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Qé’?\ * Autoregressive language modeling
* Masked language modeling
* Next sentence prediction
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% « 12 layer decoder-only
transformer

* Unsupervised
pretraining
* BookCorpus dataset

* Supervised finetuning
e Textual alignment

e QA & commonsense
reasoning

* Semantic similarity
* Classification
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Text & Position Embed

OpenAl Technical Report, 2018

Improving Language Understanding
by Generative Pre-Training
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Figure 1: (left) Transformer architecture and training objectives used in this work. (right) Input
transformations for fine-tuning on different tasks. We convert all structured inputs into token
sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

Sinan Kalkan 3



e"&
GRF-1
N

Q.\<>\>'T)isc:riminative FiIne-tuning

Text Task o S
Prediction | Classifier Classification Start Text Extract :|—> Transformer > Linear
T ‘l — .................................................................................
Entailment Start Premise Delim | Hypothesis | Extract | > Transformer > Linear
Layer Norm _
Eeed Eorward Start Text 1 Delim Text 2 Extract | > Transformer
7 Similarity z Linear
12x — .
Start Text 2 Delim Text 1 Extract | > Transformer
Layer Norm - 7
$ - Start Context Delim Answer 1 | Extract | Transformer { Linear
Masked Multi |
Self Attention —
1 Multiple Choice | Start Context Delim | Answer 2 | Extract | » Transformer > Linear
Text & Position Embed Start Context Delim | Answer N | Extract |+ Transformer (= Linear
Slide: Weizhi Wang CENG501

https://victorwz.github.io/additional_files/slides_gpt_cs291A.pdf



o

O
GoEf-l Results
AN

Table 2: Experimental results on natural language inference tasks, comparing our model with current
state-of-the-art methods. 5x indicates an ensemble of 5 models. All datasets use accuracy as the

evaluation metric.

Method MNLI-m MNLI-mm SNLI SciTail QNLI RTE
ESIM + ELMo [44] (5%) - - 89.3 - - -
CAFE [58] (5x) 80.2 79.0 89.3 - - -
Stochastic Answer Network [35] (3x) 80.6 80.1 - - - -
CAFE [58] 78.7 77.9 88.5 83.3

GenSen [64] 71.4 71.3 - - 823 592
Multi-task BiLSTM + Attn [64] 72.2 72.1 - - 82.1 61.7
Finetuned Transformer LM (ours) 82.1 814 89.9 88.3 88.1 56.0
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Q» BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding
oY 2018
B E | Q E Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova
(\ Google Al Language
*o {jacobdevlin,mingweichang, kentonl, kristout}@google.com
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Masked Sentence A Masked Sentence B Question Paragraph
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Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).
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(Ldylodel Title Focus Paradigm Params
6‘) GPT-1 Improving Language NLU tasks, pre-trained | Pre-training->Efficient Fine- | 117M
@é Understanding by model tuning
(/ Generative Pre-Training
Oo GPT-2 Language Models are Zero-shot Evaluation, | Pre-training->Zero-shot 1.5B
‘7\* Unsupervised Multitask | NLG Tasks Multitask Transfer
,\o\)‘ Learners
QQ GPT-3 Language Models are Few-shot Learning or | In-context Learning with a 175B
Q‘ Few-Shot Learners In-context Learning few demonstration
examples
GPT- N/A NLG with human Pre-training->RLHF 175B + 6B
3.5/ patterns reward
ChatGPT model

 GPT is out before BERT.

Tuning with Auxiliary LM

Model GPT BERT/RoBERTa

Type Autoregressive Language Model Autoencoding Language Model

Training Causal Language Modeling Masked Language Modeling, (Next Sentence
Objectives Prediction)

Paradigm Pre-training to Discriminative Fine- | Pre-training to Span-based Fine-tuning

Evaluation Tasks | NLU (GLUE),

NLU (GLUE), Short-Answer QA (Squad), NER,
SWAG

Slide: Weizhi Wang
https://victorwz.github.io/additional_files/slides_gpt_cs291A.pdf
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Abstract

Q‘Q Natural language processing tasks, such as ques-

tion answering, machine translation, reading com-
prehension, and summarization, are typically
approached with supervised learning on task-
specific datasets. We demonstrate that language
models begin to learn these tasks without any ex-
plicit supervision when trained on a new dataset
of millions of webpages called WebText. When
conditioned on a document plus questions, the an-
swers generated by the language model reach 55
F1 on the CoQA dataset - matching or exceeding
the performance of 3 out of 4 baseline systems
without using the 127,000+ training examples.
The capacity of the language model is essential
to the success of zero-shot task transfer and in-
creasing it improves performance in a log-linear
fashion across tasks. Our largest model, GPT-2,
is a 1.5B parameter Transformer that achieves
state of the art results on 7 out of 8 tested lan-
guage modeling datasets in a zero-shot setting
but still underfits WebText. Samples from the
model reflect these improvements and contain co-
herent paragraphs of text. These findings suggest
a promising path towards building language pro-
cessing systems which learn to perform tasks from
their naturally occurring demonstrations.

OpenAl Technical Report, 2019.

Language Models are Unsupervised Multitask Learners

Alec Radford *! Jeffrey Wu *! Rewon Child' David Luan' Dario Amodei ** ' Ilya Sutskever **

# of parameters in LM

# of parameters in LM
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# of parameters in LM
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e Approach: Train a transformer
with large amounts of web data

* Objective: Next symbol
prediction

symbols as the product of conditional probabilities (Jelinek
& Mercer, 1980) (Bengio et al., 2003):

n

p(z) = [[p(snlst, .., sn-1) (1)

i=1
This approach allows for tractable sampling from and es-
timation of p(z) as well as any conditionals of the form

D(Sn—ky vy Sn|S1, .-y Sn—k—1)- In recent years, there have

Sinan Kalkan

”I’m not the cleverest man in the world, but like they say in
French: Je ne suis pas un imbecile [I’m not a fool].

In a now-deleted post from Aug. 16, Soheil Eid, Tory candidate
in the riding of Joliette, wrote in French: “Mentez mentez,
il en restera toujours quelque chose,” which translates as,
’Lie lie and something will always remain.”

239

“I hate the word ‘perfume,”” Burr says. ‘It’s somewhat better
in French: ‘parfum.

If listened carefully at 29:55, a conversation can be heard
between two guys in French: “~-Comment on fait pour aller
de ’autre coté? -Quel autre coté?”, which means “- How
do you get to the other side? - What side?”.

If this sounds like a bit of a stretch, consider this ques-
tion in French: As-tu aller au cinéma?, or Did you go to
the movies?, which literally translates as Have-you to go to
movies/theater?

“Brevet Sans Garantie Du Gouvernement”, translated to
English: “Patented without government warranty”.

Table 1. Examples of naturally occurring demonstrations of En-
glish to French and French to English translation found throughout
the WebText training set.

10



LAMBADA LAMBADA CBT-CN CBT-NE WikiText2 PTB enwik8 text8 WikiTextl03  1BW

(PPL) (ACC) (ACC) (ACC) (PPL) (PPL) (BPB)  (BPC) (PPL) (PPL)

SOTA 99.8 59.23 85.7 82.3 39.14 46.54 0.99 1.08 18.3 21.8
117M 35.13 45.99 87.65 83.4 2941 65.85 1.16 1.17 37.50 75.20
345M 15.60 55.48 92.35 87.1 22.76 47.33 1.01 1.06 26.37 55.72
762M 10.87 60.12 93.45 38.0 19.93 40.31 0.97 1.02 22.05 44.575
1542M 8.63 63.24 93.30 89.05 18.34 35.76 0.93 0.98 17.48 42.16

Table 3. Zero-shot results on many datasets. No training or fine-tuning was performed for any of these results. PTB and WikiText-2
results are from (Gong et al., 2018). CBT results are from (Bajgar et al., 2016). LAMBADA accuracy result is from (Hoang et al., 2018)
and LAMBADA perplexity result is from (Grave et al., 2016). Other results are from (Dai et al., 2019).

Slide: Weizhi Wang

https://victorwz.github.io/additional_files/slides_gpt_cs291A.pdf
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Figure 1.1: Language model meta-learning. During unsupervised pre-training, a language model develops a broad
set of skills and pattern recognition abilities. It then uses these abilities at inference time to rapidly adapt to or recognize
the desired task. We use the term “in-context learning™ to describe the inner loop of this process, which occurs within
the forward-pass upon each sequence. The sequences in this diagram are not intended to be representative of the data a
model would see during pre-training, but are intended to show that there are sometimes repeated sub-tasks embedded
within a single sequence.
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Language Models are Few-Shot Learners

Tom B. Brown* Benjamin Mann* Nick Ryder* Melanie Subbiah*
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Rewon Child Aditya Ramesh Daniel M. Ziegler Jeffrey Wu Clemens Winter
Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray
Benjamin Chess Jack Clark Christopher Berner
Sam MecCandlish Alec Radford Ilya Sutskever Dario Amodei
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Figure 1.2: Larger models make increasingly efficient use of in-context information. We show in-context learning
performance on a simple task requiring the model to remove random symbols from a word, both with and without a
natural language task description (see Sec. 3.9.2). The steeper “in-context learning curves” for large models demonstrate
improved ability to learn a task from contextual information. We see qualitatively similar behavior across a wide range
of tasks.

12



°
Q‘z Three ways of in-context learning:
In a single sequence input, the
Zero-shot
The model predicts the answer given only a natural language prompted example can Iearn frOm
description of the task. No gradient updates are performed. preV|ous demOnStr'athnS
Translate English to French: task description Few-shot
cheese => pratupt In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.
One-shot Translate English to French: task description
In addition to the task description, the model sees a single
example of the task. No gradient updates are performed. sea otter => loutre de mer examples
peppermint => menthe poivrée
Translate English to French: task description
plush girafe => girafe peluche
sea otter => loutre de mer example
cheese => prompt
cheese => prompt
Slide: Weizhi Wang CENG501

https://victorwz.github.io/additional_files/slides_gpt_cs291A.pdf
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<SGPT-3 Results: NLU of SuperGLUE

(,\* SuperGLUE Performance In-Context Learning on SuperGLUE
() i i 2
Q\o go Human __________________ - ity . 9o Human ______ o | [ BENESROEGES IR
[ Fine-tuned SOTA ~ —@— One-shot ' Fine-tuned SOTA ~— T TTEEEEEEEEEEEE
Q‘ —8— Few-shot (K=32)
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o
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o
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o
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Figure 3.8: Performance on SuperGLUE increases with model size and number of examples in context. A value
of K = 32 means that our model was shown 32 examples per task, for 256 examples total divided across the 8 tasks in
SuperGLUE. We report GPT-3 values on the dev set, so our numbers are not directly comparable to the dotted reference
lines (our test set results are in Table 3.8). The BERT-Large reference model was fine-tuned on the SuperGLUE training
set (125K examples), whereas BERT++ was first fine-tuned on MultiNLI (392K examples) and SWAG (113K examples)
before further fine-tuning on the SuperGLUE training set (for a total of 630K fine-tuning examples). We find the
difference in performance between the BERT-Large and BERT++ to be roughly equivalent to the difference between
GPT-3 with one example per context versus eight examples per context.

Slide: Weizhi Wang CENG501
https://victorwz.github.io/additional_files/slides_gpt_cs291A.pdf
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¥ Key to Success: Data Resources

Model | Pre-training Data Size
GPT-1 BooksCorpus (7000 books) 5GB
BERT BooksCorpus, En-Wikipedia 16GB
GPT-2 WebText 40GB
RoBERTa | BooksCorpus, CC-News, OpenWebText(WebText), Stories 160GB
GPT-3 CC(Common Crawl), WebText2, Books1, Books2, Wikipedia ~700GB
GPT-J Pile Corpus 800GB

Slide: Weizhi Wang

CENG501

https://victorwz.github.io/additional_files/slides_gpt_cs291A.pdf




RC
o
NN
AN
O
3©
2 . |
Q¢ Key to Success: Scaling Up
Model Name Nparams  Mlayers  @model  Theads dhead Batch Size  Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 10~*
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0 x 1074
GPT-3 Large 760M 24 1536 16 96 0.5M 2.5 x 1074
GPT-3 XL 1.3B 24 2048 24 128 IM 2.0 x 1074
GPT-3 2.7B 2.7B 32 2560 32 80 IM 1.6 x 1074
GPT-3 6.7B 6.7B 32 4096 32 128 2M 1.2 x 107*
GPT-3 13B 13.0B 40 5140 40 128 2M 1.0 x 1074
GPT-3 175B or “GPT-3” 175.0B 96 12288 96 128 3.2M 0.6 x 10~4
Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models
which we trained. All models were trained for a total of 300 billion tokens.
Slide: Weizhi Wang CENG501
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Step 1 QN

and traina

vised policy.

Collect demoné@%on data
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o
AN

'\Q prompt is sample from
zA our prompt dataset.

Q‘(

A labeler demonstrates
the desired output
behavior.

This data is used to
fine-tune GPT-3.5 with
supervised learning.

https://openai.com/index/chatgpt/

~
L

Explain reinforcement
learning to a 6 year old.

i

)

V4

We give treats and

punishments to teach...

Step 2

Collect comparison data and
train a reward model.

A prompt and several {:j
model outputs are Explain reinforcement
sampled. learning to a 6 year old.

0 o

In reinforcement Explain rewards...
learning, the
agentis...

[C) o

In machine We give treats and
learning... punishments to
teach...

. -

Alabeler ranks the
outputs from best

to worst. o,e,e,e
RM
.0
This data is used to oi/?j%\,o
train our reward model. }S&{

Sinan Kalkan

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new promptis v g
sampled from Write a story
the dataset. about otters.
i PPO
The PPO model is °. .0
initialized from the ./)?.?Q. N
supervised policy. =

The policy generates

an output.

The reward model .RM.

calculates a reward .//?.?\\.

for the output. W

The reward is used -
to update the policy rk

using PPO.
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Google DeepMind

o
<
S Gemini: A Family of Highly Capable
O;Qﬁb er LLMs Multimodal Models
N

6 Gemini Team, Google!
°
¥

Input

Sequence
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ali Image +
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Figure 2 | Gemini models support interleaved sequences of text, image, audio, and video as inputs
(illustrated by tokens of different colors in the input sequence). They can output responses with
interleaved image and text.
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2 Approach

Our training approach is similar to the methods
described in previous work (Brown et al., 2020;
Chowdhery et al., 2022), and is inspired by the

Chinchilla scaling laws (Hoffmann et al., 2022).

We train large transformers on a large quantity of
textual data using a standard optimizer.

LLaMA: Open and Efficient Foundation Language Models

Hugo Touvron; Thibaut Lavril; Gautier Izacard; Xavier Martinet
Marie-Anne Lachaux, Timothee Lacroix, Baptiste Roziére, Naman Goyal
Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin
Edouard Grave; Guillaume Lample*

2023

Meta Al

This paper was published in 2022. The main goal of this paper was to find
the relationship between three factors. These factors are model size, number
of tokens, and compute budget. They came to the conclusion that the current
LLMs like 175B GPT-3, 280B Gopher, and 530B Megatron are significantly
undertrained. All these models have increased the number of parameters
but the training data remained constant. The authors mention that for
compute-optimal training, the number of training tokens and model size
must be scaled equally. They trained about 400 language models ranging

from 70 million to over 16 billion parameters on 5 to 500 billion tokens.

After finding the relationship between the three factors, they trained a new LLM
called Chinchilla which uses same compute budget as 280B Gopher but has 70B
parameters and 4 times more training data. Chinchilla outperforms Gopher
(280B), GPT-3 (175B), Jurassic-1 (178B), and Megatron (530B). This result is in
contradiction to the “Scaling laws for LLMs” by OpenAl. Now, relatively
smaller models can give better performance if trained on more data. Smaller

models are easy to fine-tune and also have less latency at inference. These

cend. models should not be to their lowest possible loss to be compute optimal.

https://medium.com/@raniahossam/chinchilla-scaling-laws-for-large-language-models-lims-40c4 34edelcl



c)Q» Sparks of Artificial General Intelligence:
(G Early experiments with GPT-4

Harsha Nori Hamid Palangi Marco Tulio Ribeiro Yi Zhang

Microsoft Research

Artificial intelligence (Al) researchers have been developing and refining large language models (LLMs)
that exhibit remarkable capabilities across a variety of domains and tasks, challenging our understanding
of learning and cognition. The latest model developed by OpenAl, GPT-4 |Ope23|, was trained using an
unprecedented scale of compute and data. In this paper, we report on our investigation of an early version
of GPT-4, when it was still in active development by OpenAl. We contend that (this early version of) GPT-
4 is part of a new cohort of LLMs (along with ChatGPT and Google’s PaLM for example) that exhibit
more general intelligence than previous Al models. We discuss the rising capabilities and implications of
these models. We demonstrate that, beyond its mastery of language, GPT-4 can solve novel and difficult
tasks that span mathematics, coding, vision, medicine, law, psychology and more, without needing any
special prompting. Moreover, in all of these tasks, GPT-4’s performance is strikingly close to human-level
performance, and often vastly surpasses prior models such as ChatGPT. Given the breadth and depth of
GPT-4’s capabilities, we believe that it could reasonably be viewed as an early (yet still incomplete) version
of an artificial general intelligence (AGI) system. In our exploration of GPT-4, we put special emphasis
on discovering its limitations, and we discuss the challenges ahead for advancing towards deeper and more
comprehensive versions of AGI, including the possible need for pursuing a new paradigm that moves beyond
next-word prediction. We conclude with reflections on societal influences of the recent technological leap and
future research directions.

CENG501
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Faith and Fate:
Limits of Transformers on Compositionality

Nouha Dziri'*, Ximing Lu'-?*, Melanie Sclar**, Xiang Lorraine Li'f, Liwei Jiang' 2 T,
Bill Yuchen Lin', Peter West':>, Chandra Bhagavatula', Ronan Le Bras', Jena D. Hwang',
Soumya Sanyal®, Sean Welleck'-?, Xiang Ren'-?, Allyson Ettinger'-,

Zaid Harchaoui'2, Yejin Choi'-2
! Allen Institute for Artificial Intelligence  ?University of Washington
3University of Southern California *University of Chicago

nouhad@allenai.org, ximinglu@allenai.org, msclar@cs.washington.edu

Transformer large language models (LLMs) have sparked admiration for their
exceptional performance on tasks that demand intricate multi-step reasoning. Yet,
these models simultaneously show failures on surprisingly trivial problems. This
begs the question: Are these errors incidental, or do they signal more substantial
limitations? In an attempt to demystify Transformers, we investigate the limits of
these models across three representative compositional tasks—multi-digit multi-
plication, logic grid puzzles, and a classic dynamic programming problem. These
tasks require breaking problems down into sub-steps and synthesizing these steps
into a precise answer. We formulate compositional tasks as computation graphs to
systematically quantify the level of complexity, and break down reasoning steps
into intermediate sub-procedures. Our empirical findings suggest that Transformers
solve compositional tasks by reducing multi-step compositional reasoning into
linearized subgraph matching, without necessarily developing systematic problem-
solving skills. To round off our empirical study, we provide theoretical arguments
on abstract multi-step reasoning problems that highlight how Transformers’ perfor-
mance will rapidly decay with increased task complexity.

CENG501
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Ris®s of LLMs
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Q@\ * Risk area 1: Discrimination, Hate
speech and Exclusion

e Social stereotypes and unfair
discrimination

* Hate speech and offensive language
e Exclusionary norms

* Lower performance for some
languages and social groups

CENG501

Taxonomy of Risks posed by Language Models

Laura Weidinger*

Jonathan Uesato Maribeth Rauh Conor Griffin
DeepMind DeepMind DeepMind DeepMind
UK UK UK UK
Po-Sen Huang John Mellor Amelia Glaese Myra Cheng’
DeepMind DeepMind DeepMind DeepMind
UK UK UK UK
Borja Balle Atoosa Kasirzadeh* Courtney Biles Sasha Brown
DeepMind DeepMind DeepMind DeepMind
UK UK UK UK
Zac Kenton Will Hawkins Tom Stepleton Abeba Birhane®
DeepMind DeepMind DeepMind DeepMind
UK UK UK UK
Lisa Anne Hendricks Laura Rimell William Isaac Julia Haas
DeepMind DeepMind DeepMind DeepMind
UK UK UK UK
Sean Legassick Geoffrey Irving Tason Gabriel 2022
DeepMind DeepMind DeepMind
UK UK UK



(/ Emily M. Bender”
oo ebender@uw.edu

* University of Washington
\ Seattle, WA, USA

(Xo) Angelina McMillan-Major
4\ aymm@uw.edu
‘z University of Washington
Seattle, WA, USA

* Environmental & financial costs

* Require vast data

* Not necessarily diverse
* Includes bias
» Accountability/liability

e Stochastic Parrots

On the Dangers of Stochastic Parrots:
Can Language Models Be Too Big? &

Timnit Gebru*

timnit@blackinai.org

Black in Al

Palo Alto, CA, USA
Shmargaret Shmitchell
shmargaret.shmitchell@gmail.com

The Acther FaccT2021
Year Model # of Parameters Dataset Size
2019 BERT [39] 3.4E+08 16GB
2019  DistilBERT [113] 6.60E+07 16GB
2019  ALBERT [70] 2.23E+08 16GB
2019  XLNet (Large) [150] 3.40E+08 126GB
2020 ERNIE-GEN (Large) [145] 3.40E+08 16GB
2019 RoBERTa (Large) [74] 3.55E+08 161GB
2019  MegatronLM [122] 8.30E+09 174GB
2020 T5-11B [107] 1.10E+10 745GB
2020 T-NLG [112] 1.70E+10 174GB
2020 GPT-3 [25] 1.75E+11 570GB
2020  GShard [73] 6.00E+11 -
2021  Switch-C [43] 1.57E+12 745GB

Sinan Kalkan

Table 1: Overview of recent large language models
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Today

e Using Pretrained LLMs

* In-context Learning
e Retrieval Augmented Generation
* Finetuning

CENG501



Administrative Notes

* No quiz this week

* Time plan for the projects

1.

Milestone (November 24, midnight):

e Github repo will be ready

* Read & understand the paper

* Download the datasets

* Prepare the Readme file excluding the results & conclusion
Milestone (December 8, midnight)

e The results of the first experiment

Milestone (January 5, midnight)

* Final report (Readme file)

* Repo with all code & trained models

CENG501



In-Context Learning
(Prompt Engineering)

CCCCCCC



In-context Learning
(Prompt Engineering)

Three ways of in-context learning:
In a single sequence input, the

Zero-shot
The model predicts the answer given only a natural language prom pted example can Iearn frOm
description of the task. No gradient updates are performed. preV|ous demOnStI"athnS

Translate English to French: task description Few-shot

cheese => pratupt In addition to the task description, the model sees a few

examples of the task. No gradient updates are performed.

One-shot Translate English to French: task description
In addition to the task description, the model sees a single
example of the task. No gradient updates are performed. sea otter => loutre de mer examples

peppermint => menthe poivrée

Translate English to French: task description
plush girafe => girafe peluche
sea otter => loutre de mer example
cheese => prompt
cheese => prompt
Slide: Weizhi Wang CENG501

https://victorwz.github.io/additional_files/slides_gpt_cs291A.pdf



In-context Learning

e Simplifies providing examples
(from human experts)

* As opposed to updating the
weights of the network via
finetuning

* “Example-based Specification”,
Programming by example.

* Provides on par performance
with supervised models

* More params, better in-context
learning

CENG501

Circulation revenue has increased by
5% in Finland. // Finance

They defeated ... in the NFC
Championship Game. // Sports

Apple ... development of in-house
chips. // Tech

The company anticipated its operating
profit to improve. //

https://ai.stanford.edu/blog/understanding-incontext/



In-context Learning: How/Why Does it Work?

1. Pretraining documents
are conditioned on a
latent concept (e.g.,
biographical text)

Albert Einstein was a German theoretical physicist, widely
acknowledged to be one of the greatest physicists of all time.

Einstein is best known for developing the theory of relativity, but
he also ....

Concept
(e.g., wiki bio)

Input (x) Output (y)  Delimiter

2. Create independent Albert Einstein was German \n
examples from a shared /

concept. If we focus on full
names, wiki bios tend to
relate them to nationalities.

Concept

(e.g., wiki bio) / — Mahatma Gandhi was Indian \n

. . ..brilliant?
\A Marie Curie was ?

...Polish?

3. Concatenate examples into a prompt and predict next word(s). Language model (LM) implicitly
infers the shared concept across examples despite the unnatural concatenation

Albert Einstein was German \n Mahatma Gandhi was Indian \n Marie Curiewas @—»| LM |—>  Polish

Xie et al., “An Explanation of In-context Learning as Implicit Bayesian Inference”, ICLR 2022.

CENG501



In-context Learning: How/Why Does it Work?

A Bayesian interpretation:

p(output|prompt) = f p(output|concept, prompt)p(concept|prompt)d(concept)
concept
* During pretraining, the network learns a latent concept space.
* With the prompt, we provide sufficient examples to estimate the most relevant
concept — p(concept | prompt).

Xie et al., “An Explanation of In-context Learning as Implicit Bayesian Inference”, ICLR 2022.

CENG501



In-context Learning: How/Why Does it Work?

Circulation revenue has increased by 5% in Finland. // Finance
They defeated ... in the NFC Championship Game. // Sports

Apple ... development of in-house chips. // Tech

Not an easy task since examples might be unrelated to each other!

“We can think of the training examples as providing a signal for Bayesian inference. In particular, the transitions
within training examples (green in the figure above) allow the LM to infer the latent concept they all share. In a
prompt, the green transitions come from the input distribution (the transitions inside the news sentence), the
output distribution (the topic word), the format (syntax of news sentence), and the input-output mapping
(relation between the news and the topic) all provide signal for Bayesian inference.”

CENG501
Xie et al., “An Explanation of In-context Learning as Implicit Bayesian Inference”, ICLR 2022.



La:rge Language Model (T) Yellow

In-context learning: MITIrrrn
Task vectors

Hendel et al., "In-Context Learning Creates Task D [:] D D D DD |E
A s

Vectors”, 2023. _ .
layers
SR00EEAN
\ . . |-
® | Apple — Red Lime — Green Corn —
204 ‘ \ v J
o Demonstrations (5) Query (x)

°] ® ® o Figure 1: ICL as learning in a Hypothesis Class. In
ICL, one provides an LLM with a prompt including
201 demonstrations S of some task, and a query x. The
model generates the output for = (here “Yellow). We
404 show that the underlying process can be broken down
0 %0 T o o into two parts: A, a “learning algorithm” (marked in
Figure 5: A t-SNE plot of task vectors. A 2D t-SNE blue), computes a query-agnostic vector 8(5), which
plot visualizing 50 task vectors for each task, each gen- we view as a parameter of a function in a hypothesis
erated from a different choice of S and z’ using LLaMA class. The second part, denoted by f and marked in

7B. Points are color-coded according to the task. Each . .
task can be seen to form its own distinct cluster. yellow, is the apphcatlon of the rule defined by 6 on the
query x, without direct dependence on S.

CENG501



In-context Learning:
Important Factors

Min et al., “Rethinking the Role of Demonstrations:
What Makes In-Context Learning Work?”, 2022.

Demonstrations  pis1yibyrion of inputs Label space
| Circulation revenue has increased by 5% in Finland.  \n  Positive |
Format
| Panostaja did not disclose the purchase price. \n Meutral | f'f'hé' Lse

|_Paying off the national debt will be extremely painful. _\n __Negative | of pairs)

““"""--..___________..--"'"." .
Test example Input-label mapping
| The acquisition will have an immediate positive impact. \n ? |

Figure 7: Four different aspects in the demonstrations:

the input-label mapping, the distribution of the input
text, the label space, and the use of input-label pairing
as the format of the demonstrations.

CENG501

Abstract

Large language models (LMs) are able to in-
context learn—perform a new task via infer-
ence alone by conditioning on a few input-
label pairs (demonstrations) and making pre-
dictions for new inputs. However, there has
been little understanding of how the model
learns and which aspects of the demonstra-
tions contribute to end task performance. In
this paper, we show that ground truth demon-
strations are in fact not required—randomly
replacing labels in the demonstrations barely
hurts performance on a range of classification
and multi-choce tasks, consistently over 12 dif-
ferent models including GPT-3. Instead, we
find that other aspects of the demonstrations
are the key drivers of end task performance, in-
cluding the fact that they provide a few exam-
ples of (1) the label space, (2) the distribution
of the input text, and (3) the overall format of
the sequence. Together, our analysis provides
a new way of understanding how and why
in-context learning works, while opening up
new questions about how much can be learned
from large language models through inference
alone.




| N-CO ﬂteXt I_ea N | N g Min et al., “Rethinking the Role of Demonstrations:
What Makes In-Context Learning Work?”, 2022.
Important Factors

60 Classification
o I No Demos Demos w/ gold labels B Demos w/ random labels
~50
£
o5
e
540
o
=35
an
= Direct Channel Direct Channel Direct Channel Direct Channel Direct Channel Direct Channel
GPT-2 GPT-2 MetalCL MetalCL GPT] GPT] fairseq 6.7B  fairseq 6.7B  fairseq 13B  fairseq 13B GPT-3 GPT-3
70 Multi-choice
. I No Demos Demos w/ gold labels ®Demos w/ random labels
5
— 60
£
P55
@
S50
3
<45
40
¥ Direct Channel Direct Channel Direct Channel Direct Channel Direct Channel Direct Channel
GPT-2 GPT-2 MetalCL MetalCL GPT-] GPT] fairseq 6.7B  fairseq 6.7B  fairseq 13B fairseq 13B GPT-3 GPT-3

Figure 3: Results when using no-demonstrations, demonstrations with gold labels, and demonstrations with ran-
dom labels in classification (top) and multi-choice tasks (bottom). The first eight models are evaluated on 16
classification and 10 multi-choice datasets, and the last four models are evaluated on 3 classification and 3 multi-
choice datasets. See Figure 11 for numbers comparable across all models. Model performance with random
labels is very close to performance with gold labels (more discussion in Section 4.1).



| N-Co nteXt Lea n I N g Min et al., “Rethinking the Role of Demonstrations:
| 'm p O rta nt Fa Cto 'S What Makes In-Context Learning Work?”, 2022.

60 Classification
355
°: 50
4
O FLIM
S 35 Gold labels SV
S a3 l l M Random labels SIS X
25 | - OOD + Random labels v v X X
Direct MetalCL Channel MetalCL Direct GPT-] Channel GPT-J I No demonstrations XX XX
60 Multi-choice
. F: Format
X gg L: Label space
= 45 I: Input distribution
E 40 M: Input-Label Mapping
§ 35
< 30
25

Direct MetalCL Channel MetalCL Direct GPT-] Channel GPT-]

Figure 8: Impact of the distribution of the inputs. Evaluated in classification (top) and multi-choice (bottom). The
impact of the distribution of the input text can be measured by comparing I and . The gap is substantial, with an
exception in Direct MetalCL (discussion in Section 5.1).

CENG501



In-context Learning:
Important Factors

They conclude that

(1) “the label space and the distribution of the
input text specified by the demonstrations are
both key to in-context learning (regardless of
whether the labels are correct for individual
inputs)”

(2) “specifying the overall format is also crucial,
e.g., when the label space is unknown, using
random English words as labels is significantly
better than using no labels”

(3) “meta-training with an in-context learning
objective (Min et al., 2021b) magnifies these
effects—the models almost exclusively exploit
simpler aspects of the demonstrations like the
format rather than the input-label mapping.”

60
$55
<50
0 45
£ 40
S35
230

25

60
=55
<50
545
£ 10
035
< 30

25

Min et al., “Rethinking the Role of Demonstrations:
What Makes In-Context Learning Work?”, 2022.

Demonstrations

Distribution of inputs Label space
I Circulation revenue has increased by 5% in Finland. \n Positive |
Format
I Panostaja did not disclose the purchase price. \n MNeutral ('I’he use
|__Paying off the national debt will be extremely painful._\n __Negative | of pairs)
Test example Input-label mapping
I The acquisition will have an immediate positive impact. \n ? |
Classification
FLI M
Gold labels e
Random labels X
00D + Random labels v v X X
Direct MetaICL Channel MetaICL Direct GPT] Channel GPT] No demonstrations XX xx

Multi-choice

F: Format

L: Label space

I: Input distribution

M: Input-Label Mapping

Direct MetalCL Channel MetalCL Direct GPT-] Channel GPT-]

Figure 8: Impact of the distribution of the inputs. Evaluated in classification (top) and multi-choice (bottom). The

impact of the distribution of the input text can be measured by comparing ™ and

exception in Direct MetaICL (discussion in Section 5.1).

CENG501
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In-context Learning: Important Factors

In-context Learning (ICL) can be unstable:

e Min et al. (https://arxiv.org/abs/2202.12837):

e “LLMs rely strongly on superficial cues. ICL acts more as a pattern recognition procedure, than as an
actual "learning” procedure: the input-output mappings that are provided allow a model to retrieve
similar examples it has been exposed to during training, but the moment you start flipping labels or
the template model performance breaks.”

* Weber et al. (https://arxiv.org/abs/2310.13486):

* “Previous research has also shown that ICL is highly unstable. For example, the order of in-context
examples (Lu et al., 2022), the recency of certain labels in the context #Zhao et al., 2021) or the
format of the prompt (Mishra et al., 2022) as well as the distribution of training examples and the
label space (Min et al., 2022) strongly influence model performance. Curiously, whether the labels
provided in the examples are correct is less important (Min et al., 2022). However, these findings are
not uncontested: Yoo et al. (2022) paint a more differentiated picture, demonstrating that in-context
input-label magping does matter, but that it depends on other factors such as model size or
instruction verbosity. Along a similar vein, Wei et al. (2023) show that in-context learners can acquire
new semantically non-sensical mappings from in-context examples if presented in a specific setup.”



In-context Learning: Limitations

* Model Parameters and Scale: Scale helps!
* Training Data Dependency: Dataset size matters!

 Domain Specificity:

* "While LLMs can generalize across various tasks, there might be limitations when
dealing with highly specialized domains. Domain-specific data might be required to
achieve optimal results.”

* Model Fine-Tuning:

* “Even with ICL, there might be scenarios where model fine-tuning becomes
necessary to cater to specific tasks or correct undesirable emergent abilities.”

e Ethics and Fairness
* Privacy and Security

CENG501
https://www.lakera.ai/blog/what-is-in-context-learning



Chain of Thought

Standard Prompting
Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples
do they have?

Model Output

A: The answer is 27. x

CENG501

Wei et al., “Chain-of-Thought Prompting Elicits
Reasoning in Large Language Models”, NeurlPS 2022.

Chain-of-Thought Prompting
Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

Model Output

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 =9. The
answer is 9.



(a) Few-shot

C!/:Roger has 5 tennis balls. He buys 2 more cans of tenb
balls. Each can has 3 tennis balls. How many tennis balls does
he have now?

A: The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A

(Output) The answer is 8. X

o /
(c) Zero-shot

/1'-5_: A juggler can juggle 16 balls. Half of the balls are golf ball_e:\
and half of the golf balls are blue. How many blue golf balls are
there?

A: The answer (arabic numerals) is

(Output) 8 X

Kojima et al., “Large Language Models are Zero-Shot

Reasoners”, NeurlIPS 2022.

/ero-shot Chain of Thought

(b) Few-shot-CoT

Q: Roger has 5 tennis balls. He buys 2 more cans of tenﬁ
balls. Each can has 3 tennis balls. How many tennis balls does
he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6
tennis balls. 5 + 6 = 11. The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A

{Output) The juggler can juggle 16 balls. Half of the balls are goif

- /

balls. So there are 16/ 2 = 8 golf balls. Half of the golf balls are
W_ So there are 8/ 2 = 4 blue golf balls. The answeris 4. y

(d) Zero-shot-CoT (Ours)

/EI: A juggler can juggle 16 balls. Half of the balls are golf ballé?‘\
and half of the golf balls are blue. How many blue golf balls are
there?

A: Let's think step by step.
{Ouiput) There are 16 balls in fotal. Half of the balls are golf

balls. That means that there are 8 golf balls. Half of the golf balls
x\fre blue. That means that there are 4 blue golf balls. ¢ /

CENG501



Meta Prompting

Standard
Prompting

Meta
Prompting

Zhang et al., “Meta Prompting for Al Systems”, 2024.

Problem: Find the domain of the expression %

Solution: The expressions inside each square root must be non-negative. Therefore, x — 2 > 0, so
x> 2,and 5 —x > 0, so xz < 5. Also, the denominator cannot be equal to zero, so 5 — = > 0,
which gives z < 5. Therefore, the domain of the expression is | (2, 5) | Final Answer: The final

answer is [2, 5). I hope it is correct.

Problem: If det A = 2 and det B = 12, then find det(AB).

Solution: We have that det(AB) = (det A)(det B) = (2)(12) = [24] Final Answer: The final
answer is 24. I hope it is correct.

Problem Statement:
* Problem: [question to be answered]

Solution Structure:

1. Begin the response with "Let’s think step by step."”

2. Follow with the reasoning steps, ensuring the solution process is broken down clearly and
logically.

3. End the solution with the final answer encapsulated in a LaTeX-formatted box, -, for clarity
and emphasis.

4. Finally, state "The answer is [final answer to the problem].", with the final answer presented in
LaTeX notation.

Figure 1: A structure meta prompt presented in markdown format for solving MATH [17] problems.



Hu et al., “Chain-of-Symbol Prompting
Elicits Planning in Large Langauge

Chain of Sym bol Models”, 2023.

| Shared Model Input )

There are a set of bricks. The yellow brick C is on top of the brick E . The yellow brick D is on top of the brick A . The yellow brick E
is on top of the brick D . The white brick A is on top of the brick B . For the brick B, the color is white. Now we have to get a
specific brick. The bricks must now be grabbed from top to bottom, and if the lower brick is to be grabbed, the upper brick must
be removed first. How to get brick D?

/—[ Chain-of-Thought Prompting ]—\ /—[ Chain-of-Symbol Prompting ]—\

The bricks from bottom to top is B, A, D, E, C
1. Remove brick A from the top of brick B. gﬁ/D/E/C
2. Remove brick E from the top of brick D. E/D
3. Now brick D is the topmost yellow brick and can be D
grabbed.
— Model Output | N | Model Output —
So we get the result as A, E, D. x So we get theresult as C, E, D. \V 4

Figure 1: An example for comparison between Chain-of-Thought (CoT) and Chain-of-
Symbol (COS) that elicits large language models in tackling complex planning tasks with
higher performance and fewer input tokens. We let the model generate CoT/COS during
inference in a few-shot manner. Results were taken in May 2023 with ChatGPT and can be

subject to change.

CENG501



Chain of Symbol

There is a set of bricks. The white !I’IC! ! Ison lop 0' !I’IC! ! . !e yellow !I’IC! ! is on top of brick A. The blue

brick D is on top of the brick C. The white brick E is on top of brick G . For brick A, the color is blue. The blue
brick C is on top of the brick E. The white brick G is on top of the brick B. Now we have to get a specific brick.
The bricks must now be grabbed from top to bottom, and if the lower brick is to be grabbed, the upper brick
must be removed first. How to get the brick G?

. Sowe gettheresultasF D, C E G.
[ NLVR-based Manipulation ]
/ﬁ:)ry: There are three boxes. In the left box, there are one large round in black, one small squan\

in blue, one small square in blue, one small triangle in yellow, one middle square in yellow. In the
middle box, there are one large square in yellow, one middle triangle in blue, one large round in
black. In the right box, there are one large square in blue, one large triangle in black, one middle
triangle in black.

Question: How to move all black objects to the left box?

Answer:

To move all black objects to the left box, we need to identify all the black objects in the three
boxes.

They are:

- left box: (large, round, black)

- middle box: (large, round, black),

- right box: (middle, triangle, black), (large, triangle, black)

Then we can move the objects not in the left box above to the left box:

1. (large, round, black): middle - left

2. (middle, triangle, black): right - left
._(large, triangle, black) right - left
here is a set of roads and a fl Natural '-a"ﬂ!ia,ﬂe Na‘"ﬂat'on "here is a road which is

200 meters long from bank A to bank C. There is a road whlch is 100 meters long from bank C to\
house H. There is a road which is 100 meters long from house H to cinema F. There is a road which

is 200 meters long from cinema F to store B. There is a road which is 100 meters long from store B

to store G. There is a road which is 200 meters long from bank C to house D. There is a road which

is 200 meters long from house D to garden J. There is a road which is 100 meters long from bank A

to cinema L There is a road which is 100 meters long from cinema I to house E. From the start

point, how to reach the nearest store?

- bank A / bank C / house H / cinema F / store B (200 + 100 + 100 + 200 = 600)
- bank A / bank C / house H / cinema F / store B / store G (200 + 100 + 100 + 200 + 100 = 700)

Qo we get the result as bank A / bank C / house H / cinema F / store B. /
o the answer is ACHFB

Hu et al., “Chain-of-Symbol Prompting
Elicits Planning in Large Langauge

Models”, 2023.
Background:

There are three blue shapes in a block that we call
A. Two medium blue squares are below a big blue
square. The first medium blue square is to the left
of the other medium one which is touching the
bottom edge of block A. There is another block
below block A we call it B. A big blue triangle is
touching the top edge of this block which is above
a small black triangle, a big blue circle and a
medium blue triangle. The medium triangle is
touching the bottom edge of the block. The circle
is below and to the left of the small triangle. It is
above the medium triangle.

Question:

Is the small triangle below the medium triangle?
Candidate Answers:

["Yes", "NO", "Do not Know"]

Spatial QA

Answer:

Let's analyze the arrangement of objects in block B
to determine if the small triangle is below the
medium triangle:

B:

1. (big, blue, triangle) = top B

2. (big, blue, triangle) 1 (small, black, triangle),
(big, blue, circle) & (medium, blue, triangle)

2. (big, blue, circle) 1< (small, black, triangle)

3. (big, blue, circle) ~| (big, blue, triangle)

4. (medium, blue, triangle) = bottom B

Based on the provided information, the small black
triangle is above the medium blue triangle.} So, the

correct answer is: "No."

Figure 2: <input, Chain of Symbol, output> example triples for our three proposed tasks:
Brick World, NLVR-based Manipulation, and Natural Language Navigation, and SPARTUN
dataset (Mirzaee & Kordjamshidi, 2022). Chains of Symbols are highlighted.



Liu et al., “Generated Knowledge Prompting for
Commonsense Reasoning”, 2022.

Generated knowledge prompting

It remains an open question whether incorpo-
rating external knowledge benefits common-
sense reasoning while maintaining the flexi-

Knowledge 1
13 : T : Knowledge
bility of pretrained sequence models. To in Question Knowledge 2

Knowledge
Integration

Answer
vestigate this question, we develop generated
knowledge prompting, which consists of gen= z
erating knowledge from a language model, Prompt Q
then providing the knowledge as additional in-
put when answering a question. Our method o G:Q;r;tiﬁgby Knowledge 1
does not require task-specific supervision for Demonstrations: ... '—’ rnowloadei
knowledge integration, or access to a struc- (fixed for task) Q(%), K
tured knowledge base, yet it improves perfor-
mance of large-scale, state-of-the-art models

on four commonsense reasoning tasks, achiev-
ing state-of-the-art results on numerical com-
monsense (NumerSense), general common-
sense (CommonsenseQA 2.0), and scientific
commonsense (QASC) benchmarks. Gener-
ated knowledge prompting highlights large-
scale language models as flexible sources of
external knowledge for improving common-

Figure 1: Generated knowledge prompting involves
(1) using few-shot demonstrations to generate question-
related knowledge statements from a language model;
(i1) using a second language model to make predic-
tions with each knowledge statement, then selecting the
highest-confidence prediction.
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Liu et al., “Generated Knowledge Prompting for
Commonsense Reasoning”, 2022.

Generated knowledge prompting

Input: Greece is larger than mexico.

Knowledge: Greece is approximately 131,957 sq km, while Mexico is approximately 1,964,375 sq km,
making Mexico 1,389% larger than Greece.

Input: Glasses always fog up.

Knowledge: Condensation occurs on eyeglass lenses when water vapor from your sweat, breath, and
ambient humidity lands on a cold surface, cools, and then changes into tiny drops of liquid, forming a
film that you see as fog. Your lenses will be relatively cool compared to your breath, especially when
the outside air is cold.

Input: A fish is capable of thinking.

Knowledge: Fish are more intelligent than they appear. In many areas, such as memory, their cognitive
powers match or exceed those of 'higher’ vertebrates including non-human primates. Fish’'s long-term
memories help them keep track of complex social relationships.

Input: A common effect of smoking lots of cigarettes in one’'s lifetime is a higher than normal chance
of getting lung cancer.

Knowledge: Those who consistently averaged less than one cigarette per day over their lifetime had
nine times the risk of dying from lung cancer than never smokers. Among people who smoked between one
and 10 cigarettes per day, the risk of dying from lung cancer was nearly 12 times higher than that of
never smokers.

Input: A rock is the same size as a pebble.

Knowledge: A pebble is a clast of rock with a particle size of 4 to 64 millimetres based on the Udden-
Wentworth scale of sedimentology. Pebbles are generally considered larger than granules (2 to 4
millimetres diameter) and smaller than cobbles (64 to 256 millimetres diameter).

Input: Part of golf is trying to get a higher point total than others.

Knowledge:

CENG501



Self-consistency

Chain-of-thought
prompting

Self-consistency

ﬂ): If there are 3 cars in the parking \
lot and 2 more cars arrive, how many
cars are in the parking lot?

A: There are 3 cars in the parking lot
already. 2 more arrive. Now there are
3 + 2 =5 cars. The answer is 5.

Q: Janet's ducks lay 16 eggs per day.
She eats three for breakfast every
morning and bakes muffins for her
friends every day with four. She sells
the remainder for $2 per egg. How

much does she make every day?

& /

Language
model

Language
model

Wang et al., “Self-Consistency Improves Chain of
Thought Reasoning in Language Models”, 2023.

Greedy decode
This means she uses 3 + 4 = 7 eggs every day.

She sells the remainder for $2 per egg, so in

The answer is $14.

total she sells 7 * $2 = $14 per day.

The answer is $14. ]

Sample a diverse set of
reasoning paths

Marginalize out reasoning paths
to aggregate final answers

o e e e e e - m— — ~ |
She has 16 - 3 - 4 = 9 eggs | \
{ left. So she makes $2*9= | The answer is $18.
$18 per day. | y \
= \
This means she she sells the \
remainder for $2 * (16 - 4 - 3) The answer is $26. V

= $26 per day.

She eats 3 for breakfast, so
she has 16 - 3 =13 left. Then
she bakes muffins, so she
has 13 - 4 = 9 eggs left. So
she has 9 eggs * $2 = $18.

J The answer is $18. J
I I

|
I The answer is $18.

Figure 1: The self-consistency method contains three steps: (1) prompt a language model using
chain-of-thought (CoT) prompting; (2) replace the “greedy decode” in CoT prompting by sampling
from the language model’s decoder to generate a diverse set of reasoning paths; and (3) marginalize
out the reasoning paths and aggregate by choosing the most consistent answer in the final answer set.
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" " Zhou et al., “LARGE LANGUAGE MODELS ARE
Au to m at I C P rO m pt E n gl n e e r HUMAN-LEVEL PROMPT ENGINEERS”, 2023.

J Keep the high score candidates x Discard the low score candidates * Final selected prompt with highest score
0.81
. @ 0.8
LLMs as Inference Models |\ »~—__ LLMs as Scoring Models 8 07
) ) 75 o o —————————————————————_———
Professor Smith was given the Inst;uchon: write the antonym of the g
s S word.
following instructions: <INSERT> <LIKELIHOOD> :g — = Human Prompt Engineer
Here are the Professor’s responses: Input: direct Output [}
o Z o 0.6
# Demostration Start _ @ @) Scoring ﬁ ©) Log @ °
Input: prove Output: disprove Proposal Probability f)
Input: on Output: off ) i
I:> write the antonym of the word. -0.26 ( g
# Di ion E . .
\ emostration End / give the antonym of the word provided. 028 | N 04-
C
@ ©
[0}
[Optionall High Score reverse the input. 086 | X %
LLMs as Resampling Models Candidates =
L _ <= to reverse the order of the letters -8 | E 5
Generate a variation of the following o Y
instruction while keeping the semantic @ g-
meaning. Similar write the opposite of the word given. -0.16 * o
Candiates ‘E
Input: write the antonym of the word. |:> - 0.03 0.03 0.02 0 0.03
Output: <COMPLETE> § : y 0 -
o J list antonyms for the given word. 039 350M1.3B 6.7B 1758  350M1.3B 6.7B1758  350M1.3B 6.7B1758  350M1.3B 6.7B 175B

Greedy (GPT-3) Greedy (InstructGPT) APE (GPT-3) APE (InstructGPT)

(a) Automatic Prompt Engineer (APE) workflow (b) Interquartile mean across 24 tasks
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Yao et al., “Tree of Thoughts:

Tree of Thoughts Prompting ~ Deiberte problem Sohing with Lare

éé

Majonty vote
Output

(a) Input-Output | Cham of Thought c) Self Consistency
Prompting (10) Promptlng (CoT) with CoT (CoT-SC)

Input i thoughti

(d) Tree of Thoughts (ToT)

Figure 1: Schematic illustrating various approaches to problem solving with LLMs. Each rectangle
box represents a thought, which is a coherent language sequence that serves as an intermediate
step toward problem solving. See concrete examples of how thoughts are generated, evaluated, and
searched in Figures 2,4,6.
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Yao et al., “Tree of Thoughts:
Deliberate Problem Solving with Large

Tree of Thoughts Prompting  teneuage moseis’ 2023

Algorithm 1 ToT-BFS(z, py, G, k, V, T, b) Algorithm 2 ToT-DFS(s, t, pg, G, k, V, T, vsp,)

Require: Input z, LM py, thought generator G()Require: Current state s, step ¢, LM pg, thought
& size limit k, states evaluator V' (), step limit 7',  generator G() and size limit k, states evaluator

breadth limit b. V (), step limit 7", threshold vy,

So + {z} if t > T then record output G(pg, s, 1)

fort=1,---,T do end if
S; < {[s,2] | s € S¢—1,2: € G(pg,s,k)} fors’ € G(pg,s,k) do > sorted candidates
I/t — V(pﬂa S{ﬁ) ifV(pg, {SI})(S) > Uthres then > pl’lll'lll’lg
Si + argmaxscg:,|s|=b D _scg Vi(5) DFS(s’,t +1)

end for end if

return G (pg, arg maxscs, Vr(s),1) end for
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Yao et al., “Tree of Thoughts:
Deliberate Problem Solving with Large
Language Models”, 2023.

Tree of Thoughts Prompting

Input 491013 ]

Y —— - (a) Propose Prompt Thought Generation
| _;///f]\‘ | =P [Tone example] 4+9=13 (left 10 13 13)

- oo -F:;'TH_-I Input: 491013 M 10- 4= 6 (left: 6 913)

------ ll‘_f e (1eft 10 13 13 ' Possible next steps: _more lines..}
4 | U 1a) [
13-67 3-9-4 \ (b) Value Prompt J Thought Ewvaluation
llaFt: 7 ) . Evaluate if given numbers can [13-10]*13=3*13=39 7

reach 24 (sure/likely/impossible)
1014:10 +14 = 24, sure

101313

10+ 13 + 13 = 36 There is no way
to obtain 24 with these big

CENG501
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Yao et al., “Tree of Thoughts:
Deliberate Problem Solving with Large

Tree of Thoughts Prompting  tneweemoseis, 2028

Write a coherent passage of 4 short paragraphs. The end sentence of each paragraph must be: 1. It isn't

(a) difficult to do a handstand if you just stand on your hands. 2. It caught him off guard that space smelled of
seared steak. 3. When she didn’t like a guy who was trying to pick her up, she started using sign language. 4.
Input . .
_________ I Each person who knows you has a different perception of who you are.
I -
[ Input | Plan1 Plan 2 F:_llan—j
[ | b 1. Introduce and explain the technique 1. Introduction to an unusual self-help book,
I /l\‘ I ( ) of doing a handstand 2. Switch to a mentioning a handstand as a metaphor for
[ I Plans story about an astronaut's first time in embracing challenges. 2. Discuss the unexpected 1
I1PlanT Plan2 ... I space 3. Describe a situation where a things learned from astronauts, including the smell of 2.
e e e e =] woman uses sign language to avoid space. 3. Describe a woman's clever tactic for avoiding
/\ unwanted attention 4. The final unwanted attention at a bar. 4. Contemplate how
y paragraph explains how everyone has different perceptions of oneself can shape one's Iy
Passage Passage different perceptions of others identity. P
1 2 T e 7 3/5 votes n/5 votes |
(C) Analyzing each choice in detail: Choice 1, while incarporating the required end sentences, seems to lack a
Votes clear connection between the paragraphs 1..; Choice 2 offers an interesting perspective by using the

required end sentences to present a self-help book's content. It connects the paragraphs with the theme of
self-improvement and embracing challenges, making for a coherent passage. {..} The best choice is 2.

Figure 4: A step of deliberate search in a randomly picked Creative Writing task. Given the input, the
LM samples 5 different plans, then votes 5 times to decide which plan is best. The majority choice is
used to consequently write the output passage with the same sample-vote procedure.
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. Gao et al., “PAL: Program-aided
Program-Aided LMs Language Models’, 2023,
Chain-of-Thought (Wei et al., 2022) Program-aided Language models (this work)

~—_ Input .\\ ~—{ Input } -..\
Q: Roger has 5 tennis balls. He buys 2 more cans of

tennis balls. Each can has 3 tennis balls. How many

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls does he have now?
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? A: Roger started with 5 tennis balls.

tennis balls = 5

A: 2 cans of 3 tennis balls each is

tennis balls. The answer is
Q: The bakers at the Beverly Hills Bakery baked 200 answer = tennis balls + bought balls
loaves of bread on Monday morning. They sold 93 loaves - -
in the morning and 39 loaves in the afternoon. A grocery Q: The bakers at the Beverly Hills Bakery baked 200
store returned 6 unsold loaves. How many loaves of loaves of bread on Monday morning. They sold 93 loaves
bread did they have left? in the morning and 39 loaves in the afternoon. A grocery
store returned 6 unsold loaves. How many loaves of bread
\_ J Qid they have left? .
A Model Output N ,._{A Model Output | N
: : The bakers started with 200 loaves

loaves baked = 200

loaves sold morning = 93
The answer is 62. x loaves sold afterncon = 39
AN _./J loaves returned = 6
The answer is
answer = loaves baked - loaves scld morning

- loaves sold afterncon + loaves returned

>>> print(answer)|
N Y,




Other Types of Prompting

* Least-to-most prompting

* Complexity-based prompting
* Self-refine

* Maieutic prompting

* Using gradient descent to search for prompts: "prefix-tuning”,
"prompt tuning" or "soft prompting”

* Prompt injection
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Parameter Learning

i Output b
| Dataset s
e | Model |
I.o'
| s
e Input Y

Model Parameters Capability

) @

@

| o O |

N

S ([ wedel )0y R
Prompt Engineering

Classify the text into
neutral, negative or |:> Output

positive. Text: I think
| Neutral|

the food was okay.

Sentiment:
Prompts Capability

4 )

S O Model )0 e

[ Agentrelevant Prompts] ﬁ) |:>

Mechanism Engineering

Trial-and- |@@® crowd- R
Error @ Sourcing | r ﬁ ‘

Capability

MECHANlSMs{ |i> @ )

The era of machine learning

The era of large language model

The era of agent

Figure: Wang et al., “A Survey on Large Language Model based Autonomous Agents”, 2024.

LLMs as Agents

a.k.a. Mechanism Engineering
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LLMs as Agents

User
Request

!

l

& Tools * Memory EPlanning
Z

https://www.promptingguide.ai/research/lim-agents



Wang et al., “A Survey on Large Language Model based
Autonomous Agents”, 2024.

LLMs as Agents

¢ =0°0= )

4 R 4 ™\ 4 N
Profile ( Memory ) ( Planning | [ Action |
e ¥ -
3 Lﬂ F% || 4 B £
[ ®e® SPLA - - ==
Profile Contents AT S LTS Planning w/o Feedback Action Target
. . » Unified Memory » TaskCompletion » Exploration
» D hic Inf t S
5 Pemogr?f :Cf n orr:a on > Hybrid Memory > Single-path Reasoning » Communication
ersonality Information . : . .
ol In . Memory Formats > Multi-path Reasoning Action Produgtlon
> Social Information S Exi=maliP Enner » Memory Recollection
» languages » Databases > Plan Following
Generation Strategy > Embeddings > Lists Planning w/ Feedback Action Space
» Handcrafting Method Memory Operation > Environment Feedback » Tools » Self-Knowledge
» LLM-Generation Method > by el > Human Feedback Action Impact
; » Memory Writing i ;
> Dataset All nment Method » Environments » New Actions
g » Memory Reflection > Model Feedback » Internal States

\. J/ . J 4 S . J

Fig.2 A unified framework for the architecture design of LLM-based autonomous agent.
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Wang et al., “A Survey on Large Language Model based
Autonomous Agents”, 2024.

LLMs as Agents

* Prompting/Planning without feedback

CoT , Zero-shot Cot ReWOO , HuggingGPT CoT-SC ToT , LMZSP, RAP
Prompts Prompts | Prompts (" Prompts
\ J " J i . J
e S : S =
LLM LLM i LLM LLM
L= <L I aS -
. : | Step-1
Reasoning Step-1 Reasoning Step-1 ! Step-1 Step-1 Step-1 I
v v : v 12 v v v v
Reasoning Step-2 LLM i Step-2 Step-2 Step-2
v : : v v v
v Reasoning Step-2 ! v v v Step-2 Step-2 Step-2
Reasoning Step-n : E Step-n Step-n Step-n *—’ ¥ | Y |—*
LLM |
. ' v v v v
Single-Path - | Multi-Path Step-3 Step-3 Step-3 | | Step-3
Reasoning Reasoning Step-n . Reasoning ep- ep- ep- ep-

Fig. 3 Comparison between the strategies of single-path and multi-path reasoning. LMZSP is the model proposed in [54].



LLMs as Agents

* Prompting/Planning with feedback

-

Ve (1d) ReAct (Reason + Act)

- A

Thought 1: I need to search Apple Remote and find the

program it was originally designed to interact with.

Act 1: Search[Zpple Remcte]

Obs 1: The Apple Remote is a remote control introduced in

October 2005 by Apple .. originally designed to control the
program ..

Thought 2: Apple Remote was originally designed to control
the Front Row media center program. I need to search
- next and find what other device can control it.
Act 2: Search|[Front Row]
Obs 2: Could not find [Front Row]. Similar: ['Front Row
Seat to Earth', 'Front Row Motorsports','

vy

Thought 3: Front Row is not found. I need to search -

Act 3: Search]| ]
Obs 3: Front Row is a discontinued media center software ..

Thought 4:
So the answer is

keyboard function keys.

Act 4: Finish|[Keyboarditunceionikeys|]
. \//

Yao et al., “ReAct: Synergizing Reasoning and
Acting in Language Models”, 2023.



Shinn et al., “Reflexion: Language Agents with

I_ I_I\/I S a S Age ntS Verbal Reinforcement Learning”, 2023.
* Prompting/Planning with feedback

F_______[ 1. Decision making | L, [ 2. Programming ] . [ 3. Reasoning L______ﬁ

You are in the middle of a room Task: You are given a list of two Task: What profession does John
(a) Task [...] Task: clean some pan and put strings [...] of open '(' or close Lanchester and Alan Dean Foster
it in countertop. ') ' parentheses only [...] have in common?
l [...1 def match parens(lst): Think: [...] novelist, Jjournalist,
(b) Action:take panl from stoveburnerl if sl.count (' (") + critic [...] novelist,

Trajectory Obs:Nothing happens. [...] s2.count (' (') == sl.count(')') + screenwriter [...] common 1s
Action:clean panl with sinkbasinl s2.count (') ") : [...] novelist and screenwriter.
Obs:Nothing happens. [...] return 'No' Action: “novelist, screenwriter”

(c) , -
Evaluation Rule/LM Heuristic: Self-generated unit tests fail: Environment Binary Reward:
. Hallucination. assert match parens(...) 0
(internal / external) b = — —
¢ ( [ ] wrong because JCNCRIVICHESKS [...] failed because I incorrectly
[...] tried to pick up the pan in S 2 y assumed that they both had the
(d) if the total count of open and ) \
stoveburner 1 [...] but the pan . same multiple professions [...]
Reflection . close parentheses is equal [...] : : : :
was not in stoveburner 1. [...] accurately identifying their
order of the parentheses [...] .
_professions.
l r[...] Action: take pan 1 from [ ] Think: [...] S0 the profession
(e) Next stoveburner 2 T ; John Lanchester and Alan Dean
, return 'Yes' if check(S1l) or , q "
Trajectory [...] Obs: You put the pan 1 in o Foster have in common is novelist.
check(S2) else 'No . N C
countertop 1. Action: “novelist

Figure 1: Reflexion works on decision-making 4.1, programming 4.3, and reasoning 4.2 tasks.



LLMs as Agents: LLMs and Tools

* MRKL, Toolformer, Function Calling, HuggingGPT, ...

e L T L T L T kT F T g e

"

x '~ HuggingGPT E LLM as Controller *~ HuggingFace
I I Task e
Planing | ) n——

Prediction % facebook/
T : detr-resnet-101 l

Can you describe this picture and count how
many objects in the picture?

. ™

[ Atext can describe the given image: a herd of »| III Task Execution
giraffes and zebras grazing in a fields. In —@L : S
addition, there are five detected objects as ¢
giraffe with score 99.9%, zebra with score 99.7%, zebra -
with 99.9%, giraffe with score 97.1% and zebra with R “ nlpconnet/
score 99.8%. The bounding boxes are shown in the Prediction —.  vit-gpt2-image-captioning
above image. | performed image classification, object IV Response T |- —
detection and image caption on this image. Combining <+ Generation ’ -
the predictions of = =

. e and ~
models, | get the results for you.




LLMs as Agents

* Autogen, LangChain, AutoGPT, Langroid, OpenAgents, ....

Conversable agent P R
: o)) : )
B | ! - | € > - :
. D : ) :
: ;. W 2 Doooo=os Do oooooo
I - :
! Multi-Agent Conversations
(©aR) ! )
| — L -
L e e e e e e - I .) () @ |
. & | & | ~ 70N
| —— . | - I o @ @ @
' : () ) - D
I @ l l | [ o o =,
Autogen: :_ - __ i :_ _: Joint chat Hierarchical chat

Agent Customization Flexible Conversation Patterns



Real-world Challenges

(On an Ubuntu bash terminal)
Recursively set all files in the directory to
read-only, except those of mine.

—

(Given Freebase APIs)
What musical instruments do Minnesota
born Nobel Prize winners play?

(Given MySQL APIs and existed tables)
LGmde students over 60 as PASS in the table.

This is a two-player battle game, you are a

(On the GUI of Aguawar)
player with four pet fish cards ......

-

[A man walked into a restaurant, ordered

a bowl!
of turtle soup, and after finishing it, he
committed suicide. Why did he do that?

{in the middle of a kitchen in a simulator)
Please put a pan on the dinning table.

(On the official website of an airline)
Book the cheapest flight from Beiljing to
Angeles in the last week of July.

1@

Agent

ﬁ

Environ

-ment

-----------------------

Large
Language
Models

- .- R B R L L B K 3 2 & L L R L & 1

lI Interaction

----------------- -

T

Interactive

Environments

8 Distinct Environments

Operating
System

N i

<D

Database
—

F Knowledge

F 'l r

b4z

Graph

-

Digital Card

Game

Lateral Think

-ing Puzzles

Los

Web

Shopping e

Web

Browsing

.....

https://www.promptingguide.ai/research/lim-agents
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LLMs as Agents:
Example: Anthropic

https://www.youtube.com/watch?v=vH2f7 cjXjKI
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GPT-3.5 and GPT-4 performance using zero-shot and agent workflows

® Zero-shot

® Reflection

@ Tool Use

@ Planning

@ Multi-Agent

O Intervenor
o ) Language Agent 'S ;
GPT-3.5 O zero-shot () ANPL O ree Sesvchi () LDB + Reflexion
HumanEval 40 45 50 55 60 65 70 75 80 85 90 95 100
GPT-4 O zero-shot () CodeT () Reflexion
(O MetaGPT (O Agent Coder
() ANPL '®) Language Agent

" Tree Search

Performance of GPT-3.5 and GPT-4 (zero-shot) on HumanEval, along with algorithms that use agent workflows
on top of GPT-3.5 or GPT-4. Thanks to Joaquin Dominguez and John Santerre for help with this analysis.

https://www.deeplearning.ai/the-batch/how-agents-can-improve-lim-performance/
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LLMs as Agents: Challenges

From https://www.promptingguide.ai/research/lim-agents:

* Role-playing capability: LLM-based agents typically need to adapt a role to effectively complete tasks in a domain. For roles that the LLM
doesn't characterize well, it's possible to fine-tune the LLM on data that represent uncommon roles or psychology characters.

* Long-term planning and finite context length: planning over a lengthy history remains a challenge that could lead to errors that the
agent may not recover from. LLMs are also limited in context length they can support which could lead to constraints that limit the
capabilities of the agent such as leveraging short-term memory.

e Generalized human alignment: it's also challenging to align agents with diverse human values which is also common with standard LLMs.
A potential solution involves the potential to realign the LLM by designing advanced prompting strategies.

* Prompt robustness and reliability: an LLM agent can involve several prompts designed to power the different modules like memory and
planning. It's common to encounter reliability issues in LLMs with even the slightest changes to prompts. LLM agents involve an entire
prompt framework which makes it more prone to robustness issues. The potential solutions include crafting prompt elements through
trial and error, automatically optimizing/tuning prompts, or automatically generating prompts using GPT. Another common issue with
LLMs is hallucination which is also prevalent with LLM agents. These agents rely on natural language to interface with external
components that could be introducing conflicting information leading to hallucination and factuality issues.

* Knowledge boundary: similar to knowledge mismatch issues that could lead to hallucination or factuality issues, it's challenging to
control the knowledge scope of LLMs which can significantly impact the effectiveness of simulations. Concretely, an LLM's internal
knowledge could introduce biases or utilize user-unknown knowledge that could affect the agent's behavior when operating in specific
environments.

« Efficiency: LLM agents involve a significant amount of requests that are handled by the LLM which could affect the efficiency of agent
actions because it would depend heavily on the LLM inference speed. Cost is also a concern when deploying multiple agents.
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Generator
(Language Model)

Prompt —

'

— Response

B

Document store Retrieved Documents

https://www.promptingguide.ai/research/lim-agents

Retrieval Augmented Generation
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Lewis et al., “Retrieval-Augmented Generation for
Knowledge-Intensive NLP Tasks”, 2021.

RAG

€ - e e e e s e e .- -m-m-—-———-- The middle ear includes
the tympanic cavity and
the three ossicles. (v)

Define "middle ear" (x)

Question Answering:

Question Query Question Answering:

Answer Generation

Barack Obama was
born in Hawaii. (x) q(X)

supports (y)

Marain- Fact Verification:
a -g Label Generation
alize

Pe 3 This 14th century work

is divided into 3

Fact Verification: Fact Query

The Divine ) q )

Comedy (x)

Jeopardy Question
Generation:
Answer Query

sections: "Inferno",

"Purgatorio” &
"Paradiso" (y)

Question Generation

Figure 1: Overview of our approach. We combine a pre-trained retriever (Query Encoder + Document
Index) with a pre-trained seq2seq model (Generator) and fine-tune end-to-end. For query x, we use
Maximum Inner Product Search (MIPS) to find the top-K documents z;. For final prediction y, we
treat z as a latent variable and marginalize over seq2seq predictions given different documents.
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Lewis et al., “Retrieval-Augmented Generation for
Knowledge-Intensive NLP Tasks”, 2021.

RAG

RAG-Sequence Model The RAG-Sequence model uses the same retrieved document to generate
the complete sequence. Technically, it treats the retrieved document as a single latent variable that
is marginalized to get the seq2seq probability p(y|z) via a top-K approximation. Concretely, the
top K documents are retrieved using the retriever, and the generator produces the output sequence
probability for each document, which are then marginalized,

Prac-sequence (Y1) =~ Y pn(2lz)po(ylz, 2) = > pylzlz) Hpa(yzlw 2, Y1:i-1)

z€top-k(p(-|x)) z€top-k(p(-|x))

RAG-Token Model In the RAG-Token model we can draw a different latent document for each
target token and marginalize accordingly. This allows the generator to choose content from several
documents when producing an answer. Concretely, the top K documents are retrieved using the
retriever, and then the generator produces a distribution for the next output token for each document,
before marginalizing, and repeating the process with the following output token, Formally, we define:

N
Prcme@E) = [ ). po(2lo)pe(uilz, 2,y1:-1)
i z€top-k(p(-|2))
CENG501



Lewis et al., “Retrieval-Augmented Generation for
Knowledge-Intensive NLP Tasks”, 2021.

RAG

2.2 Retriever: DPR

The retrieval component p, (2|z) is based on DPR [26]. DPR follows a bi-encoder architecture:
pn(2|z) o exp (d(2) 'q(z)) d(z) = BERT4(z), q(z) = BERT,(z)

where d(z) is a dense representation of a document produced by a BERTgasg document encoder [8],
and q(z) a query representation produced by a query encoder, also based on BERTgasg. Calculating
top-k(py (:|x)), the list of k documents z with highest prior probability p, (2|x), is a Maximum Inner
Product Search (MIPS) problem, which can be approximately solved in sub-linear time [23]. We use
a pre-trained bi-encoder from DPR to initialize our retriever and to build the document index. This
retriever was trained to retrieve documents which contain answers to TriviaQA [24] questions and
Natural Questions [29]. We refer to the document index as the non-parametric memory.

2.3 Generator: BART

The generator component pg (y;|x, 2, y1.;—1) could be modelled using any encoder-decoder. We use
BART-large [32], a pre-trained seq2seq transformer [58] with 400M parameters. To combine the input
x with the retrieved content z when generating from BART, we simply concatenate them. BART was
pre-trained using a denoising objective and a variety of different noising functions. It has obtained
state-of-the-art results on a diverse set of generation tasks and outperforms comparably-sized T5
models [32]. We refer to the BART generator parameters 6 as the parametric memory henceforth.



Input Indexing

[ Query ] _______ i @ , %

How do you evaluate the fact Documents E
R Chunks{Vectors

went through a sudden dismissal
by the board in just three days,
and then was rehired by the
company, resembling a real-life
version of "Game of Thrones™ in
terms of power dynamics?

} [embeddings]

[ User } -~ :"E that OpenAl's CEQ, Sam Altman,
; Retrieval

(=]

[ Relevant Documents J

...l am unable to provide comments on

future events. Currently, | do not have f
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How do you evaluate the fact that the
OpenAls CEQ, ... ... dynamics?

i
i
!
i
I
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...... This suggests significant internal
disagreements within OpenAl regarding

the company’s future direction and based on the following information ©
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!
i
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Gao et al., “Retrieval-Augmented Generation for
Large Language Models: A Survey”, 2024. CENG501
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Finetuning LLMs

Transfer Learning

CCCCCCC



Finetuning an LLM

SHPSEARREtLS What does fine-tuning do for the model ?

® Lets you add more data into the model than what fits into the prompt

® Gets the model to learn the data rather than just get access to it

5 2

Joint pain, skin rash, Joint pain, skin rash,
sun sensitivity? sun sensitivity?
LLM LLM ¢ a
: All t
Base model Fine-tuned model Sy aats
(Allergy? > Could be systemic lupus erythematosus (SLE), an

autoimmune disease. It's vital to visit a rheumatologist
for a thorough examination and potential tests.

https://www.superannotate.com/blog/lim-fine-tuning CENG501



Finetuning an LLM

Can be helpful in
 specialized applications
* smaller LLMs

CENG501



Finetuning an LLM

* Instruction Finetuning

SuperAnnotate

Using prompts to fine-tune LLMs with instruction

Model LLM fine-tuning Model

PROMPT[...], COMPLETION]. ..
PROMPT[...], COMPLETION]. ..

]
. ] .
Pre-trained Fine-tuned
PROMPT[...], COMPLETION[...] —mmm
PROMPT][...], COMPLETION]. . .] LLM
PROMPT][...], COMPLETION]. . .]
-------------- R e |
Translate this sentence to...
______________ J e e R e g e e ey M
[ EXAMPLE TEXT] [ EXAMPLE TEXT]
[ EXAMPLE COMPLETION ] [ EXAMPLE COMPLETION ]

CENG501
https://www.superannotate.com/blog/lIm-fine-tuning



Finetuning an LLM

* Parameter-efficient Finetuning (vs. Full Finetuning)
* Update a subset of parameters

* LoRA, LoRA+

e LASER (not finetuning actually)

CENG501



Hu et al., “LORA: LOW-RANK ADAPTATION OF LARGE
LANGUAGE MODELS”, 2021.

LORA

Weight update in regular finetuning Weight update in LoRA

LoRA matrices A and B
approximate the weight / '\
update matrix AW +

Pretrained

weights L——!  Theinner dimension r
is a hyperparameter

Pretrained
weights

Target: Attention blocks
Fig: https://magazine.sebastianraschka.com/p/practical-tips=for=finetuning-lims



Hu et al., “LORA: LOW-RANK ADAPTATION OF LARGE
LANGUAGE MODELS”, 2021.

LORA

During training Aftee traiiiia
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Fig: https://medium.com/@kailash.thiyagarajan/fine-tuning-large-language-models-
with-lora-demystifying-efficient-adaptation-25fa0a389075 Cenes



LORA

Hu et al., “LORA: LOW-RANK ADAPTATION OF LARGE
LANGUAGE MODELS”, 2021.

Fig: https://medium.com/@kailash.thiyagarajan/fine-tuning-large-language-models-

with-lora-demystifying-efficient-adaptation-25fa0a389075
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Hu et al., “LORA: LOW-RANK ADAPTATION OF LARGE
LANGUAGE MODELS”, 2021.

LORA

A neural network contains many dense layers which perform matrix multiplication. The weight
matrices in these layers typically have full-rank. When adapting to a specific task, Aghajanyan et al.
(2020) shows that the pre-trained language models have a low “instrisic dimension” and can still
learn efficiently despite a random projection to a smaller subspace. Inspired by this, we hypothe-
size the updates to the weights also have a low “intrinsic rank” during adaptation. For a pre-trained
weight matrix W, € R?**, we constrain its update by representing the latter with a low-rank de-
composition Wy + AW = Wy + BA, where B € RY%", A € R™*¥, and the rank r < min(d, k).
During training, W, is frozen and does not receive gradient updates, while A and B contain trainable
parameters. Note both W, and AW = BA are multiplied with the same input, and their respective
output vectors are summed coordinate-wise. For h = Wy, our modified forward pass yields:

h =Wy + AWz = Wyx + BAx (3)

We illustrate our reparametrization in Figure 1. We use a random Gaussian initialization for A and
zero for B, so AW = BA is zero at the beginning of training. We then scale AWz by %, where o
is a constant in 7. When optimizing with Adam, tuning « is roughly the same as tuning the learning
rate if we scale the initialization appropriately. As a result, we simply set a to the first » we try

and do not tune it. This scaling helps to reduce the need to retune hyperparameters when we vary
r (Yang & Hu, 2021).



LLORA VS FULL FINE-TUNING:
AN ILLUSION OF EQUIVALENCE 2024

Reece Shuttleworth Jacob Andreas Antonio Torralba Pratyusha Sharma
MIT CSAIL
{rshuttle, jda, torralba, pratyusha}@mit.edu
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': Intruder Dimensions are singular vectors that are dissimilar to those
LORA Leams Intruders in the pre-trained weight matrix and are learned during fine-tuning.

OCmnparing Full vs LoRA Matrix

)
a) i - . o_?: ".'-,',fg, e g
ABSTRACT W, +El Al___smw ——| i
LORA ~if lJ‘ 11 - E g?:“.l
Fine-tuning is a crucial paradigm for adapting pre-trained large language mod- i r. M7 &, SR
els to downstream tasks. Recently, methods like Low-Rank Adaptation (LoRA) o ——— | Singular Voctors in Wouneo (Ordere)
have been shown to match the performance of fully fine-tuned models on various Wo Wo . _ c), Normal Singular Vector
tasks with an extreme reduction in the number of trainable parameters. Even in pre-trained weights iR T R
settings where both methods learn similarly accurate models, are their learned =finleislrims = Lé e
solutions really equivalent? We study how different fine-tuning methods change — | Intruder Dimension
pre-trained models by analyzing the model’s weight matrices through the lens of Wo |+AW—2~ | § |
their spectral properties. We find that full fine-tuning and LoRA yield weight full fine-tuning L 1L Al | [ .
matrices whose singular value decompositions exhibit very different structure; U z VT St VG vy
moreover, the fine-tuned models themselves show distinct generalization behav-
iors when tested outside the adaptation task’s distribution. More specifically, we Figure 2: Characterizing structural differences between solutions learnt by LoRA Vs full Fine-

first show that the weight matrices trained with LoRA have new, high-ranking tuning. a) We measure the qhanges to the SVD of the_ pre—traine_d we_ights made during fine-tuning.
We observe intruder dimensions introduced by LoRA in top ranking singular vectors but by full fine-

singular Ve,Ctors’ which i call intruder dimensions. Intruder dlmenspns. do not tuning. b) Comparing a matrix fine-tuned with full fine-tuning or LoRA. ¢) Comparing a normal
appear during full fine-tuning. Second, we show that LoRA models with intruder singular vs an intruder dimension to all pre-trained singular vectors.
dimensions, despite achieving similar performance to full fine-tuning on the target

task, become worse models of the pre-training distribution and adapt less robustly

to multiple tasks sequentially. Higher-rank, rank-stabilized LoRA models closely

mirror full fine-tuning, even when performing on par with lower-rank LoRA mod-

els on the same tasks. These results suggest that models updated with LoRA and

full fine-tuning access different parts of parameter space, even when they perform

equally on the fine-tuned distribution. We conclude by examining why intruder di-

mensions appear in LoRA fine-tuned models, why they are undesirable, and how

their effects can be minimized. 3501



Hayou et al., “LoRA+: Efficient Low Rank Adaptation
of Large Models”, 2024.

LORA+

LoRA LoRA+
Abstract g
In this paper, we show that Low Rank Adaptation E P;ﬁ;;::zd
(LoRA) as originally introduced in (Hu et al., S e B | x A
2021) leads to suboptimal finetuning of models £ WeR
with large width (embedding dimension). This E
is due to the fact that adapter matrices A and
B in LoRA are updated with the same learning
rate. Using scaling arguments for large width
networks, we demonstrate that using the same -g A A-—nxGy A A-—nxGy
learning rate for A and B does not allow é‘ B+ B—nxGp B+ B—-)nxGg
efficient feature learning. We then show that this A= 1
suboptimality of LoRA can be corrected simply >

by setting different learning rates for the LoRA
adapter matrices A and B with a well-chosen
fixed ratio. We call this proposed algorithm
LoRA+. In our extensive experiments, LoORA+

Figure 1. The key difference between standard LoRA and
LoRA+ is in how learning rates are set (the matrices G 4 and

improves performance (1% — 2% improvements) G p are ‘effective’ gradients from AdamW) With standard LoRA,
and finetuning speed (up to ~ 2X SpeedUp), at the learning rate is the same for A and B, which provably leads
the same computational cost as LoRA. to suboptimal learning when embedding dimension is large. In

LoRA+, we set the learning rate of B to be Ax that of A, where
cengst A > 1 is fixed. We later provide guidelines on how to set A.



Sharma et al., “The Truth is in There: Improving
Reasoning in Language Models with Layer-Selective

I_AS E R Rank Reduction”, 2023.
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Parameter Efficient Fine Tuning (PEFT

A
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MoELoRA L-LoRA o" I H H
~— Xu et al., “Parameter-Efficient Fine-Tuning
aplace-Lol
LoRA-Hub .
LoFTa Methods for Pretrained Language Models: A
CoDA e rorarrne R iti I i d ”
P Critical Review and Assessment”, 2023.
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Finetuning an LLM: Challenges

1. Overfitting: Fine-tuning can be prone to overfitting, a condition where the model becomes overly specialized on the training data and
Berf%rms poorly on unseen data. This risk is particularly pronounced when the task-specific dataset is small or not representative of the
roader context.

2. Catastrophic Forgetting: During fine-tuning for a specific task, the model may forget previously acquired general knowledge. This
phenomenon, known as catastrophic forgetting, can impair the model's adaptability to diverse tasks.

3. Bias Amplification: Pre-trained models inherit biases from their training data, which fine-tuning can inadvertently amplify when applied to
task-specific data. This amplification may lead to biased predictions and outputs, potentially causing ethical concerns.

4. Generalization Challenges: Ensuring that a fine tuned model generalizes effectively across various inputs and scenarios is challenging. A
model that excels in fine-tuning datasets may struggle when presented with out-of-distribution data.

5. Data Requirements: Fine-tuning necessitates task-specific labelled data, which may not always be available or clean. Inadequate or noisy
data can negatively impact the model's performance and reliability.

6. Hyperparameter Tuning Complexity: Selecting appropriate hyper||:)a rameters for fine-tuning can be intricate and time-consuming. Poor
choices may result in slow convergence, overfitting, or suboptimal performance.

7. Domain Shift Sensitivity: Fine-tuning data significantly different from the pre-training data can lead to domain shift issues. Addressing this
problem often requires domain adaptation techniques to bridge the gap effectively.

8. Ethical Considerations: Fine tuned Iar%](.e language models may inadvertently generate harmful or inappropriate content, even when
designed for benign tasks. Ensuring ethical behaviour and safety is an ongoing challenge, necessitating responsible Al practices.

9. Resource Intensiveness: Fine-tuning large models demands substantial computational resources and time, posing challenges for smaller
teams or organizations with limited infrastructure and expertise.

10.Unintended Outputs: Fine-tuning cannot guarantee that the model consistently produces correct or sensible outputs. It may generate
plausible but factually incorrect responses, requiring vigilant post-processing and validation.

11.Model Drift: Over time, a fine tuned model's performance can deteriorate due to changes in data distribution or the evolving environment.
Regular monitoring and re-fine-tuning may become necessary to maintain optimal performance and adapt to evolving conditions.

From: https://www.lakera.ai/blog/lIm-fine-tuning-guide  cencsor



Finetuning vs. RAG

Factors to consider

* Nature of the task: Specialized tasks might benefit from finetuning.
RAG is better for problems requiring external / up-to-date knowledge.

e Data availability: Finetuning requires a lot of data. RAG can utilize
existing data.

* Resource: Finetuning can be expensive. RAG is easy to integrate.

Adapted from: https://www.datacamp.com/tutorial/fine-tuning-{arge-language-models



Learning from Model
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