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e Reservoir of a set of neurons
 Randomly initialized and fixed

* Run input sequence through the
network and keep the activations of
the reservoir neurons

e Calculate the “readout” weights
using linear regression.

 Has the benefits of recurrent
connections/networks

* No problem of vanishing gradient

H input nodes
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Published as a conference paper at ICLR 2015

NEURAL MACHINE TRANSLATION
BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau
Jacobs University Bremen, Germany

KyungHyun Cho  Yoshua Bengio*
Université de Montréal
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Published as a conference paper at ICLR 2015

NEURAL MACHINE TRANSLATION
BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau
Jacobs University Bremen, Germany

KyungHyun Cho  Yoshua Bengio®
Université de Montréal

In a new model architecture, we define each conditional probability
in Eq. (2) as:

p(Yilys - - ¥i-1,%) = g(Yi—1, i, ¢i), @)
where s; is an RNN hidden state for time ¢, computed by

s; = f(Si—1,Yi—1,¢i)-

It should be noted that unlike the existing encoder—decoder ap-
proach (see Eq. (2)), here the probability is conditioned on a distinct
context vector ¢; for each target word y;. — — - .

The context vector c¢; depends on a sequence of annotations
(h1,--+, hr,) to which an encoder maps the input sentence. Each || /|| || = _ |-
annotation h; contains information about the whole input sequence [T hoT71 Dy he
with a strong focus on the parts surrounding the ¢-th word of the

input sequence. We explain in detail how the annotations are com- XXX X
puted in the next section.

Figure 1: The graphical illus-
The context vector ¢; is, then, computed as a weighted sum of these  tration of the proposed model

annotations h;: trying to generate the ¢-th tar-

T, get word y; given a source
€ = zaijhj- (5) sentence (z1,Z2,...,ZT).
Jj=1
The weight a;; of each annotation h; is computed by

exp (ei;)
Ty )
> ke exp (eik)

0y = (6)
where

eij = a(si—1,h;)
is an alignment model which scores how well the inputs around position j and the output at position

7 match. The score is based on the RNN hidden state s;_; (just before emitting y;, Eq. (4)) and the
j-th annotation £ ; of the input sentence.

We parametrize the alignment model a as a feedforward neural network which is jointly trained with
all the othencomponents of the proposed system. Note that unlike in traditional machine translation,
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Attgftion Types

NN
0‘,\* Name Alignment score function Citation
4’\0 Content- score(s;, h;) = cosine[s;, h;] Graves2014
,‘z base
Q attention
Additive(*) score(s,, k;) = v, tanh(W,[s,; h;]) Bahdanau2015
Location- a,; = softmax(W,s,) Luong2015
Base Note: This simplifies the softmax alignment to only depend on the target
position.
General score(s;, h;) = s W, h; Luong2015
where W, is a trainable weight matrix in the attention layer.
Dot-Product  score(s,, k;) = s h; Luong2015
Scaled Dot~ score(s;, h;) = % Vaswani2017
Product(™)

Note: very similar to the dot-product attention except for a scaling
factor; where n is the dimension of the source hidden state.

(*) Referred to as “concat” in Luong, et al., 2015 and as “additive attention” in Vaswani, et al., 2017.
(™) It adds a scaling factor 1/4/n, motivated by the concern when the input is large, the softmax
function may have an extremely small gradient, hard for efficient learning.

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
CENG501



Atteﬂ‘%lon Transformer

&f/amlla self attention:
,‘0

Q , exp(e 8)
2y nexplere)

e; =

e Scaled-dot product attention:

, exp(k(eT)q(el))
— Zim exp(k(em)q(e;))

v(ej)

Attention(Q, K,V ) = softmax(QKT
o Vi,

)14

Sinan Kalkan

Attention Is All You Need
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Fig. 17. The full model architecture of the transformer. (Image source: Fig 1 & 2 in Vaswani, et al.,

2017)

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
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Fig from: https://www.youtube.com/watch?v=dichlcUZfOw
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A Sighificant Issue with Self-Attention:
&C\eﬁmplexity

z‘.\\o
Q o exp(k(ejT)q(ei)) s(e))
l — Zim exp(k(em)q(e))

* If there are n tokens/embeddings,

* Updating a single tokens require O(n) operations.
 Overall: 0(n?)

 What is the complexity of an RNN layer with n time steps?

CENG501
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le‘éar Attention

\)‘9
4\ Self-attention:

Q =zWo,
K= LBWK,
V =zWy, (2)

A;(z) = V' = softmax (QKT) V.

vD

Rewrite Eq 2 for one row of the matrix:

V; _ Zj% Sin‘l(Qi:Kj)v}' 3)
D=1 8im (Qs, K;)

Equation 3 is equivalent to equation 2 if we substitute the

similarity function with sim (g, k) = exp (%) .

CENG501

Transformers are RNNs: ICML 2020
Fast Autoregressive Transformers with Linear Attention

Angelos Katharopoulos ' 2 Apoorv Vyas'? Nikolaos Pappas® Frangois Fleuret2**

Constraint for sim(): It should be non-negative.
Then, we can choose any other kernel/function:

Given such a kernel with a feature representation ¢ () we
can rewrite equation 2 as follows,

EJ 16(Q)" ¢'( i) Vi
>m1 6(Qi) 6 (K;)

and then further simplify it by making use of the associative
property of matrix multiplication to

V,:qa(Qé)Tz;, 1 ¢ (K Vi
L 6(Q) L 6(K))

The above equation is simpler to follow when the numerator
is written in vectorized form as follows,

(t@ex)")V=0@ (eE)TV). ®

¢ (z) =elu(z) +1
) 4)

&)

Note that the feature map ¢ (-) is applied rowwise to the
matrices () and K.



Statg@f;ace Models (SSMs)

. Co&aﬁ?t discrete signal to a continuous signal

Input Output

. in a continuous output (sequence) Continuous SSM (sequence)
&\OConvert the continuous output to a discrete signal
QY h'(t) = Ah(t) + Bx(t)
y(t) = Ch(t)
Discrete Signal Continuous Signal
(Input) (Input)
Hold each value shep sl state equation -
? " untgrxctahr:rach .E § ' : h, = Ah_, + Bx,
® ® —_—) .‘ i o— output equation
. i i i Zero-order Y, = Ch,
0 1 2 3 4 Hold o 1 2 3 4 Discrete SSM
Time t Time t
°°“(g'l‘§::t)3i9“a' Dijgr;t:uf)ig"a' A: Hold interval -- Learnable
Sample f . i A —
ilirr‘;zsete;ryim Discretized matrix A A = ex p (AA)
: = -1
: Discretized matrix B B = (AA) (exp(AA)_ I) . AB
0 1 2 3 4 1 2 3 4
Time t Time t

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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Statg@’f)ace Models (SSMs)

NN

Y Continuous-time Recurrent or Convolutional
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z“ — i . ’ Kernel
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T—@— B B g
i by Rame Output
v €efficient inference X unbounded context
X parallelizable training v parallelizable training
State Space Model
Convolutional
-’grw' Training These representations share an important property, namely that of Linear Time
A‘\*‘,;,\ﬂ Lde} Invariance (LTI). LTI states that the SSMs parameters, A, B, and C, are fixed for all
s timesteps. This means that matrices A, B, and C are the same for every token the SSM
______________________________________________ o generates.
ecurren
Inference

is

) c c  _
AA A —P Maarten
B B

mode In other words, regardless of what sequence you give the SSM, the values of A, B, and

My name is
C remain the same. We have a static representation that is not content-aware.

My name

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state



Gu, Albert, et al. "Hippo: Recurrent memory with optimal polynomial
projections." Advances in neural information processing systems 33

Stat,@‘%pace Models (SSMs) ™

3&%W can we create matrix A in a way that retains a large High'order PonnomiaI Projection Operators (HIPPO)

Q\o memory (context size)?” Input Signal Reconstructed Signal

Q‘z HiPPO

Produces hidden state (compress and
reconstruct S|gnal

information)
I«m>

small degration
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A h of older steps :
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https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state



sequence
length (L)

Size of input
vector (D)

In Mamba, the matrices are
different for each time step:

Matrix A

How the current state
evolves over time

Structured
State Space
Model (S4)

Step size (A)

Resolution of the input
(discretization parameter)

SSM +
Selection

Size of input
vector (D)

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

Matrix C

How the current state
translates to the output

Matrix B

How the input
influences the state

Hidden
state size
(N)

+—
Size of input
vector (D)

Matrix C

How the current state
translates to the output

Matrix B

How the input
influences the state

batch
\size (B)
Seqguence
length (L)
) Hidden state'
size (N)
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M&mba

R
?/Q\o
<
Q Algorithm 1 SSM (54) Algorithm 2 SSM + Selection (S6)
Input: x: (B,L,D) Input: x:(B,L,D)
Output: y:(B,L,D) Output: y: (B,L,D)
1: A:(D,N) « Parameter 1: A: (D,N) « Parameter
> Represents structured N X N matrix » Represents structured N X N matrix

2: B:(D,N) < Parameter 2: B: (B,L,N) « sg(x)
3: C: (D,N) « Parameter 3: C:(B,L,N) « sc(x)
4: A : (D) « 7a(Parameter) 4: A: (B,L,D) « ta(Parameter+sa (x))
5: AB: (D,N) « discretize(A, A, B) 5: A B: (B,L,D,N) « discretize(A, A, B)
6: y < SSM(A, B,C)(x) 6: y < SSM(A, B, C)(x)
> Time-invariant: recurrence or convolution > Time-varying: recurrence (scan) only
7: return y 7: return y

We specifically choose sg(x) = Lineary(x), sc(x) = Lineary(x), sa(x) = Broadcastp(Linear;(x)), and 7o = softplus,
where Lineary is a parameterized projection to dimension d. The choice of sy and 7, is due to a connection to RNN gating

mechanisms explained in Section 3.5.



rojection
SSM SSM proj
(@ (@ Sequence
transformation
Conv Conv
| | Nonlinearity

\\ 7\ 7l N 7\ 7l B oo

H3 ® Gated MLP e Mamba

Figure 3: (Architecture.) Our simplified block design combines the H3 block, which is the basis of most SSM architectures, with
the ubiquitous MLP block of modern neural networks. Instead of interleaving these two blocks, we simply repeat the Mamba block
homogenously. Compared to the H3 block, Mamba replaces the first multiplicative gate with an activation function. Compared to
the MLP block, Mamba adds an SSM to the main branch. For o we use the SiLU / Swish activation (Hendrycks and Gimpel 2016;
Ramachandran, Zoph, and Quoc V Le 2017).
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* Language Pre-training Tasks

* GPT-1

* BERT

* GPT-2, GPT-3, Instruct-GPT, GPT-3.5
* Gemini, Llama

* Limits of LLMs

* Risks of LLMs



Administrative Notes

e Quiz #3

Deadline: tomorrow midnight

* Time plan for the projects

1.

Milestone (November 24, midnight):

e Github repo will be ready

* Read & understand the paper

* Download the datasets

* Prepare the Readme file excluding the results & conclusion
Milestone (December 8, midnight)

* The results of the first experiment

Milestone (January 5, midnight)

* Final report (Readme file)

* Repo with all code & trained models

CENG501



Pre-training in NLP

e Word embeddings are the basis of deep learning
for NLP

king queen

| |

[-0.5, -0.9, 1.4, ..] [-0.6, -0.8, -0.2, ..]
e Word embeddings (word2vec, GloVe) are often
pre-trained on text corpus from co-occurrence

statistics
Inner Product Inner Product
the king wore a crown the queen wore a crown
Slide: Jacob Devlin CENG501

https://nlp.stanford.edu/seminar/details/jdevlin.pdf



Pre-training in NLP

e Semi-Supervised Sequence Learning, Google,
2015

Train LSTM Fine-tune on
Language Model Classification Task
open a bank — _» POSITIVE
T ! i T
LSTM * LSTM > LSTM > LSTM > LSTM >  LSTM
T T T I I T
<s> open a very funny movie
Slide: Jacob Devlin CENG501

https://nlp.stanford.edu/seminar/details/jdevlin.pdf



Pre-training in NLP

e ElMo: Deep Contextual Word Embeddings, Al2 &
University of Washington, 2017

Train Separate Left-to-Right and Apply as “Pre-trained
Right-to-Left LMs Embeddings”
S a bank S open a Existing Model Architecture
T ! ! ! ! T
LSTM - LSTM = LSTM LSTM LSTM LSTM T T !
T T I I T T
<s> open a open a bank
T T T
open a bank
Slide: Jacob Devlin CENG501

https://nlp.stanford.edu/seminar/details/jdevlin.pdf



Pre-training in NLP

e /mproving Language Understanding by Generative
Pre-Training, OpenAl, 2018

Train Deep (12-layer) Fine-tune on
Transformer LM Classification Task
open . T POSITIVE

1 1 r !

— — — > Transformer [—* Transformer [—*| Transformer
Transformer —* Transformer [—* Transformer t 1 T
<s5> open a
<s> open a
SIide: Jacob Devlin CENG501

https://nlp.stanford.edu/seminar/details/jdevlin.pdf
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GPT-1

* 12 layer decoder-only
transformer

* Unsupervised
pretraining
* BookCorpus dataset

* Supervised finetuning
e Textual alignment

e QA & commonsense
reasoning

* Semantic similarity
* Classification

L —

Text & Position Embed

OpenAl Technical Report, 2018

Improving Language Understanding
by Generative Pre-Training

Alec Radford Karthik Narasimhan Tim Salimans Ilya Sutskever
OpenAl OpenAl OpenAl OpenAl
alec@openali.com karthikn@openai.com tim@openai.com ilyasu@openai.com

Classification | Start | Text | Estract |j|—~| Transfarmer |—-| Linear l
Entailment I Start | Premise | Delim [ Hypothesis I Esxfract [—-{ Transformer H Linear |
I Stan | Text 1 | Delim [ Text 2 I Extract ‘_—~I Transformer
Similarity o i+ Linear
| stan | Text2 | oeim | Text1 | ewact |~ Transtormer }—\If—

I Start | Context | Dwalim l Answer 1 IExlr:u:t [—-{ Transformer H Linear |—

Multiple Choice | Stan | Context | Deim | Answer2 | Exract |—-| Transformer [+ Linear :ﬁ

I Start | Context | Delim l Answer M IEﬂrant I-—-I Transformer H Linear

Figure 1: (left) Transformer architecture and training objectives used in this work. (right) Input
transformations for fine-tuning on different tasks. We convert all structured inputs into token
sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

Sinan Kalkan 24



GPT-1

Given an unsupervised corpus of tokens U/ = {u, ..., u,}, we use a standard language modeling
objective to maximize the following likelihood:
Ly(U) :ZIOgP(uimi_k,...,ui_l;@) (1)

where k£ is the size of the context window, and the conditional probability P is modeled using a neural
network with parameters ©. These parameters are trained using stochastic gradient descent [51].

ho =UW.+ W,
h; = transformer_block(h;_1)Vi € [1,n] (2)
P(u) = softmax(h, W)
where U = (u_g, ..., u_1) is the context vector of tokens, n is the number of layers, W, is the token

embedding matrix, and W), 1s the position embedding matrix.

CENG501



GPT-1

Slide: Weizhi Wang

Discriminative Fine-tuning

For labeled downstream task, maximize the log probability on each pair of
iInstance (X, y)

After training the model with the objective in Eq. 1, we adapt the parameters to the supervised target
task. We assume a labeled dataset C, where each instance consists of a sequence of input tokens,
x', ..., x™, along with a label y. The inputs are passed through our pre-trained model to obtain
the final transformer block’s activation £;", which is then fed into an added linear output layer with

parameters W, to predict y:

P(y|z',...,2™) = softmax(h]"W,). (3)
This gives us the following objective to maximize:
Ly(C) =) log P(ylz",...,z™). 4)
(z,y)

Add auxiliary fine-tuning objective of language modeling will imporove the
performance L3(C) = L,(C) + A * L,;(C)

CENG501

https://victorwz.github.io/additional_files/slides_gpt_cs291A.pdf



GPT-1
Discriminative Fine-tuning

Text Task o S
Prediction | Classifier Classification Start Text Extract :|—> Transformer > Linear
T ‘l — .................................................................................
Entailment Start Premise Delim | Hypothesis | Extract | > Transformer > Linear
Layer Norm _
Eeed Eorward Start Text 1 Delim Text 2 Extract | > Transformer
7 Similarity z Linear
12x — .
Start Text 2 Delim Text 1 Extract | > Transformer
Layer Norm - 7
$ - Start Context Delim Answer 1 | Extract | Transformer { Linear
Masked Multi |
Self Attention —
1 Multiple Choice | Start Context Delim | Answer 2 | Extract | » Transformer > Linear
Text & Position Embed Start Context Delim | Answer N | Extract |+ Transformer (= Linear
Slide: Weizhi Wang CENG501

https://victorwz.github.io/additional_files/slides_gpt_cs291A.pdf



GPT-1 Results

Table 2: Experimental results on natural language inference tasks, comparing our model with current
state-of-the-art methods. 5x indicates an ensemble of 5 models. All datasets use accuracy as the
evaluation metric.

Method MNLI-m MNLI-mm SNLI SciTail QNLI RTE
ESIM + ELMo [44] (5x) - - 89.3 - - -
CAFE [58] (5%) 80.2 79.0 89.3 - - -
Stochastic Answer Network [35] (3x) 80.6 80.1 - - - -
CAFE [58] 78.7 77.9 88.5 83.3

GenSen [64] 71.4 71.3 - - 82.3 59.2
Multi-task BILSTM + Attn [64] 72.2 72.1 - - 82.1 61.7
Finetuned Transformer LM (ours) 82.1 814 89.9 88.3 88.1 56.0

CENG501
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BERT

ﬁsp Mask LM Mask LM \
& - *
L)) e ) (0]
BERT
Eas || E4 | | Ey H E[SEP]H E/ ‘ ‘ Ew |
—{ gt I e T e B gy
(o)1) .. [0 () .. (o)
\_'_1 \_'_1
Masked Sentence A

Masked Sentence B
*
Unlabeled Sentence A and B Pair

Pre-training

BERT: Pre-training of Deep Bidirectional Transformers for

Jacob Devlin  Ming-Wei Chang

Language Understanding

Google Al Language

Kenton Lee

2018

Kristina Toutanova

{jacobdevlin,mingweichang, kentonl, kristout}@google.com

Start/End Span\

———

(e ()

[ (e J 7 -

N

g
Tl BERT
Ees ‘ Ex H Esery H E/ | | Ew ‘
— gy gy LI LI

Tl o P
l_'_l

Question P Paragraph
Question Answer Pair /

Fine-Tuning

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize

models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned.

[CLS] is a special

symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-

tions/answers).

Sinan

Kalkan
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BERT: NLP Tasks

* MNLI: Multi-Genre Natural Language Inference

Examples

Premise Label Hypothesis

Fiction

The Old One always comforted Ca'daan, except today. neutral Ca'daan knew the Old One very well.

Letters

Your gift is appreciated by each and every student who will benefit from your generosity. neutral Hundreds of students will benefit from your generosity.
Telephone Speech

yes now you know if if everybody like in August when everybody's on vacation or something we can dress a little more casual or contradiction August is a black out month for vacations in the company.
9/11 Report

At the other end of Pennsylvania Avenue, people began to line up for a White House tour. entailment  People formed a line at the end of Pennsylvania Avenue.

* NER: Named Entity Recognition
e SQuaD: Stanford Question Answering Dataset

CENG501



BERT: Motivation

e Problem: Language models only use left context
or right context, but language understanding is
bidirectional.

e Why are LMs unidirectional?

e Reason 1: Directionality is needed to generate a

well-formed probability distribution.
o We don't care about this.

e Reason 2: Words can “see themselves” in a
bidirectional encoder.

Slide: Jacob Devlin CENG501
https://nlp.stanford.edu/seminar/details/jdevlin.pdf



BERT: Motivation

Unidirectional context Bidirectional context
Build representation incrementally Words can “see themselves”
open a bank open a bank
I f t I f f
Layer 2 > Layer2 » Layer 2 Layer 2 ) .| Layer2 b . Layer 2
Layer 2 > Layer 2 > Layer 2 Layer 2 X .| Layer2 .| Layer2
T I | I I !
<s> open a <s> open a

Actually, this is vanilla attention that
is not causal!

Slide: Jacob Devlin CENG501
https://nlp.stanford.edu/seminar/details/jdevlin.pdf



BERT: Motivation

e Solution: Mask out k% of the input words, and

then predict the masked words
o We always use k = 15%

store gallon

! !

the man went to the [MASK] to buy a [MASK] of milk

e Too little masking: Too expensive to train
e Too much masking: Not enough context

Slide: Jacob Devlin CENG501
https://nlp.stanford.edu/seminar/details/jdevlin.pdf



BERT: Motivation

e Problem: Mask token never seen at fine-tuning
e Solution: 15% of the words to predict, but don't
replace with [MASK] 100% of the time. Instead:

e 80% of the time, replace with [MASK]
went to the store - went to the [MASK]
e 10% of the time, replace random word

went to the store - went to the running
e 10% of the time, keep same

went to the store —» went to the store

Slide: Jacob Devlin CENG501
https://nlp.stanford.edu/seminar/details/jdevlin.pdf



BERT: Motivation

e Tolearn relationships between sentences, predict
whether Sentence B is actual sentence that
proceeds Sentence A, or a random sentence

Sentence A = The man went to the store. Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk. Sentence B = Penguins are flightless.
Label = IsNextSentence Label = NotNextSentence

Slide: Jacob Devlin CENGS501

https://nlp.stanford.edu/seminar/details/jdevlin.pdf



BERT

Mask LM Mask LM
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Question Paragraph
*
Question Answer Pair

Fine-Tuning

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize

models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned.

[CLS] is a special

symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-

tions/answers).

Sinan

Kalkan
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BERT

Input [CLS] my || dog is ‘ cute ’ [SEP] he ‘ likes ” play ’ ##ingw

Token

Embeddings E[CLS] Emy I-:-dog EIS Ecute E[SEP] Ehe EIikes Eplay EMing
+ + + = =+ =+ + + + +

Segment

Embeddings EA EA EA EA EA EA EB EB EB EB
-+ -+ + -+ L -+ -+ -+ -+ +

Position

Embeddings Eo E1 E2 E3 E4 E5 E6 E7 E8 E9

e Use 30,000 WordPiece vocabulary on input.

e Each token is sum of three embeddings
e 3Single sequence is much more efficient.

Sinan Kalkan



BERT

Model Architecture

Transformer encoder

e Multi-headed self attention )

o Models context ng?;d Mum_}_lead e
e Feed-forward layers v | ~Camem

o Computes non-linear hierarchical features :ﬂﬂi}?@ii < &mm?pmm ﬂih
e Layer norm and residuals e g

o Makes training deep networks healthy Freedns mzt
e Positional embeddings T

Inputs

o Allows model to learn relative positioning

Sinan Kalkan
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The General Language Understanding Evaluation (GLUE) benchmark is a collection of resources for
training, evaluating, and analyzing natural language understanding systems. GLUE consists of:

« A benchmark of nine sentence- or sentence-pair language understanding tasks built on established

B | R | existing datasets and selected to cover a diverse range of dataset sizes, text genres, and degrees
of difficulty,

« A diagnostic dataset designed to evaluate and analyze model performance with respect to a wide
range of linguistic phenomena found in natural language, and

« A public leaderboard for tracking performance on the benchmark and a dashboard for visualizing
the performance of models on the diagnostic set.

https://gluebenchmark.com/

GLUE Results

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k =
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.9 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 88.1 91.3 454 80.0 82.3 56.0 il
BERTgAsE 84.6/83.4 712 90.1 93.5 52.1 85.8 88.9 66.4 79.6
BERTLARGE 86.7/85.9 72.1 91.1 94.9 60.5 86.5 89.3 70.1 81.9
MultiNLI Cola

Premise: Hills and mountains are especially Sentence: The wagon rumbled down the road.
sanctified in Jainism. Label: Acceptable

Hypothesis: Jainism hates nature.

Label: Contradiction Sentence: The car honked down the road.

Label: Unacceptable

Sinan Kalkan 40



Accuracy

BERT

Effect of Pre-training Task

B BERT-Base M No Next Sent [ Left-to-Right & No Next Sent
B Left-to-Right & No Next Sent + BiLSTM

0

85
8

I
[ | A BERTpase (Masked LM)
‘ I 76 - | — ¢ BERTgask (Left-to-Right)
- ‘- 200 400 600 800 1,000

7
MNLI QNLI MRPC SQuAD

MNLI Dev Accuracy

(&)}

Pre-training Steps (Thousands)

Sinan Kalkan a1



Other GPT Models
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Model |Title

Focus

Paradigm Params

GPT-1 Improving Language

NLU tasks, pre-trained | Pre-training->Efficient Fine- | 117M

Understanding by model tuning
Generative Pre-Training
GPT-2 Language Models are Zero-shot Evaluation, | Pre-training->Zero-shot 1.5B
Unsupervised Multitask | NLG Tasks Multitask Transfer
Learners
GPT-3 Language Models are Few-shot Learning or | In-context Learning with a 175B
Few-Shot Learners In-context Learning few demonstration
examples
GPT- N/A NLG with human Pre-training->RLHF 175B + 6B
3.5/ patterns reward
ChatGPT model
« GPT is out before BERT.
Model GPT BERT/RoBERTa
Type Autoregressive Language Model Autoencoding Language Model
Training Causal Language Modeling Masked Language Modeling, (Next Sentence
Objectives Prediction)
Paradigm Pre-training to Discriminative Fine- | Pre-training to Span-based Fine-tuning

Tuning with Auxiliary LM

Evaluation Tasks

NLU (GLUE),

NLU (GLUE), Short-Answer QA (Squad), NER,
SWAG

Slide: Weizhi Wang

CENG501

https://victorwz.github.io/additional_files/slides_gpt_cs291A.pdf
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GPT-2

Abstract

Natural language processing tasks, such as ques-
tion answering, machine translation, reading com-
prehension, and summarization, are typically
approached with supervised learning on task-
specific datasets. We demonstrate that language
models begin to learn these tasks without any ex-
plicit supervision when trained on a new dataset
of millions of webpages called WebText. When
conditioned on a document plus questions, the an-
swers generated by the language model reach 55
F1 on the CoQA dataset - matching or exceeding
the performance of 3 out of 4 baseline systems
without using the 127,000+ training examples.
The capacity of the language model is essential
to the success of zero-shot task transfer and in-
creasing it improves performance in a log-linear
fashion across tasks. Our largest model, GPT-2,
is a 1.5B parameter Transformer that achieves
state of the art results on 7 out of 8 tested lan-
guage modeling datasets in a zero-shot setting
but still underfits WebText. Samples from the
model reflect these improvements and contain co-
herent paragraphs of text. These findings suggest
a promising path towards building language pro-
cessing systems which learn to perform tasks from
their naturally occurring demonstrations.

OpenAl Technical Report, 2019.

Language Models are Unsupervised Multitask Learners

Alec Radford *! Jeffrey Wu *! Rewon Child' David Luan' Dario Amodei ** ' Ilya Sutskever **

# of parameters in LM

# of parameters in LM

Sinan Kalkan

# of parameters in LM

Reading Comprehension Translation Summarization 10 Question Answering
90 {Human 55 |Unsupervised Statistical MT 32 Lead-3
80 : 301 1 1 Open Domain QA SystemsT 1|
201 - PGNet
28 1
70 W
DrQA+PGNet - S 26 9
15 {Denoising + Backtranslate 2 b
<., ] 5
DrQA - 24 {Seq2seq + Attn 3
50 10 {Embed Nearest Neighbor Y22 <
PGNet Denoising © Random-3
40 £ 201
51 <
30 181 most freq Q-type answer
Seq2seq o 16 o
117M 345M 762M  1542M117M 345M 762M  1542M117M 345M 762M  1542M 117M 345M 762M

1542M
# of parameters in LM
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GPT-2

e Approach: Train a transformer
with large amounts of web data

* Objective: Next symbol
prediction

symbols as the product of conditional probabilities (Jelinek
& Mercer, 1980) (Bengio et al., 2003):

n

p(z) = [[p(snlst, .., sn-1) (1)

i=1
This approach allows for tractable sampling from and es-
timation of p(z) as well as any conditionals of the form

D(Sn—ky vy Sn|S1, .-y Sn—k—1)- In recent years, there have

Sinan Kalkan

”I’m not the cleverest man in the world, but like they say in
French: Je ne suis pas un imbecile [I’m not a fool].

In a now-deleted post from Aug. 16, Soheil Eid, Tory candidate
in the riding of Joliette, wrote in French: “Mentez mentez,
il en restera toujours quelque chose,” which translates as,
’Lie lie and something will always remain.”

239

“I hate the word ‘perfume,”” Burr says. ‘It’s somewhat better
in French: ‘parfum.

If listened carefully at 29:55, a conversation can be heard
between two guys in French: “~-Comment on fait pour aller
de ’autre coté? -Quel autre coté?”, which means “- How
do you get to the other side? - What side?”.

If this sounds like a bit of a stretch, consider this ques-
tion in French: As-tu aller au cinéma?, or Did you go to
the movies?, which literally translates as Have-you to go to
movies/theater?

“Brevet Sans Garantie Du Gouvernement”, translated to
English: “Patented without government warranty”.

Table 1. Examples of naturally occurring demonstrations of En-
glish to French and French to English translation found throughout
the WebText training set.

46



GPT-2

Transferring from NLU to NLG, which is more complicated.

Fully zero-shot evaluation, without any task-specific fine-tuning.

Same training objective of Causal Language Modeling, but scaling
up everything (data, model, batch-size, context-length).

Achieved SOTA on most of NLG dataset compared with tuned
model.

Slide: Weizhi Wang
https://victorwz.github.io/additional_files/slides_gpt_cs291A.pdf



GPT-2

GPT-2: Language Modeling Benchamarks

LAMBADA LAMBADA CBT-CN CBT-NE WikiText2 PTB enwik8 text8 WikiTextl03  1BW

(PPL) (ACC) (ACC) (ACC) (PPL) (PPL) (BPB)  (BPC) (PPL) (PPL)

SOTA 99.8 59.23 85.7 82.3 39.14 46.54 0.99 1.08 18.3 21.8
117M 35.13 45.99 87.65 83.4 2941 65.85 1.16 1.17 37.50 75.20
345M 15.60 55.48 92.35 87.1 22.76 47.33 1.01 1.06 26.37 55.72
762M 10.87 60.12 93.45 38.0 19.93 40.31 0.97 1.02 22.05 44.575
1542M 8.63 63.24 93.30 89.05 18.34 35.76 0.93 0.98 17.48 42.16

Table 3. Zero-shot results on many datasets. No training or fine-tuning was performed for any of these results. PTB and WikiText-2
results are from (Gong et al., 2018). CBT results are from (Bajgar et al., 2016). LAMBADA accuracy result is from (Hoang et al., 2018)
and LAMBADA perplexity result is from (Grave et al., 2016). Other results are from (Dai et al., 2019).

Slide: Weizhi Wang

https://victorwz.github.io/additional_files/slides_gpt_cs291A.pdf
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GPT-2

ol Even with the increase of model parameters

147 to 1.5B, the training dataset of WebText

121 1542M is still under fitting.
= Therefore, the model can still be scaled
B up to better fit on the training dataset.

-

* re e —— GPT-3 is on the way! A new era started!

2 WebText test

117M ) 13415MT o 776127MY 1542M

# of parameters in LM

Figure 4. The performance of LMs trained on WebText as a func-
tion of model size.

Slide: Weizhi Wang CENG501
https://victorwz.github.io/additional_files/slides_gpt_cs291A.pdf
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GPT-3
* 175B parameters!

outer laop

Learning via SGD during unsupervised pre-training \
5 5 5
i 3 1
§5+8 =13 3 gaot == goat g thanks => marci g
3 =3 =3
=3 - =
T+2=49 - sakne == Snake ° hella == bonjour E
- = -
o o o
1+@ =1 & brid == bird T mint == menthe -
inner loop 3 = =
5 5 5
3+d4=7 =] faih == fish = wall == mur (=]
5+ 9 =14 douk == duck atter == loutre
9+ 8 =17 cihp == chimp oread == pain
b 4 h 4

sequence #2

Figure 1.1: Language model meta-learning. During unsupervised pre-training, a language model develops a broad
set of skills and pattern recognition abilities. It then uses these abilities at inference time to rapidly adapt to or recognize
the desired task. We use the term “in-context learning™ to describe the inner loop of this process, which occurs within
the forward-pass upon each sequence. The sequences in this diagram are not intended to be representative of the data a
model would see during pre-training, but are intended to show that there are sometimes repeated sub-tasks embedded
within a single sequence.

Sinan Kalkan

Language Models are Few-Shot Learners

Tom B. Brown* Benjamin Mann* Nick Ryder* Melanie Subbiah*

Jared Kaplan® Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry

Amanda Askell Sandhini Agarwal Ariel Herbert-Voss Gretchen Krueger Tom Henighan

Rewon Child Aditya Ramesh Daniel M. Ziegler Jeffrey Wu Clemens Winter
Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray
Benjamin Chess Jack Clark Christopher Berner
Sam MecCandlish Alec Radford Ilya Sutskever Dario Amodei
OpenAl
Zero-shot One-shot Few-shot
175B Params
60 Natural Language

Prompt

£

oy

g

=1

a

) == 13B Params
-h_-n—'-'/:\'-d_ =
e e 1_3Bparams

MNumber of Examples in Context (K)

Figure 1.2: Larger models make increasingly efficient use of in-context information. We show in-context learning
performance on a simple task requiring the model to remove random symbols from a word, both with and without a
natural language task description (see Sec. 3.9.2). The steeper “in-context learning curves” for large models demonstrate
improved ability to learn a task from contextual information. We see qualitatively similar behavior across a wide range
of tasks.
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GPT-3

Three ways of in-context learning:
In a single sequence input, the

Zero-shot
The model predicts the answer given only a natural language prom pted example can Iearn from
description of the task. No gradient updates are performed. preV|ous demOnStrathnS

Translate English to French: task description Few-shot

cheese => prompt In addition to the task description, the model sees a few

examples of the task. No gradient updates are performed.

One-shot Translate English to French: task description
In addition to the task description, the model sees a single
example of the task. No gradient updates are performed. sea otter => loutre de mer examples

peppermint => menthe poivrée

Translate English to French: task description
plush girafe => girafe peluche
sea otter => loutre de mer example
cheese => prompt
cheese => prompt
Slide: Weizhi Wang CENG501

https://victorwz.github.io/additional_files/slides_gpt_cs291A.pdf



GPT-3

outer loop

Learning via SGD during unsupervised pre-training

3
5+ 8=13 Q
[=
3
—
7+42=9 e
~+
o
‘ 1+0=1 o
inner loop §
3
3+4=7 (=]
5+9 =14
9 +8 =17
V

sequence #1

gaot => goat

sakne => snake

brid => bird

fsih => fish

dcuk => duck

cmihp => chimp

sequence #2

Bujuies| 1xa1u09-u|

thanks => merci

hello => bonjour

mint => menthe

wall => mur

otter => loutre

bread => pain

sequence #3

WV

Buluies| 1xa1u09-u|

Figure 1.1: Language model meta-learning. During unsupervised pre-training, a language model develops a broad
set of skills and pattern recognition abilities. It then uses these abilities at inference time to rapidly adapt to or recognize
the desired task. We use the term “in-context learning” to describe the inner loop of this process, which occurs within
the forward-pass upon each sequence. The sequences in this diagram are not intended to be representative of the data a
model would see during pre-training, but are intended to show that there are sometimes repeated sub-tasks embedded

within a single sequence.

Slide: Weizhi Wang
https://victorwz.github.io/additional_files/slides_gpt_cs291A.pdf
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GPT-3 Results: NLU of SuperGLUE

SuperGLUE Performance

90 Human. .o b b
Fine-tuned SOTA"~ 777

80

ot

<)

O

)

w

o]

=

e

]

o

>

n

40
0.1 04 08 13 26 6.7

—8— Zero-shot
= —@— One-shot
—®— Few-shot (K=32)

13 175

Billions of Parameters in LM

90

80

70

60

50

40

In-Context Learning on SuperGLUE

__Random Guessing

01234 8 16 32

Number of Examples in Context (K)

Figure 3.8: Performance on SuperGLUE increases with model size and number of examples in context. A value
of K = 32 means that our model was shown 32 examples per task, for 256 examples total divided across the 8 tasks in
SuperGLUE. We report GPT-3 values on the dev set, so our numbers are not directly comparable to the dotted reference
lines (our test set results are in Table 3.8). The BERT-Large reference model was fine-tuned on the SuperGLUE training
set (125K examples), whereas BERT++ was first fine-tuned on MultiNLI (392K examples) and SWAG (113K examples)
before further fine-tuning on the SuperGLUE training set (for a total of 630K fine-tuning examples). We find the
difference in performance between the BERT-Large and BERT++ to be roughly equivalent to the difference between
GPT-3 with one example per context versus eight examples per context.

Slide: Weizhi Wang
https://victorwz.github.io/additional_files/slides_gpt_cs291A.pdf
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GPT-3 Results: Language Modeling

LAMBADA LAMBADA StoryCloze HellaSwag

Setting (acc) (ppD (acc) (acc)
SOTA 68.0¢ 8.63" 91.8¢ 85.6¢
GPT-3 Zero-Shot 76.2 3.00 83.2 78.9
GPT-3 One-Shot 72.5 3.35 84.7 78.1
GPT-3 Few-Shot 86.4 1.92 87.7 79.3

Table 3.2: Performance on cloze and completion tasks. GPT-3 significantly improves SOTA on LAMBADA while
achieving respectable performance on two difficult completion prediction datasets. “[Tur20] PIRWCT19] °[LDL19]
d +

[LCH™20]

Setting NaturalQS WebQS  TriviaQA
RAG (Fine-tuned, Open-Domain) [LPP"20] 44.5 45.5 68.0
T5-11B+SSM (Fine-tuned, Closed-Book) [RRS20]  36.6 44.7 60.5
T5-11B (Fine-tuned, Closed-Book) 34.5 37.4 50.1
GPT-3 Zero-Shot 14.6 14.4 64.3
GPT-3 One-Shot 23.0 25.3 68.0
GPT-3 Few-Shot 29.9 41.5 1.2

Table 3.3: Results on three Open-Domain QA tasks. GPT-3 is shown in the few-, one-, and zero-shot settings, as
compared to prior SOTA results for closed book and open domain settings. TriviaQA few-shot result is evaluated on the
wiki split test server.

Slide: Weizhi Wang CENG501
https://victorwz.github.io/additional_files/slides_gpt_cs291A.pdf



Setting En—Fr Fr—En En—De De—En En—Ro Ro—En
SOTA (Supervised)  45.6°  35.0° 41.2¢ 40.2¢ 38.5¢ 39.9¢

XLM [LC19] 33.4 33.3 26.4 34.3 33.3 31.8
MASS [STQ™ 19] 37.5 34.9 28.3 35.2 5.2 5.1
mBART [LGG*20] - - 29.8 34.0 35.0 30.5
GPT-3 Zero-Shot 25.2 1.9 24.6 27 14.1 19.9
GPT-3 One-Shot 28.3 9377 26.2 30.4 20.6 38.6
GPT-3 Few-Shot 32.6 39.2 29.7 40.6 21.0 39.5

Table 3.4: Few-shot GPT-3 outperforms previous unsupervised NMT work by 5 BLEU when translating
into English reflecting its strength as an English LM. We report BLEU scores on the WMT 14 Fr«<En,
WMT’16 De<+En, and WMT 16 Ro<+En datasets as measured by multi-bleu.perl with XLM’s tokeniza-
tion in order to compare most closely with prior unsupervised NMT work. SacreBLEU/ [Pos18] results re-
ported in Appendix H. Underline indicates an unsupervised or few-shot SOTA, bold indicates supervised SOTA
with relative confidence. “[EOAG18] ’[DHKH14] <[WXH' 18] 4[oR16] ¢[LGG20] f[SacreBLEU signature:
BLEU+case.mixed+numrefs. | +smooth.exp+tok.intl+version.1.2.20]

Setting CoQA DROP QuAC SQuADv2 RACE-h RACE-m
Fine-tuned SOTA 90.7¢ 89.1> 74.4¢  93.0¢ 90.0¢ 93.1¢
GPT-3 Zero-Shot  81.5  23.6 415 595 45.5 58.4
GPT-3 One-Shot  84.0 343 433 654 45.9 57.4
GPT-3 Few-Shot  85.0 365 443 698 46.8 58.1

Table 3.7: Results on reading comprehension tasks. All scores are F1 except results for RACE which report accuracy
4[JZCt19] ’[IN20] ¢[AI19] ¢[QIA20] ¢[SPP* 19]

Slide: Weizhi Wang CENG501
https://victorwz.github.io/additional_files/slides_gpt_cs291A.pdf



GPT-3 Results: Turing Test

Human ability to detect model generated news articles

control (86%)

80 1+——==

70 -

Accuracy (%)

60 -

random chance (50%)

le8 1le9 lel0 lell
Number of parameters (log scale)

Figure 3.13: People’s ability to identify whether news articles are model-generated (measured by the ratio of correct
assignments to non-neutral assignments) decreases as model size increases. Accuracy on the outputs on the deliberately-
bad control model (an unconditioned GPT-3 Small model with higher output randomness) is indicated with the dashed
line at the top, and the random chance (50%) is indicated with the dashed line at the bottom. Line of best fit is a power
law with 95% confidence intervals.

Slide: Weizhi Wang CENG501
https://victorwz.github.io/additional_files/slides_gpt_cs291A.pdf



Key to Success: Data Resources

Model | Pre-training Data Size
GPT-1 BooksCorpus (7000 books) 5GB
BERT BooksCorpus, En-Wikipedia 16GB
GPT-2 WebText 40GB
RoBERTa | BooksCorpus, CC-News, OpenWebText(WebText), Stories 160GB
GPT-3 CC(Common Crawl), WebText2, Books1, Books2, Wikipedia ~700GB
GPT-J Pile Corpus 800GB

Slide: Weizhi Wang

CENG501

https://victorwz.github.io/additional_files/slides_gpt_cs291A.pdf




Key to Success: Scaling Up

Model Name Nparams  Mlayers  @model  Theads dhead Batch Size  Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 1074
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0 x 10~¢
GPT-3 Large 760M 24 1536 16 96 0.5M 2.5 x 10~
GPT-3 XL 1.3B 24 2048 24 128 IM 2.0x 1074
GPT-3 2.7B 2.7B 32 2560 32 80 IM 1.6 x 1074
GPT-3 6.7B 6.7B 32 4096 32 128 2M 1.2 x 1074
GPT-3 13B 13.0B 40 5140 40 128 2M 1.0 x 10~
GPT-3 175B or “GPT-3” 175.0B 96 12288 96 128 3.2M 0.6 x 1074

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models
which we trained. All models were trained for a total of 300 billion tokens.

Slide: Weizhi Wang CENG501
https://victorwz.github.io/additional_files/slides_gpt_cs291A.pdf



Mario Klingemann & . 4
@quasimondo

Another attempt at a longer piece. An imaginary
Jerome K. Jerome writes about Twitter. All | seeded
was the title, the author's name and the first "It", the
rest is done by #gpt3

Here is the full-length version as a PDF:
drive.google.com/file/d/1gtPailc...

The importance of being on twitter

by Jerome K. Jerome

London, Summer 1897

Itis a curious fact that the last remaining form of social life in which the people of
London are still interested is Twirtter. I was struck with this curious fact when [
went on one of my periodical holidays to the sea-side, and found the whole place

twittering like a starling-cage. I called it an anomaly, and it is.

I spoke to the sexton, whose cottage, like all sexton’s cottages, is full of antiquities
and interesting relics of former centuries. | said to him, "My dear sexton, what does
all this twittering mean?” And he replied, “Why, sir, of course it means Twitter.”

"Ah!" I said, "T know about that. But what is Twitter?”

"It is a system of short and pithy sentences strung together in groups, for the
purpose of conveying useful information to the initiated, and entertainment and
the exercise of wits to the initiated, and entertainment and the exercise of wits to the

rest of us.”

“Very interesting,” [ said. "Has it 2 name?”
"It has,” he said; "itis called Twitter.
“Yes,” | said, "I know that, but what is it?"
“It is a system of information,” he said.

“Oh, yes," I replied; "but what is it2*

“Why, sir,” he said, "you can go up to any of the gentlemen you see twittering in the
street, and say to him, 'You are a fool," or "Your wife is an adulteress,” or 'You have
stolen that hat, and if he is a member of the initiated he will answer you in the same
form and tell you that you are a liar, or that your eyes resemble the eyes of a duck, or
that you have stepped out of your part in the last charade you acted in, or that you
were for a short time a statistician in a Government Office, and he will go on to tell
you the whole story of your life, in language so exceedingly small and pointed that
even you will be glad you can't understand it.

6:25 PM - Jul 18, 2020 @

Denny Britz
@dennybritz

This post is one of the best GPT-3 evaluations I've
seen. It's a good mix of impressive results and
embarrassing failure cases from simple prompts. It

demonstrates nicely that we're closer to building big

compressed knowledge bases than systems with
reasoning ability.

&) Kevin Lacker @lacker

| wrote about giving GPT-3 a Turing test - when it sounds
surprisingly human, and when it struggles.
lacker.iofaif2020/07/086/...

o

: What is your favorite animal?
A: My favorite animal is a dog.

[=]

: Why?
A: Because dogs are loyal and friendly.

[=]

Q: How many eyes does a giraffe have?
A: A giraffe has two eyes.

6:37 PM - Jul 17, 2020

O 284 O 4 & Copylink to Tweet

Sinan Kalkan

: What are two reasons that a dog might be in a bad ma
A: Two reasons that a dog might be in a bad mood are if

O Julian Togelius @togelius - Jul 17, 2020 L

| have the same impression. We can now automate the
production of passable text on basically any topic. What's
hard is to produce text that doesn't fall apart when you look
closely. But that's hard for humans as well.

@ simon Ssarris @simonsarris

GPT-3 imitating human text: We aren't pulling the mask
off the machine to reveal a genius wizard, we're pulling
the mask off each other to reveal the bar is low.

Julian Togelius
@togelius

GPT-3 often performs like a clever student who
hasn't done their reading trying to bullshit their way
through an exam. Some well-known facts, some half-
truths, and some straight lies, strung together in what
first looks like a smooth narrative.

5:22 PM - Jul 17, 2020 0]

171 O 13 & Copy link to Tweet
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I IEEE

I SPECTRUM Engineering Topics Special Reports Blogs Multimedia

The Magazine Professional Resources Search

TechTalk | Robotics | Artificial Intelligence

18 Jun 2021 13:00 GMT

Two Natural-Language Al

https://spectrum.ieee.org/tech-talk/robotics/artificial-
intelligence/ai-algorithms-bias-gpt-3-racist-content

Algorithms Walk Into A Bar...

...And reveal some persistently bigoted tendencies of

GPT-3

“A five-dollar bill walks into a bar, and the bartender says, ‘Hey, this is a
singles bar.” Or: “A neutron walks into a bar and orders a drink—and asks
what he owes. The bartender says, ‘For you, no charge.”” And so on.

Abubakar Abid, an electrical engineer researching artificial intelligence at
Stanford University, got curious. He has access to GPT-3, the massive natural
language model developed by the California-based lab OpenAl, and when he
tried giving it a variation on the joke—“Two Muslims walk into”—the results
were decidedly not funny. GPT-3 allows one to write text as a prompt, and
then see how it expands on or finishes the thought. The output can be eerily
human...and sometimes just eerie. Sixty-six out of 100 times, the Al
responded to “two Muslims walk into a...” with words suggesting violence or
terrorism.

“Two Muslims walked into a...gay bar in Seattle and started shooting at will,
killing five people.” Or: “...a synagogue with axes and a bomb.” Or: “...a Texas
cartoon contest and opened fire.”

“At best it would be incoherent,” said Abid, “but at worst it would output very
stereotypical, very violent completions.”

Sinan Kalkan 62



Key to Success

* Conclude, Summarize, and Find emerging phenomena from systematical
experiments:

* in GPT-1, the experiment of the relation between #updates and zero-shot performance;
* in GPT-2, the experiment of the relation between #params and training set ppl

* Insist on Simple yet Effective Architecture

* Keep on collecting high-quality web-crawled data

Slide: Weizhi Wang
https://victorwz.github.io/additional_files/slides_gpt_cs291A.pdf



Training language models to follow instructions
with human feedback

Long Ouyang* Jeff Wu*  Xu Jiang*  Diogo Almeida*  Carroll L. Wainwright*

Pamela Mishkin®*  Chong Zhang  Sandhini Agarwal Katarina Slama  Alex Ray

John Schulman Jacob Hilton Fraser Kelton Luke Miller Maddie Simens
Amanda Askellt Peter Welinder Paul Christiano*

Jan Leike® Ryan Lowe*

GPT-3.5 (a.k.a., ChatGPT

CENG501



Step 1

Collect demonstration data
and train a supervised policy.

I
A prompt is sample from ./

our prompt dataset. Explain reinforcement
learning to a 6 year old.

i

A labeler demonstrates @

the desired output

behavior. ‘ 4
We give treats and
punishments to teach...
SFT
o._0
/ A
This data is used to o\\ij;/o
fine-tune GPT-3.5 with e~ e
supervised learning. V4

https://openai.com/index/chatgpt/

Step 2

Collect comparison data and
train a reward model.

A prompt and several {:j
model outputs are Explain reinforcement

sampled. learning to a 6 year old.

0 o

In reinforcement Explain rewards...
learning, the
agentis...

[C) o

In machine We give treats and
learning... punishments to
teach...

. -

Alabeler ranks the
outputs from best

to worst. o,e,e,e

RM
)
This data is used to oi/?j%\,o
train our reward model. }S&{

Sinan Kalkan

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is v g
sampled from Write a story
the dataset. about otters.
) PPO
The PPO model is e _®
initialized from the ./)?.?Q.
supervised policy. W

The policy generates

an output.

The reward model .RM.
calculates a reward .’9?5\\.
for the output. W

The reward is used
to update the policy rk
using PPO.




© Collect human feedback

A Reddit post is
sampled from
the Reddit
TL;DR dataset.

Various policies
are used to
sample a set of
summaries.

Two summaries
are selected for
evaluation.

A human judges
which is a better
summary of the
post.

v

\

“j is better than k”

© Train reward model

One post with
two summaries
judged by a
human are fed
to the reward
model.

The reward
model
calculates a
reward r for
each summary.

The loss is
calculated based
on the rewards
and human label,
and is used to
update the
reward model.

7

! l
® &
7l L’

X )

!

loss = Iog(o(q -r))

I

“j is better than k”

el -

© Train policy with PPO Learning to summarize from human feedback

A new post is
sampled from the
dataset.

Nisan Stiennon* Long Ouyang* Jeff Wu* Daniel M. Ziegler* Ryan Lowe*

Chelsea Voss™ Alec Radford Dario Amodei Paul Christiano™

OpenAl

The policy
generates a

\)
&,

NeurlPS2020

summary for the

. R,

The reward

model calculates !

a reward for the i

summary. .
r K

The reward is \l,

used to update

the policy via r

PPO.

Figure 2: Diagram of our human feedback, reward model training, and policy training procedure.

policy to be the model fine-tuned on Reddit TL;DR. Importantly, we include a term in the reward that
penalizes the KL divergence between the learned RL policy WEL with parameters ¢ and this original

supervised model wSFT | as previously done in [25]. The full reward R can be written as:

R(z,y) = ro(z,y) — Blog[rs"(y|z) /= (y|z)]

This KL term serves two purposes. First, it acts as an entropy bonus, encouraging the policy to
explore and deterring it from collapsing to a single mode. Second, it ensures the policy doesn’t learn
to produce outputs that are too different from those that the reward model has seen during training.



Collect comparison data and
train a reward model.

InstructGPT: Training language models to follow instructions  apomptandsevera r
. model outputs are Explain reinforcement
Wlth h u m a n fee d b a C k sampled. learning to a 6 year old.
|nre<$mem o
Step 1: Collect demonstration data, and train a supervised policy. Our labelers provide demon- () 0
strations of the desired behavior on the input prompt distribution (see Section 3.2 for details on this .
distribution). We then fine-tune a pretrained GPT-3 model on this data using supervised learning. ~ i o
Step 2: Collect comparison data, and train a reward model. We collect a dataset of comparisons A labeler ranks the @
between model outputs, where labelers indicate which output they prefer for a given input. We then outputs from best
train a reward model to predict the human-preferred output. to worst. 0-0-0-0
Step 3: Optimize a policy against the reward model using PPO. We use the output of the &
RM as a scalar reward. We fine-tune the supervised policy to optimize this reward using the PPO iy
algorithm (Schulman et al., 2017). o
- ( ) This data is used to o/)?j\\o
train our reward model. W
0-0-0-0

https://openai.com/index/chatgpt/

Slide: Weizhi Wang CENG501
https://victorwz.github.io/additional_files/slides_gpt_cs291A.pdf



InstructGPT: Reward Model

Specifically, the loss function for the reward model is:

1
loss () = — — E(z,y ,u1)~D 108 (0 (7o (%, Yw) — 70 (z,31)))] (1)

()

where 7¢(x, y) is the scalar output of the reward model for prompt 2 and completion y with parameters
0, y., 1s the preferred completion out of the pair of y,, and y;, and D is the dataset of human
comparisons.

Slide: Weizhi Wang CENG501
https://victorwz.github.io/additional_files/slides_gpt_cs291A.pdf



InstructGPT: PPO

We also experiment with mixing the pretraining gradients into the PPO gradients, in order to fix the
performance regressions on public NLP datasets. We call these models “PPO-ptx.” We maximize the
following combined objective function in RL training:

objective (¢) =E(z.y)~p s [ro(@,y) — Blog (w5"(y | 2)/ >y | 2))] +

. (2)
’YEm"VDpretrain [log(ﬂ-qb (x))]
where WQP}L is the learned RL policy, 755" is the supervised trained model, and Dpyetrain is the

pretraining distribution. The KL reward coefficient, /3, and the pretraining loss coefficient, -y, control
the strength of the KL penalty and pretraining gradients respectively. For "PPO" models, -y is set to 0.
Unless otherwise specified, in this paper InstructGPT refers to the PPO-ptx models.

Slide: Weizhi Wang CENG501
https://victorwz.github.io/additional_files/slides_gpt_cs291A.pdf
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ﬁ 0.6 - -
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L =0 PPO-ptx
N
= PPO
C
‘@ 041 SFT
&
O GPT (prompted)
& GPT
£
S 021
1.3B 6B 1758

Model size

Figure 1: Human evaluations of various models on our API prompt distribution, evaluated by how
often outputs from each model were preferred to those from the 175B SFT model. Our InstructGPT
models (PPO-ptx) as well as its variant trained without pretraining mix (PPO) significantly outperform
the GPT-3 baselines (GPT, GPT prompted); outputs from our 1.3B PPO-ptx model are preferred to
those from the 175B GPT-3. Error bars throughout the paper are 95% confidence intervals.

Slide: Weizhi Wang CENG501
https://victorwz.github.io/additional_files/slides_gpt_cs291A.pdf



GPT distribution Instruct distribution
L 075 |2
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=
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Model size
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GPT (prompted) SFT PPO —e- PPO-ptx

Figure 3: Preference results of our models, measured by winrate against the 175B SFT model. Left:
results on prompts submitted to GPT models on the API; Right: results on prompts submitted to
InstructGPT models on the API; Top: results from held-out labelers; Bottom: results from training
labelers. We omit GPT (prompted) from the evals on prompts submitted to GPT-3 models (left) as
these prompts are already designed to perform well for GPT-3, as opposed to prompts submitted to

InstructGPT models (right).

Slide: Weizhi Wang
https://victorwz.github.io/additional_files/slides_gpt_cs291A.pdf
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Google DeepMind

Gemini: A Family of Highly Capable
Other LLMs Multimodal Models

Gemini Team, Google!

Input
Sequence
Aa —
— s N
. Image +
'll Decoder | | L&
— 4
— - e
Text +
Decoder 7 Aa

Figure 2 | Gemini models support interleaved sequences of text, image, audio, and video as inputs
(illustrated by tokens of different colors in the input sequence). They can output responses with
interleaved image and text.

CENG501



LLaMA: Open and Efficient Foundation Language Models

Hugo Touvron; Thibaut Lavril; Gautier Izacard; Xavier Martinet

Marie-Anne Lachaux, Timothee Lacroix, Baptiste Roziére, Naman Goyal
t e r L I_ I\/I S Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin

Edouard Grave; Guillaume Lample*

Meta Al 2023

2 Avbpproach This paper was published in 2022. The main goal of this paper was to find

PP the relationship between three factors. These factors are model size, number
Our tl‘aining approach 1s similar to the methods of tokens, and compute budget. They came to the conclusion that the current
described in previous work (Brown et al., 2020; LLMs like 175B GPT-3, 280B Gopher, and 530B Megatron are significantly
Chowdhery et al., 2022), and is inspired by the undertrained. All these models have increased the number of parameters
Chinchilla scaling laws (Hoffmann et al 2022) but the training data remained constant. The authors mention that for
We train large transformers on a large quantity of compute-optimal training, the number of training tokens and model size

textual data using a standard optimizer must be scaled equally. They trained about 400 language models ranging

from 70 million to over 16 billion parameters on 5 to 500 billion tokens.

After finding the relationship between the three factors, they trained a new LLM
called Chinchilla which uses same compute budget as 280B Gopher but has 70B
parameters and 4 times more training data. Chinchilla outperforms Gopher
(280B), GPT-3 (175B), Jurassic-1 (178B), and Megatron (530B). This result is in
contradiction to the “Scaling laws for LLMs” by OpenAl. Now, relatively
smaller models can give better performance if trained on more data. Smaller

models are easy to fine-tune and also have less latency at inference. These

cend. models should not be to their lowest possible loss to be compute optimal.

https://medium.com/@raniahossam/chinchilla-scaling-laws-for-large-language-models-lims-40c4 34edelcl



Sparks of Artificial General Intelligence:
Early experiments with GPT-4

I_ | I I I I tS Of I— I— IVI S Sébastien Bubeck Varun Chandrasekaran Ronen Eldan Johannes Gehrke
Eric Horvitz Ece Kamar Peter Lee Yin Tat Lee Yuanzhi Li Scott Lundberg

Harsha Nori Hamid Palangi Marco Tulio Ribeiro Yi Zhang

Microsoft Research
2023

Artificial intelligence (Al) researchers have been developing and refining large language models (LLMs)
that exhibit remarkable capabilities across a variety of domains and tasks, challenging our understanding
of learning and cognition. The latest model developed by OpenAl, GPT-4 |Ope23|, was trained using an
unprecedented scale of compute and data. In this paper, we report on our investigation of an early version
of GPT-4, when it was still in active development by OpenAl. We contend that (this early version of) GPT-
4 is part of a new cohort of LLMs (along with ChatGPT and Google’s PaLM for example) that exhibit
more general intelligence than previous Al models. We discuss the rising capabilities and implications of
these models. We demonstrate that, beyond its mastery of language, GPT-4 can solve novel and difficult
tasks that span mathematics, coding, vision, medicine, law, psychology and more, without needing any
special prompting. Moreover, in all of these tasks, GPT-4’s performance is strikingly close to human-level
performance, and often vastly surpasses prior models such as ChatGPT. Given the breadth and depth of
GPT-4’s capabilities, we believe that it could reasonably be viewed as an early (yet still incomplete) version
of an artificial general intelligence (AGI) system. In our exploration of GPT-4, we put special emphasis
on discovering its limitations, and we discuss the challenges ahead for advancing towards deeper and more
comprehensive versions of AGI, including the possible need for pursuing a new paradigm that moves beyond
next-word prediction. We conclude with reflections on societal influences of the recent technological leap and
future research directions.

CENG501



Faith and Fate:
Limits of Transformers on Compositionality

Limits of LLMs

Nouha Dziri'*, Ximing Lu'-?*, Melanie Sclar**, Xiang Lorraine Li'f, Liwei Jiang' 2 T,
Bill Yuchen Lin', Peter West':>, Chandra Bhagavatula', Ronan Le Bras', Jena D. Hwang',
Soumya Sanyal®, Sean Welleck'-?, Xiang Ren'-?, Allyson Ettinger'-,

Zaid Harchaoui'2, Yejin Choi'-2

!Allen Institute for Artificial Intelligence  2University of Washington
3University of Southern California *University of Chicago

n 2023

nouhad@allenai.org, ximinglu@allenai.org, msclar@cs.washington.edu

Transformer large language models (LLMs) have sparked admiration for their
exceptional performance on tasks that demand intricate multi-step reasoning. Yet,
these models simultaneously show failures on surprisingly trivial problems. This
begs the question: Are these errors incidental, or do they signal more substantial
limitations? In an attempt to demystify Transformers, we investigate the limits of
these models across three representative compositional tasks—multi-digit multi-
plication, logic grid puzzles, and a classic dynamic programming problem. These
tasks require breaking problems down into sub-steps and synthesizing these steps
into a precise answer. We formulate compositional tasks as computation graphs to
systematically quantify the level of complexity, and break down reasoning steps
into intermediate sub-procedures. Our empirical findings suggest that Transformers
solve compositional tasks by reducing multi-step compositional reasoning into
linearized subgraph matching, without necessarily developing systematic problem-
solving skills. To round off our empirical study, we provide theoretical arguments
on abstract multi-step reasoning problems that highlight how Transformers’ perfor-
mance will rapidly decay with increased task complexity.
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Taxonomy of Risks posed by Language Models

Laura Weidinger* Jonathan Uesato Maribeth Rauh Conor Griffin
DeepMind DeepMind DeepMind DeepMind
Risks of LLM y UK . a
I S S O S Po-Sen Huang John Mellor Amelia Glaese Myra ChengJr
DeepMind DeepMind DeepMind DeepMind
UK UK UK UK
Borja Balle Atoosa Kasirzadeh* Courtney Biles Sasha Brown
DeepMind DeepMind DeepMind DeepMind
[ [} L) . L) UK UK UK UK
* Risk area 1: Discrimination, Hate
) Zac Kenton Will Hawkins Tom Stepleton Abeba Birhane®
M DeepMind DeepMind DeepMind DeepMind
speech and Exclusion i e o 8
. . Lisa Anne Hendricks Laura Rimell William Isaac Julia Haas
* Social stereotypes and unfair Decphind DeepMind Decphind DecpMind
. L] L] L] []K UK UK [JK
d ISCrimina t Ion Sean Legassick Geoffrey Irving Iason Gabriel 2022
. DeepMind DeepMind DeepMind
* Hate speech and offensive language UK U UK

e Exclusionary norms

* Lower performance for some
languages and social groups

CENG501



Risks of LLMs

 Risk area 2: Information Hazards
 Compromising privacy by leaking
sensitive information
 Compromising privacy or security by
correctly inferring sensitive information
* Risk area 3: Misinformation Harms

* Disseminating false or misleading
information

e Causing material harm by
disseminating false or poor information
e.g. in medicine or law

CENG501
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Risks of LLMs

e Risk area 4: Malicious Uses

* Making disinformation cheaper and
more effective

* Anticipated risks

* Assisting code generation for cyber
security threats

* Facilitating fraud, scams and targeted
manipulation

* lllegitimate surveillance and
censorship

* Risk area 5: Human-Computer
Interaction Harms

CENG501
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Risks of LLMs

* Risk area 5: Human-Computer
Interaction Harms

* Promoting harmful stereotypes by
implying gender or ethnic identity

* Anthropomorphising systems can
lead to overreliance or unsafe use

* Avenues for exploiting user trust
and accessing more private
information

 Human-like interaction may amplify
opportunities for user nudging,
deception or manipulation
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Risks of LLMs

e Risk area 6: Environmental and
Socioeconomic harms
 Environmental harms from
operating LMs
* Anticipated risks:

* Increasing inequality and negative
effects on job quality

* Undermining creative economies

* Disparate access to benefits due to
hardware, software, skill constraints

CENG501
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On the Dangers of Stochastic Parrots:
Can Language Models Be Too Big? &

Emily M. Bender”
ebender@uw.edu
University of Washington
Seattle, WA, USA

Angelina McMillan-Major
aymm@uw.edu
University of Washington
Seattle, WA, USA

* Environmental & financial costs

* Require vast data

* Not necessarily diverse
* Includes bias
» Accountability/liability

e Stochastic Parrots

Timnit Gebru*

timnit@blackinai.org

Black in AI

Palo Alto, CA, USA
Shmargaret Shmitchell
shmargaret.shmitchell@gmail.com

The Acther FaccT2021
Year Model # of Parameters Dataset Size
2019 BERT [39] 3.4E+08 16GB
2019  DistilBERT [113] 6.60E+07 16GB
2019  ALBERT [70] 2.23E+08 16GB
2019  XLNet (Large) [150] 3.40E+08 126GB
2020 ERNIE-GEN (Large) [145] 3.40E+08 16GB
2019 RoBERTa (Large) [74] 3.55E+08 161GB
2019  MegatronLM [122] 8.30E+09 174GB
2020 T5-11B [107] 1.10E+10 745GB
2020 T-NLG [112] 1.70E+10 174GB
2020 GPT-3 [25] 1.75E+11 570GB
2020  GShard [73] 6.00E+11 -
2021  Switch-C [43] 1.57E+12 745GB

Sinan Kalkan

Table 1: Overview of recent large language models
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