

* Updating a single tokens require O(n) operations.
 Overall: 0(n?)

 What is the complexity of an RNN layer with n time steps?

CENG501



Linear Attention

Self-attention:

Q =zWo,
K= LEWK,
V =zWy, (2)

T
A;(z) = V' = softmax (Q\/I% ) V.

Rewrite Eq 2 for one row of the matrix:

V; _ Zj% Sin‘l(Qi:Kj)v}' 3)
D=1 8im (Qs, K;)

Equation 3 is equivalent to equation 2 if we substitute the

similarity function with sim (g, k) = exp (%) .

CENG501

Transformers are RNNs: ICML 2020
Fast Autoregressive Transformers with Linear Attention

Angelos Katharopoulos ' 2 Apoorv Vyas'? Nikolaos Pappas® Frangois Fleuret2**

Constraint for sim(): It should be non-negative.
Then, we can choose any other kernel/function:

Given such a kernel with a feature representation ¢ () we
can rewrite equation 2 as follows,

Sr L (@) b (K Y,
YL 6(Q)" ¢ (K;)

and then further simplify it by making use of the associative
property of matrix multiplication to

L $@)TE 6 () VI

(@)L 6 (K;)

The above equation is simpler to follow when the numerator
is written in vectorized form as follows,

(¢@eE)T)V=0@(&)V). ®

¢ (z) =elu(z) +1
) (4)

r__

T

)

Note that the feature map ¢ (-) is applied rowwise to the
matrices () and K.



Transformers are RNNs: ICML 2020
Fast Autoregressive Transformers with Linear Attention

Angelos Katharopoulos ' 2 Apoorv Vyas'? Nikolaos Pappas® Frangois Fleuret2**

Linear Attention

Sequence Length

Sequence Length

~+
2 A .. . ’
10° 3 ,/
—_— b E:“ 103 - //
E = A
3 3 =
= 10! E g lor .’.. .
B ] e . = linear(ours)
< = 103 ' N
E ) ] sotmax
o B s Ish-1
o ‘P Ish-4
1075 - Ish8
T T T T T T 10! - T T T T T T
29 210 211 2].2 213 214 216 210 211 212 213 214 215

160 = linear (ours) Method Validation PER  Time/epoch (s)
. = = goftmax Bi-LSTM 10.94 1047

0] M oo jlabed Softmax 5.12 2711
S e LSH-4 933 2250

n, Linear (ours) 8.08 824

N

- L]

L AL P -'.o'.""’."4'.....0*“.":10 4
.

Cross Entropy Loss
[
=]
o
MERTTIT B

1073 3 ‘I A Table 3: Performance comparison in automatic speech
] ‘\,q \ ¢ A vy recognition on the WSJ dataset. The results are given in

1074 5 ! Berog 1 the form of phoneme error rate (PER) and training time per
. . . : : | epoch. Our model outperforms the LSTM and Reformer

0 2000 4000 6000 8000 10000 while being faster to train and evaluate. Details of the exper-

Gradient steps
CENG501



Mamba: Linear-Time Sequence Modeling with Selective State Spaces

Albert Gu*' and Tri Dao™

‘Machine Learning Department, Carnegie Mellon University

zDtapeu‘trrnftnt of Computer Science, Princeton University
agu@cs.cmu.edu, tri@tridao.me

Rejected at ICLR2024



Structured State Space Sequence
(S4) Model



State Space Models (SSMs)

. . Input Output
* Notation: (sequence) (sequence)
e x(t): input (e.g., observation
(t): input (e.g ) State Space Model
* h(t): latent state representation (SSM)

* y(t): predicted output

 State update equation:
* h’(t) = A h(t) + B x(t) Input Output

(sequence) SSM (sequence)

* Qutput equation: state equation
h'(t) = Ah(t) + Bx(t)

* y(t) = C h(t) + D X(t) output equation —p
Y y):C(t) + Dx(t) AY
* A, B, C, D: learnable params

X(t) y(t)

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state



State Space Models (SSMs)

state

State updat:

How the current
state evolves over
time

State

I
)
*

How the current
state translates to
the output

How the input
influences the state

How the input
directly influences the
output

Input
X(t)

X B T 2
I\
multiply -@
State Representation
BLI T ) c@
multiply

updates during training

multiply Output

L

A

multiply

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

y(t)



State Space Models (SSMs)

L2k
multiply

v I
: ®

Input Output
x(t) y(t)

State Space Model

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

skip connection

v
X B h C—»Yy
L A
Input Output
(sequence) SSM (sequence)
state equation
h'(t) = Ah(t) + Bx(t)
e  OULPUL equation —p
v y(t) = Ch(t T Y
X(t) D y(t)

skip connection




State Space Models (SSMs)

Convert discrete signal to a continuous signal

Input Output

Obtain a continuous output (sequence) Continuous SSM (sequence)

Convert the continuous output to a discrete signal

h'(t) = Ah(t) + Bx(t)

y(t) = Ch(t)
Discrete Signal Continuous Signal
(Input) (Input)
Hold each value step s lA) state equaon -
° " untgrxctahr:rach .E § ' : h, = Ah_, + Bx,
Y E— .‘ i o— output equation
i Zero-order y, = Ch,
0 1 2 3 Hold o 1 2 3 4 Discrete SSM
Time t Time t
Continous Signal Discrete Signal . . _
(Output) (Output) A: Hold interval -- Learnable
Sample from Di tized matrix A -
oo iscretized matrix A eX p (AA)
T
’ — ~1
: Discretized matrix B B — (AA) (exp(AA)_ I) . AB
0 1 2 3 1 2 3 4
Timet Time t

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state



To discretize the continuous case, let's use the trapezoid method where the principle is to assimilate

the region under the representative curve of a function f defined on a segment [tn, tn+1] toa

trapezoid and calculateitsarea T : T = (t,4+1 — ty,) f (t”)+2f (bs1) |

We then have: 2,1 — T, = éA(f(tn) + f(tns1)) with A =t,1 — &5,
If a:;l = Az, + Bu, (first line of the SSM equation), corresponds to f, so:

A
Tntl = Tn + (Az, + Bu, + Az g + Bun1)

A A A
A$n+1 =z, + Az, + 9 B(un-l-l + un)

> Tpy1 — 9 9
A A
(%) <= (I- 9 Az, =1+ 9 Az, + ABu, 4
A A A
= gp = (I— ) A) I+ 0 A)z, + (I— ) A)'ABu, 4

A
(*) Up+1 = Uy (the control vector is assumed to be constant over a small A).

We've just obtained our discretized SSM!

To make this completely explicit, let's pose :

A=(1-

C=C https://huggingface.co/blog/Ibourdois/get-on-the-ssm-train



State Space Models (SSMs)

Output
(sequence)

Input
(sequence)

f\J_

Continuous SSM

h'(t) = Ah(t) + Bx(t)
y(t) = Ch(t)

state equation

hk = th_-| + Exk

output equation

¢ Y, = Ch,

Discrete SSM

Timestep O Timestep 1
h, = Bx,
y, = Ch,
Timestep -1
does not exist so previous timestep
Ah_,
State of

can be ignored current timestep

—

Timestep 2

State of
previous timestep

State of
current timestep

(e )

©

SSM

(Recurrent)

RNN

® ® @
) ) e )

A

p]

n )

@)
G

SSM
(Recurrent)

B B B
SSM
(Recurrent + Unfolded)

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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State Space Models (SSMs)

Kernel

Kernel CA’B||CAB || CB
| il 1 Muitiply
Input | © 0O My name is
(x,) S e

X, X,
lAum
Y.

Output o | %
(y,)
_ N _k_ k A Bx_+ CABx. + CB
kernel — K = (CB, CAB, ..., CA B, ...) ¥ = CA B, + CABX, + CBx,
y=x:K
PR SR

output input  Kkernel

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state



State Space Models (SSMs)

Continuous-time Recurrent or Convolutional

Discre:tizer§
N H ; ’ Kernel

= E = - \"\-\ /

x—{Bb ey | A A (e )R-

i Output

v efficient inference X unbounded context
X parallelizable training v parallelizable training
State Space Model
Convolutional
-’grw' Training These representations share an important property, namely that of Linear Time
A‘\*‘,;,\W Lde} Invariance (LTI). LTI states that the SSMs parameters, A, B, and C, are fixed for all
s timesteps. This means that matrices A, B, and C are the same for every token the SSM
_____________________________________________________________________________ generates.
Recurrent
Inference

is

) c c  _
AA A —P Maarten
B B

mode In other words, regardless of what sequence you give the SSM, the values of A, B, and

My name is
C remain the same. We have a static representation that is not content-aware.

My name

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state



Gu, Albert, et al. "Hippo: Recurrent memory with optimal polynomial
projections." Advances in neural information processing systems 33

State Space Models (SSMs) ™™

High-order Polynomial Projection Operators (HIPPO)

“So how can we create matrix A in a way that retains a large
memory (context size)?” Input Signal Reconstructed Signal

HiPPO
(compress and
reconstruct signal
information)

I«m>

small degration
of newer steps

Produces hidden state

: llarge degration

K h of older steps :
0 1 2 3 4 1 2 3 4
Time t Time t
1/2 1/2 :
(2 # 1 Gk+ 1) gppiiaisionite
. Captures information
name is Maarten from previous state to HiPPO Matrix A, < n+1 the diagonl
C c c build new state n——
A A A A 0 degonet
( State J ( State , ] ( State 5 J
- - - HiPPO Matrix
B B B
. 1 o oo
My name IS
3 4 5 12 |0 o]l
1 |3 |3 ]|o
SSM
(Recurrent + Unfolded) 1 |3 |5 | a

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state



State Space Models (SSMs)

“Prior work found that the basic SSM actually
performs very poorly in practice. Intuitively, one
explanation is that they suffer from gradients scaling
exponentially in the sequence length (i.e., the
vanishing /exploding gradients problem)."

“Previous work found that simply modifying an
SSM from a random matrix A to HiPPO improved
its performance on the sequential MNIST
classification benchmark from 60% to 98%.”

https://srush.github.io/annotated-s4/

“For our purposes we mainly need to know that: 1) we only
need to calculate it once, and 2) it has a nice, simple structure
(which we will exploit in part 2). Without going into the ODE
math, the main takeaway is that this matrix aims to compress
the past history into a state that has enough information to
approximately reconstruct the history.”

“Diving a bit deeper, the intuitive explanation of this matrix is
that it produces a hidden state that memorizes its history. It
does this by keeping track of the coefficients of a Legendre
polynomial. These coefficients let it approximate all of the
previous history.”

Voelker, Aaron R.; Kaji¢, lvana; Eliasmith, Chris (2019). Legendre Memory Units:
Continuous-Time Representation in Recurrent Neural Networks (PDF). Advances in Neural
Information Processing Systems.



State Space Models (SSMs)

Structured State Spaces for
Sequences (S4)

1l

Continuous Long-Range Discrete
State Space ) Dependencies Representations
(HiPPO)

x>

Training mode (convolutional)
Inference mode (recurrence)

For more on this: https://srush.github.io/annotated-s4/

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state



Reading material

* Introduction to SSM
* https://huggingface.co/blog/lbourdois/get-on-the-ssm-train

e A History of SSM Models:
* https://huggingface.co/blog/Ibourdois/ssm-2022

e A Visual Guide to Mamba and SSMis:

* https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-
and-state



https://huggingface.co/blog/lbourdois/get-on-the-ssm-train
https://huggingface.co/blog/lbourdois/ssm-2022
https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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Mamba: Linear-Time Sequence Modeling with Selective State Spaces

Albert Gu*' and Tri Dao"’

‘Machine Learning Department, Carnegie Mellon University

2Department of Computer Science, Princeton University )
agu@cs.cmu.edu, tri@tridao.me Rejected at ICLR2024

Abstract

Foundation models, now powering most of the exciting applications in deep learning, are almost universally based on the
Transformer architecture and its core attention module. Many subquadratic-time architectures such as linear attention,
gated convolution and recurrent models, and structured state space models (SSMs) have been developed to address
Transformers’ computational inefficiency on long sequences, but they have not performed as well as attention on important
modalities such as language. We identify that a key weakness of such models is their inability to perform content-based
reasoning, and make several improvements. First, simply letting the SSM parameters be functions of the input addresses
their weakness with discrete modalities, allowing the model to selectively propagate or forget information along the
sequence length dimension depending on the current token. Second, even though this change prevents the use of efficient
convolutions, we design a hardware-aware parallel algorithm in recurrent mode. We integrate these selective SSMs into a
simplified end-to-end neural network architecture without attention or even MLP blocks (Mamba). Mamba enjoys fast
inference (5% higher throughput than Transformers) and linear scaling in sequence length, and its performance improves
on real data up to milljon-length sequences. As a general sequence model backbone, Mamba achieves state-of-the-art
performance across several modalities such as language, audio, and genomics. On language modeling, our Mamba-3B model
outperforms Transformers of the same size and matches Transformers twice its size, both in pretraining and downstream
evaluation.



Motivation: Gap in the literature

Foundation models (FMs), or large models pretrained on massive data then adapted for downstream tasks, have emerged
as an effective paradigm in modern machine learning. The backbone of these FMs are often sequence models, operating on
arbitrary sequences of inputs from a wide variety of domains such as language, images, speech, audio, time series, and
genomics (Brown et al. 2020; Dosovitskiy et al. 2020; Ismail Fawaz et al. 2019; Oord et al. 2016; Poli et al. 2023; Sutskever,
Vinyals, and Quoc V Le 2014). While this concept is agnostic to a particular choice of model architecture, modern FMs are
predominantly based on a single type of sequence model: the Transformer (Vaswani et al. 2017) and its core attention
layer (Bahdanau, Cho, and Bengio 2015) The efficacy of self-attention is attributed to its ability to route information densely
within a context window, allowing it to model complex data. However, this property brings fundamental drawbacks:
an inability to model anything outside of a finite window, and quadratic scaling with respect to the window length.
An enormous body of research has appeared on more efficient variants of attention to overcome these drawbacks (Tay,
Dehghani, Bahri, et al. 2022), but often at the expense of the very properties that makes it effective. As of yet, none of these
variants have been shown to be empirically effective at scale across domains.



Motivation: Gap in the literature

Recently, structured state space sequence models (SSMs) (Gu, Goel, and Ré 2022; Gu, Johnson, Goel, et al. 2021) have
emerged as a promising class of architectures for sequence modeling. These models can be interpreted as a combination of
recurrent neural networks (RNNs) and convolutional neural networks (CNNs), with inspiration from classical state space
models (Kalman 1960). This class of models can be computed very efficiently as either a recurrence or convolution, with
linear or near-linear scaling in sequence length. Additionally, they have principled mechanisms for modeling long-range
dependencies (Gu, Dao, et al. 2020) in certain data modalities, and have dominated benchmarks such as the Long Range

Arena (Tay, Dehghani, Abnar, et al. 2021). Many flavors of SSMs (Gu, Goel, and Ré 2022; Gu, Gupta, et al. 2022; Gupta, Gu,
and Berant 2022; Y. Li et al. 2023; Ma et al. 2023; Orvieto et al. 2023; Smith, Warrington, and Linderman 2023) have been
successful in domains involving continuous signal data such as audio and vision (Goel et al. 2022; Nguyen, Goel, et al. 2022;

Saon, Gupta, and Cui 2023). However, they have been less effective at modeling discrete and information-dense data such
as text.



Contributions

» “Selective Scan” Structured State Space Sequence (S6) Models

Selection Mechanism. First, we identify a key limitation of prior models: the ability to efficiently select data in an
input-dependent manner (i.e. focus on or ignore particular inputs). Building on intuition based on important synthetic
tasks such as selective copy and induction heads, we design a simple selection mechanism by parameterizing the SSM
parameters based on the input. This allows the model to filter out irrelevant information and remember relevant information

indefinitely.

Hardware-aware Algorithm. This simple change poses a technical challenge for the computation of the model; in
fact, all prior SSMs models must be time- and input-invariant in order to be computationally efficient. We overcome this
with a hardware-aware algorithm that computes the model recurrently with a scan instead of convolution, but does not
materialize the expanded state in order to avoid IO access between different levels of the GPU memory hierarchy. The
resulting implementation is faster than previous methods both in theory (scaling linearly in sequence length, compared to
pseudo-linear for all convolution-based SSMs) and on modern hardware (up to 3x faster on A100 GPUs).

Architecture. We simplify prior deep sequence model architectures by combining the design of prior SSM architectures
(Dao, Fu, Saab, et al. 2023) with the MLP block of Transformers into a single block, leading to a simple and homogenous
architecture design (Mamba) incorporating selective state spaces.



Tasks that are challenging for S4

Constant regardless
of the input
I
v v

A Bx

f
Input Output

Input Output Task:Answer ‘0 with “A*
ot KL GTORL BTN, ..oy Selective Q What is 1 + 1 ?
Cats love playing with yarn copving Cats vyarn e 11
noun verb verb prep. noun Induction

pompt Q : What is 2 + 2 ? . a

“However, a (recurrent/convolutional) SSM performs poorly in “In the above example, we are essentially performing one-shot

prompting where we attempt to “teach” the model to provide an “A:”
response after every “Q:”. However, since SSMs are time-invariant it

cannot select which previous tokens to recall from its history.”

this task since it is Linear Time Invariant. As we saw before, the
matrices A, B, and C are the same for every token the SSM

generates.”

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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In Mamba, the matrices are
different for each time step:
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Mamba

Algorithm 1 SSM (54) Algorithm 2 SSM + Selection (S6)
Input: x: (B,L,D) Input: x:(B,L,D)
Output: y:(B,L,D) Output: y: (B,L,D)
1: A:(D,N) « Parameter 1: A: (D,N) « Parameter
> Represents structured N X N matrix » Represents structured N X N matrix
2: B:(D,N) < Parameter 2: B: (B,L,N) « sg(x)
3: C: (D,N) « Parameter 3: C:(B,L,N) « sc(x)
4: A : (D) « 7a(Parameter) 4: A: (B,L,D) « ta(Parameter+sa (x))
5: AB: (D,N) « discretize(A, A, B) 5: A B: (B,L,D,N) « discretize(A, A, B)
6: y < SSM(A, B,C)(x) 6: y < SSM(A, B, C)(x)
> Time-invariant: recurrence or convolution > Time-varying: recurrence (scan) only
7: return y 7: return y

We specifically choose sg(x) = Lineary(x), sc(x) = Lineary(x), sa(x) = Broadcastp(Linear;(x)), and 7o = softplus,
where Lineary is a parameterized projection to dimension d. The choice of sy and 7, is due to a connection to RNN gating
mechanisms explained in Section 3.5.



Mamba

Concretely, instead of preparing the scan input (A, B) of size (B, L, D,N) in GPU HBM (high-bandwidth memory), we load
the SSM parameters (A, A, B, C) directly from slow HBM to fast SRAM, perform the discretization and recurrence in SRAM,
and then write the final outputs of size (B, L,D) back to HBM.

To avoid the sequential recurrence, we observe that despite not being linear it can still be parallelized with a work-efficient
parallel scan algorithm (Blelloch 1990; Martin and Cundy 2018; Smith, Warrington, and Linderman 2023).

Finally, we must also avoid saving the intermediate states, which are necessary for backpropagation. We carefully apply
the classic technique of recomputation to reduce the memory requirements: the intermediate states are not stored but
recomputed in the backward pass when the inputs are loaded from HBM to SRAM. As a result, the fused selective scan
layer has the same memory requirements as an optimized transformer implementation with FlashAttention.



I\/l a m ba Parallel scan

...............................................................................

Sequential scan — :
Not suitable for parallelization —
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1
Sequential computation O(n)

Parallel computation O(n/t)

“Together, dynamic matrices B and C, and the parallel scan
algorithm create the selective scan algorithm to represent the
dynamic and fast nature of using the recurrent representation.”
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Selective State Space Model

with Hardware-aware State Expansion
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Figure 1: (Overview.) Structured SSMs independently map each channel (e.g. D = 5) of an input x to output y through a higher
dimensional latent state h (e.g. N = 4). Prior SSMs avoid materializing this large effective state (DN, times batch size B and sequence
length L) through clever alternate computation paths requiring time-invariance: the (A, A, B, C) parameters are constant across time. Our
selection mechanism adds back input-dependent dynamics, which also requires a careful hardware-aware algorithm to only materialize
the expanded states in more efficient levels of the GPU memory hierarchy.



Mamba block

rojection
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Figure 3: (Architecture.) Our simplified block design combines the H3 block, which is the basis of most SSM architectures, with
the ubiquitous MLP block of modern neural networks. Instead of interleaving these two blocks, we simply repeat the Mamba block
homogenously. Compared to the H3 block, Mamba replaces the first multiplicative gate with an activation function. Compared to
the MLP block, Mamba adds an SSM to the main branch. For o we use the SiLU / Swish activation (Hendrycks and Gimpel 2016;
Ramachandran, Zoph, and Quoc V Le 2017).



Transformers

RNNs

A Mamba

Training
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Inference
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