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In-context Learning: How/Why Does it Work?

Xie et al., “An Explanation of In-context Learning as Implicit Bayesian Inference”, ICLR 2022.

A Bayesian interpretation:

• During pretraining, the network learns a latent concept space.
• With the prompt, we provide sufficient examples to estimate the most relevant 

concept – p(concept | prompt).
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In-context learning: 
Task vectors

Hendel et al., "In-Context Learning Creates Task 
Vectors”, 2023.
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In-context Learning: 
Important Factors
Min et al., “Rethinking the Role of Demonstrations:
What Makes In-Context Learning Work?”, 2022.
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In-context Learning: Limitations

• Model Parameters and Scale: Scale helps!

• Training Data Dependency: Dataset size matters!

• Domain Specificity:
• ”While LLMs can generalize across various tasks, there might be limitations when 

dealing with highly specialized domains. Domain-specific data might be required to 
achieve optimal results.”

• Model Fine-Tuning:
• ”Even with ICL, there might be scenarios where model fine-tuning becomes 

necessary to cater to specific tasks or correct undesirable emergent abilities.”

• Ethics and Fairness

• Privacy and Security

https://www.lakera.ai/blog/what-is-in-context-learning
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Chain of Thought

Wei et al., “Chain-of-Thought Prompting Elicits 
Reasoning in Large Language Models”, NeurIPS 2022.

7



Zero-shot Chain of Thought

Kojima et al., “Large Language Models are Zero-Shot 
Reasoners”, NeurIPS 2022.
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Meta Prompting
Zhang et al., “Meta Prompting for AI Systems”, 2024.

Standard 
Prompting

Meta 
Prompting
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Chain of Symbol
Hu et al., “Chain-of-Symbol Prompting 
Elicits Planning in Large Langauge 
Models”, 2023.
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Generated knowledge prompting

Liu et al., “Generated Knowledge Prompting for 
Commonsense Reasoning”, 2022.
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Self-consistency
Wang et al., “Self-Consistency Improves Chain of 
Thought Reasoning in Language Models”, 2023.
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Automatic Prompt Engineer Zhou et al., “LARGE LANGUAGE MODELS ARE 
HUMAN-LEVEL PROMPT ENGINEERS”, 2023.
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Tree of Thoughts Prompting
Yao et al., “Tree of Thoughts: 
Deliberate Problem Solving with Large 
Language Models”, 2023.
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Program-Aided LMs
Gao et al., “PAL: Program-aided 
Language Models”, 2023.
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LLMs as Agents

Wang et al., “A Survey on Large Language Model based 
Autonomous Agents”, 2024.
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LLMs as Agents
• Prompting/Planning with feedback

Yao et al., “ReAct: Synergizing Reasoning and 
Acting in Language Models”, 2023.
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LLMs as Agents
• Autogen, LangChain, AutoGPT, Langroid, OpenAgents, ….

Autogen:
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LLMs as Agents: Challenges

• Role-playing capability: LLM-based agents typically need to adapt a role to effectively complete tasks in a domain. For roles that the LLM 
doesn't characterize well, it's possible to fine-tune the LLM on data that represent uncommon roles or psychology characters.

• Long-term planning and finite context length: planning over a lengthy history remains a challenge that could lead to errors that the 
agent may not recover from. LLMs are also limited in context length they can support which could lead to constraints that limit the 
capabilities of the agent such as leveraging short-term memory.

• Generalized human alignment: it's also challenging to align agents with diverse human values which is also common with standard LLMs. 
A potential solution involves the potential to realign the LLM by designing advanced prompting strategies.

• Prompt robustness and reliability: an LLM agent can involve several prompts designed to power the different modules like memory and 
planning. It's common to encounter reliability issues in LLMs with even the slightest changes to prompts. LLM agents involve an entire 
prompt framework which makes it more prone to robustness issues. The potential solutions include crafting prompt elements through 
trial and error, automatically optimizing/tuning prompts, or automatically generating prompts using GPT. Another common issue with 
LLMs is hallucination which is also prevalent with LLM agents. These agents rely on natural language to interface with external 
components that could be introducing conflicting information leading to hallucination and factuality issues.

• Knowledge boundary: similar to knowledge mismatch issues that could lead to hallucination or factuality issues, it's challenging to 
control the knowledge scope of LLMs which can significantly impact the effectiveness of simulations. Concretely, an LLM's internal 
knowledge could introduce biases or utilize user-unknown knowledge that could affect the agent's behavior when operating in specific 
environments.

• Efficiency: LLM agents involve a significant amount of requests that are handled by the LLM which could affect the efficiency of agent 
actions because it would depend heavily on the LLM inference speed. Cost is also a concern when deploying multiple agents.

From https://www.promptingguide.ai/research/llm-agents:
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Gao et al., “Retrieval-Augmented Generation for 
Large Language Models: A Survey”, 2024. 20



Finetuning an LLM

• Parameter-efficient Finetuning (vs. Full Finetuning)
• Update a subset of parameters

• LoRA, LoRA+ 

• LASER (not finetuning actually)
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LoRA

Fig: https://magazine.sebastianraschka.com/p/practical-tips-for-finetuning-llms

Hu et al., “LORA: LOW-RANK ADAPTATION OF LARGE 
LANGUAGE MODELS”, 2021.

Target: Attention blocks

22



LoRA+
Hayou et al., “LoRA+: Efficient Low Rank Adaptation 
of Large Models”, 2024.
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Finetuning an LLM: Challenges
1. Overfitting: Fine-tuning can be prone to overfitting, a condition where the model becomes overly specialized on the training data and 

performs poorly on unseen data. This risk is particularly pronounced when the task-specific dataset is small or not representative of the 
broader context.

2. Catastrophic Forgetting: During fine-tuning for a specific task, the model may forget previously acquired general knowledge. This 
phenomenon, known as catastrophic forgetting, can impair the model's adaptability to diverse tasks.

3. Bias Amplification: Pre-trained models inherit biases from their training data, which fine-tuning can inadvertently amplify when applied to 
task-specific data. This amplification may lead to biased predictions and outputs, potentially causing ethical concerns.

4. Generalization Challenges: Ensuring that a fine tuned model generalizes effectively across various inputs and scenarios is challenging. A 
model that excels in fine-tuning datasets may struggle when presented with out-of-distribution data.

5. Data Requirements: Fine-tuning necessitates task-specific labelled data, which may not always be available or clean. Inadequate or noisy 
data can negatively impact the model's performance and reliability.

6. Hyperparameter Tuning Complexity: Selecting appropriate hyperparameters for fine-tuning can be intricate and time-consuming. Poor 
choices may result in slow convergence, overfitting, or suboptimal performance.

7. Domain Shift Sensitivity: Fine-tuning data significantly different from the pre-training data can lead to domain shift issues. Addressing this 
problem often requires domain adaptation techniques to bridge the gap effectively.

8. Ethical Considerations: Fine tuned large language models may inadvertently generate harmful or inappropriate content, even when 
designed for benign tasks. Ensuring ethical behaviour and safety is an ongoing challenge, necessitating responsible AI practices.

9. Resource Intensiveness: Fine-tuning large models demands substantial computational resources and time, posing challenges for smaller 
teams or organizations with limited infrastructure and expertise.

10.Unintended Outputs: Fine-tuning cannot guarantee that the model consistently produces correct or sensible outputs. It may generate 
plausible but factually incorrect responses, requiring vigilant post-processing and validation.

11.Model Drift: Over time, a fine tuned model's performance can deteriorate due to changes in data distribution or the evolving environment. 
Regular monitoring and re-fine-tuning may become necessary to maintain optimal performance and adapt to evolving conditions.

From: https://www.lakera.ai/blog/llm-fine-tuning-guide 24



The Batch

https://www.deeplearning.ai/the-batch/issue-276/
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Today

• Vision Models
• Vision Transformers

• Swin Transformers

• Fast/Faster ViTs

• Pretraining
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Administrative Notes
• New quiz this week

• Deadline: Tomorrow midnight

• Time plan for the projects
1. Milestone (November 24, midnight):

• Github repo will be ready

• Read & understand the paper

• Download the datasets

• Prepare the Readme file excluding the results & conclusion

2. Milestone (December 8, midnight)

• The results of the first experiment

3. Milestone (January 5, midnight)

• Final report (Readme file) 

• Repo with all code & trained models
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Vision Transformers (ViT)
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ViT: Motivation

• NLP:
• Successful results of Transformers

• De facto architecture

• Vision:
• CNNs are dominantly used

• Prior work
• Self-attention among pixels. Limit attention to local regions to reduce 

complexity (Parmar et al., 2018)

• Self-attention among blocks of different sizes (Weissenborn et al., 2019)

• Self attention between 2x2 patches (Cordonnier et al., 2020)
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ViT: Motivation
• Prior work

• Self attention between 2x2 patches (Cordonnier et al., 2020)
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ViT: Motivation

• Contributions
• Use plain transformers without modifications

• Compared to Cordonnier et al. (2020):
• ViT shows strong results with large datasets & pretraining

• ViT works with larger patches (generalizes better)

• Challenges in using Transformers with images:
• How to convert an image into tokens? 

• How to encode position?

• Transformers lack translation invariance and locality

• Spoiler: They underperform on “small” datasets
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ViT: Architecture
Applied to classification tasks only!
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ViT: Pretraining

• Supervised pretraining on large datasets and finetuning on smaller 
downstream tasks

• Higher resolutions:
• The whole network can easily be applied to longer sequences (= higher 

resolutions)

• Learned position embeddings are interpolated
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ViT: Results
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Swin Transformers

20222021
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Swin Transformer v1

• Motivation:
• ViT is promising but limited to 

classification
• Challenges in using Tranformers: 

• large variations in scales of visual entities, 
• more pixels compared to words in text

• Existing Transformers use fixed token 
size across layers

• Contributions:
• Limit self-attention to non-overlapping 

windows while allowing cross-window 
attention

• Change token size across layers
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Figure: https://amaarora.github.io/posts/2022-07-04-swintransformerv1.html
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Swin Transformer v1
Plot from https://arxiv.org/pdf/2107.14222:
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Swin Transformer v1
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Swin Transformer v1: Results
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Swin Transformer v2
Motivation:

• “Large-scale NLP models have been shown to significantly improve the 
performance on language tasks with no signs of saturation”. 

• “They also demonstrate amazing few-shot capabilities like that of human beings”

Contribution:

• “Explore large-scale models in computer vision”

• Three major issues & solutions:
• Training stability: “1) a residual-post-norm method combined with cosine attention to 

improve training stability”
• resolution gaps between pre-training and fine-tuning: “2) A log-spaced continuous position 

bias method to effectively transfer models pre-trained using low-resolution images to 
downstream tasks with high-resolution inputs”

• hunger on labelled data: “3) A self-supervised pretraining method, SimMIM, to reduce the 
needs of vast labeled images”
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Swin Transformer v2

• Issues with v1
• “An instability issue when scaling up 

model capacity.”

• “Degraded performance when 
transferring models across window 
resolutions.”

Trained on Tested/Finetuned on Finetuned on
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Swin Transformer v2

Scaling up model capacity
• Residual post normalization: 

Prevents output to diverge

• Scaled cosine attention: 
•  learnt attention maps of some 

blocks and heads are frequently 
dominated by a few pixel pairs, 
especially in the res-post-norm 
configuration => cosine yields 
values in a smaller range

47



Scaling Up Window Resolution

• Continuous relative position bias 

CENG501

Trained on Tested/Finetuned on Finetuned on

Log-spaced coordinates
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Swin Transformer v2

Self-Supervised Pre-training
• Prior work used JFT-3B

• Use SimMIM to train 3B-size Swin 
Transformer 

From SimMIM paper.
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ConvNeXt

2022

2023
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ConvNeXt v1

• “Modernized” ResNet 
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# of blocks in each stage from [3,4,6,3] to [3,3,9,3]

7x7 conv with stride 2 + max-pool (4x downsamp) => 4x4 conv with stride 4

Increase embedding dim

# of channels increased to match Swin-T
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# of blocks in each stage from [3,4,6,3] to [3,3,9,3]

7x7 conv with stride 2 + max-pool (4x downsamp) => 4x4 conv with stride 4

# of channels increased to match Swin-T

Increase embedding dim
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ConvNeXt v2

• Training ConvNeXt v1 with 
Masked AE performs poorly

• Introduce 
• fully convolutional masked 

autoencoder framework and

• a new Global Response 
Normalization to enhance 
inter-channel competition
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ConvNeXt v2

• Training ConvNext v1 with 
Masked AE performs poorly

• Introduce 
• fully convolutional masked 

autoencoder framework and

• a new Global Response 
Normalization to enhance 
inter-channel competition
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ConvNeXt v2

Fully Convolutional Masked 
Autoencoder

• Encoder:
• Sparse conv to prevent simple 

copy-paste of input (not a problem 
in MAE with transformers)

• Consider image as a 2D array of 
pixels

• Decoder: ConvNeXt block
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ConvNeXt v2

Global Response Normalization

• Feature collapse: many 
dead/saturated feature maps
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ConvNeXt v2
Global Response Normalization

• Inspiration from lateral inhibition 
in brain

• Three steps:
1. global feature aggregation, 

2. feature normalization, and 

3. feature calibration.
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ConvNeXt v2
Global Response Normalization
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ConvNeXt v2
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Fast/Faster ViTs

2023
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Fast ViT
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Faster ViT
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Pretraining Vision Transformers
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Masked Autoencoders CVPR 2022

MSE loss between pixels for masked tokens only! 66



Masked Autoencoders CVPR 2022
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Masked Autoencoders CVPR 2022
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SimMIM
CVPR 2022

69



DINO v1 & v2 (ICCV’21 & TMLR’24)
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DINO v1 & v2 (ICCV’21 & TMLR’24)
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ViViT ICCV 2021
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ViViT ICCV 2021
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VideoMAE NeurIPS 2022
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