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Q Three ways of in-context learning:

In a single sequence input, the

Zero-shot
The model predicts the answer given only a natural language prom pted example can Iearn frOm
description of the task. No gradient updates are performed. preV|ous demonstra‘hons

Translate English to French: task description Few-shot

cheese => pratupt In addition to the task description, the model sees a few

examples of the task. No gradient updates are performed.

One-shot Translate English to French: task description
In addition to the task description, the model sees a single
example of the task. No gradient updates are performed. sea otter => loutre de mer examples

peppermint => menthe poivrée

Translate English to French: task description

plush girafe => girafe peluche
sea otter => loutre de mer example

cheese => prompt
cheese => prompt

Slide: Weizhi Wang
https://victorwz.github.io/additional_files/slides_gpt_cs291A.pdf
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In-@¥ntext Learning: How/Why Does it Work?

NN

A Bayesian interpretation:

p(output|prompt) = f p(output|concept, prompt)p(concept|prompt)d(concept)

concept

* During pretraining, the network learns a latent concept space.
* With the prompt, we provide sufficient examples to estimate the most relevant
concept — p(concept | prompt).

Xie et al., “An Explanation of In-context Learning as Implicit Bayesian Inference”, ICLR 2022.
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In-gntext learning:
J&Sk vectors
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Q‘ Hendel et al., "In-Context Learning Creates Task
Vectors”, 2023.
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Figure 5: A t-SNE plot of task vectors. A 2D t-SNE
plot visualizing 50 task vectors for each task, each gen-
erated from a different choice of S and z’ using LLaMA

7B. Points are color-coded according to the task. Each
task can be seen to form its own distinct cluster.
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Figure 1: ICL as learning in a Hypothesis Class. In
ICL, one provides an LLM with a prompt including
demonstrations S of some task, and a query x. The
model generates the output for = (here “Yellow). We
show that the underlying process can be broken down
into two parts: A, a “learning algorithm” (marked in
blue), computes a query-agnostic vector 6(S), which
we view as a parameter of a function in a hypothesis
class. The second part, denoted by f and marked in
yellow, is the application of the rule defined by 0 on the

query x, without direct dependence on S.
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In- cgﬁtext Learning:
Important Factors

o\)\/lln et al., “Rethinking the Role of Demonstrations:

What Makes In-Context Learning Work?”, 2022.

Demonstrations  pis1yibyrion of inputs Label space
| Circulation revenue has increased by 5% in Finland.  \n  Positive |
Format
| Panostaja did not disclose the purchase price. \n Meutral f'f'hé' Lse

|_Paying off the national debt will be extremely painful. _\n __Negative | of pairs)

Test example

| The acquisition will have an immediate positive impact. \n ? |

Input-label mapping

Figure 7: Four different aspects in the demonstrations:

the input-label mapping, the distribution of the input
text, the label space, and the use of input-label pairing
as the format of the demonstrations.

Abstract

Large language models (LMs) are able to in-
context learn—perform a new task via infer-
ence alone by conditioning on a few input-
label pairs (demonstrations) and making pre-
dictions for new inputs. However, there has
been little understanding of how the model
learns and which aspects of the demonstra-
tions contribute to end task performance. In
this paper, we show that ground truth demon-
strations are in fact not required—randomly
replacing labels in the demonstrations barely
hurts performance on a range of classification
and multi-choce tasks, consistently over 12 dif-
ferent models including GPT-3. Instead, we
find that other aspects of the demonstrations
are the key drivers of end task performance, in-
cluding the fact that they provide a few exam-
ples of (1) the label space, (2) the distribution
of the input text, and (3) the overall format of
the sequence. Together, our analysis provides
a new way of understanding how and why
in-context learning works, while opening up
new questions about how much can be learned
from large language models through inference
alone.
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Ino.:-\é%ntext Learning: Limitations

C Model Parameters and Scale: Scale helps!
* Training Data Dependency: Dataset size matters!

 Domain Specificity:

* "While LLMs can generalize across various tasks, there might be limitations when
dealing with highly specialized domains. Domain-specific data might be required to
achieve optimal results.”

* Model Fine-Tuning:

* “Even with ICL, there might be scenarios where model fine-tuning becomes
necessary to cater to specific tasks or correct undesirable emergent abilities.”

e Ethics and Fairness
* Privacy and Security

https://www.lakera.ai/blog/what-is-in-context-learning



N, Wei et al., “Chain-of-Thought Prompting Elicits
6(,)0 Reasoning in Large Language Models”, NeurIPS 2022.
Chdin of Thought
N
\)‘9
O _ .
Q‘?/ Standard Prompting Chain-of-Thought Prompting
Model Input ) Model Input ) \

Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? tennis balls does he have now?

A: The answer is 11. A: Roger started with 5 balls. 2 cans of 3 tennis balls

Q: The cafeteria had 23 apples. If they used 20 to each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

make lunch and bought 6 more, how many apples

do they have? Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples
do they have?

-

)

Model Output )

A: The answer is 27. x A: The cafeteria had 23 apples originally. They used

20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 =9. The
answer is 9. o

Model Output } j




A\ Kojima et al., “Large Language Models are Zero-Shot
C)Q Reasoners”, NeurlPS 2022.

O
Zgﬁ?—shot Chain of Thought
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(a) Few-shot

C!/:Roger has 5 tennis balls. He buys 2 more cans of tenb
balls. Each can has 3 tennis balls. How many tennis balls does
he have now?

A: The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A

(Output) The answer is 8. X

- /

(c) Zero-shot

/1'-5_: A juggler can juggle 16 balls. Half of the balls are golf ball_e:\
and half of the golf balls are blue. How many blue golf balls are
there?

A: The answer (arabic numerals) is

(b) Few-shot-CoT

Q: Roger has 5 tennis balls. He buys 2 more cans of tenﬁ
balls. Each can has 3 tennis balls. How many tennis balls does
he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6
tennis balls. 5 + 6 = 11. The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A

{Output) The juggler can juggle 16 balls. Half of the balls are goif

balls. So there are 16/ 2 = 8 golf balls. Half of the golf balls are
W_ So there are 8/ 2 = 4 blue golf balls. The answeris 4. y

(d) Zero-shot-CoT (Ours)

/EI: A juggler can juggle 16 balls. Half of the balls are golf ballé?‘\
and half of the golf balls are blue. How many blue golf balls are
there?

A: Let's think step by step.

(Output) 8 X {Ouiput) There are 16 balls in fotal. Half of the balls are golf
balls. That means that there are 8 golf balls. Half of the golf balls
\\ _/_J x\fre blue. That means that there are 4 blue golf balls. ¢ /




. Zhang et al., “Meta Prompting for Al Systems”, 2024.
I\/Ie‘ga@romptmg
C

(o) Problem: Find the domain of the expression %

(,\* Solution: The expressions inside each square root must be non-negative. Therefore, x — 2 > 0, so
x> 2,and 5 —x > 0, so xz < 5. Also, the denominator cannot be equal to zero, so 5 — = > 0,
which gives z < 5. Therefore, the domain of the expression is | (2, 5) | Final Answer: The final

answer is [2, 5). I hope it is correct.

?ﬁ\o
Q( Standard
Prompting

Problem: If det A = 2 and det B = 12, then find det(AB).

Solution: We have that det(AB) = (det A)(det B) = (2)(12) = [24] Final Answer: The final
answer is 24. I hope it is correct.

Problem Statement:
* Problem: [question to be answered]

Solution Structure:

1. Begin the response with "Let’s think step by step."”

2. Follow with the reasoning steps, ensuring the solution process is broken down clearly and
Meta logically.

Prom ptin g 3. End the solu_tion with the final answer encapsulated in a LaTeX-formatted box, -, for clarity
and emphasis.

4. Finally, state "The answer is [final answer to the problem].", with the final answer presented in
LaTeX notation.

Figure 1: A structure meta prompt presented in markdown format for solving MATH [17] problems. 9



%QN Hu et al., “Chain-of-Symbol Prompting

Cb\aﬁ\(ﬁ Of Sym bOl Ili/lligg;z’l”a;giznf in Large Langauge
o)

AN

| Shared Model Input )

There are a set of bricks. The yellow brick C is on top of the brick E . The yellow brick D is on top of the brick A . The yellow brick E
is on top of the brick D . The white brick A is on top of the brick B . For the brick B, the color is white. Now we have to get a
specific brick. The bricks must now be grabbed from top to bottom, and if the lower brick is to be grabbed, the upper brick must
be removed first. How to get brick D?

/—[ Chain-of-Thought Prompting ]—\ /—[ Chain-of-Symbol Prompting ]—\

The bricks from bottom to top is B, A, D, E, C
1. Remove brick A from the top of brick B. gﬁ/D/E/C
2. Remove brick E from the top of brick D. E/D
3. Now brick D is the topmost yellow brick and can be D
grabbed.
— Model Output | N | Model Output —
So we get the result as A, E, D. x So we get theresult as C, E, D. \V 4

Figure 1: An example for comparison between Chain-of-Thought (CoT) and Chain-of-
Symbol (COS) that elicits large language models in tackling complex planning tasks with
higher performance and fewer input tokens. We let the model generate CoT/COS during
inference in a few-shot manner. Results were taken in May 2023 with ChatGPT and can be

subject to change.
10
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rating external knowledge benefits common-
sense reasoning while maintaining the flexi-
bility of pretrained sequence models. To in-
vestigate this question, we develop generated
knowledge prompting, which consists of gen=
erating knowledge from a language model,
then providing the knowledge as additional in-
put when answering a question. Our method
does not require task-specific supervision for
knowledge integration, or access to a struc-
tured knowledge base, yet it improves perfor-
mance of large-scale, state-of-the-art models
on four commonsense reasoning tasks, achiev-
ing state-of-the-art results on numerical com-
monsense (NumerSense), general common-
sense (CommonsenseQA 2.0), and scientific
commonsense (QASC) benchmarks. Gener-
ated knowledge prompting highlights large-
scale language models as flexible sources of
external knowledge for improving common-

Liu et al., “Generated Knowledge Prompting for
Commonsense Reasoning”, 2022.

O
Goe?ieerated knowledge prompting
N

o\)' It remains an open question whether incorpo-

4\

Answer

Knowledge 1
Question —>{ Knowledge) [ iedge 2
Generation

/T

Prompt Q

Knowledge
Integration
Generate by, Knowledge 1
Q) k(1) sampling
Demonstrations: ... Knowledge 2
(fixed for task) Q®, K(®

Figure 1: Generated knowledge prompting involves
(1) using few-shot demonstrations to generate question-
related knowledge statements from a language model;
(i1) using a second language model to make predic-
tions with each knowledge statement, then selecting the
highest-confidence prediction.

11



(,)Q\' Wang et al., “Self-Consistency Improves Chain of

$(9 . Thought Reasoning in Language Models”, 2023.
SeK=consistency
N

o‘? Greedy decode
\0 . This means she uses 3 + 4 = 7 eggs every day.
QQ Chain-of-thought Language She sells the remainder for $2 per egg, so in
Q( prompting model total she sells 7 * $2 = $14 per day. The answer is $14. ]
The answer is $14.

Self-consistency

ﬂ): If there are 3 cars in the parking \

friends every day with four. She sells
the remainder for $2 per egg. How

much does she make every day?

& /

Sample a diverse set of
reasoning paths

™~
She has 16 - 3 - 4 = 9 eggs

she has 16 - 3 = 13 left. Then |
she bakes muffins, so she I The answer is $18.
has 13 - 4 = 9 eggs left. So

Marginalize out reasoning paths
to aggregate final answers

. \
lot and 2 more cars arrive, how many i left. So she makes $2*9 = | The answer is $18.
cars are in the parking lot? $18 per day. | ) \
A: There are 3 cars in the parking lot ~ \
already. 2 more arrive. Now there are This means she she sells the \
3 +2=5cars. The answer is 5. remainder for $2 * (16 - 4 - 3)I The answer is $26. \
, = $26 per day.
Q: Janet’s ducks lay 16 eggs per day. Language $ .
She eats three for breakfast every mg d e? ! g The answer is $18.
morning and bakes muffins for her She eats 3 for breakfast, so | )

she has 9 eggs * $2 = $18. |

Figure 1: The self-consistency method contains three steps: (1) prompt a language model using
chain-of-thought (CoT) prompting; (2) replace the “greedy decode” in CoT prompting by sampling
from the language model’s decoder to generate a diverse set of reasoning paths; and (3) marginalize
out the reasoning paths and aggregate by choosing the most consistent answer in the final answer set.

12
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" " Zhou et al., “LARGE LANGUAGE MODELS ARE
Auc@] at I C P rO m pt E n gl n e e r HUMAN-LEVEL PROMPT ENGINEERS”, 2023.
O

Jg\*he high score candidates x Discard the low score candidates * Final selected prompt with highest score

0.81
0.8
4’\0 LLMs as Inference Models |\ /—[ LLMs as Scoring Models § 0.7
) ) 75 o o ———_— -
‘z Professor Smith was given the Inst;uchon: write the antonym of the g
o Sl word.
Q following instructions: <INSERT> <LIKELIHOOD> :g — = Human Prompt Engineer 0.65
Here are the Professor’s responses: Input: direct  Outp ut [
\ Z o 0.6
# Demostration Start . ﬁ Log @ B
Scorin! o 1s o
Input: prove Output: disprove Prg?)sal @ g ® Probability f)
Input: on Output: off
P P I:> write the antonym of the word. 026 | o é
4D ion E : . @
\ emostration End / give the antonym of the word provided. 028 | N 04-
C
@ ©
[0}
[Optionall High Score reverse the input. 086 | X %
LLMs as Resampling Models Candidates =
< ::I to reverse the order of the letters -1.08 i
Generate a variation of the following x © 02
instruction while keeping the semantic @ g—
meaning. Similar write the opposite of the word given. -0.16 * o
Candiates ‘E
Input: write the antonym of the word. |:> — 0.03 0.03 0.02 o g1 0.03
Output: <COMPLETE> § : y 0 -
i J e e k) 350M1.3B 6.7B175B  350M1.3B 6.7B175B  350M1.3B 6.7B175B  350M1.3B 6.7B 1758

Greedy (GPT-3) Greedy (InstructGPT) APE (GPT-3) APE (InstructGPT)

(a) Automatic Prompt Engineer (APE) workflow (b) Interquartile mean across 24 tasks

13



Yao et al., “Tree of Thoughts:

& G Thoughts Prompting i

\A
' D‘o
Q\

,‘0

Input i thought i

H*H |

éé

Majonty vote
Output

(a) Input-Output | Cham of Thought c) Self Consistency
Prompting (10) Promptlng (CoT) with CoT (CoT-SC)

(d) Tree of Thoughts (ToT)

Figure 1: Schematic illustrating various approaches to problem solving with LLMs. Each rectangle
box represents a thought, which is a coherent language sequence that serves as an intermediate
step toward problem solving. See concrete examples of how thoughts are generated, evaluated, and
searched in Figures 2,4,6.

14



G tal., “PAL: P -aided
Prqg’i’a m-Aided LMs Langusge Models’, 2023,

\* Chain-of-Thought (Wei et al., 2022) Program-aided Language models (this work)
6 ~—_ Input Input
°\°° N [ Q: Roger has 5 tennis balls. He buys 2 more cans of N
OQ tennis balls. Each can has 3 tennis balls. How many
Q’( Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls does he have now?
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? A: Roger started with 5 tennis balls.

tennis balls = 5

A: 2 cans of 3 tennis balls each is

tennis balls. The answer is
Q: The bakers at the Beverly Hills Bakery baked 200 answer = tennis balls + bought balls
loaves of bread on Monday morning. They sold 93 loaves - -
in the morning and 39 loaves in the afternoon. A grocery Q: The bakers at the Beverly Hills Bakery baked 200
store returned 6 unsold loaves. How many loaves of loaves of bread on Monday morning. They sold 93 loaves
bread did they have left? in the morning and 39 loaves in the afternoon. A grocery
store returned 6 unsold loaves. How many loaves of bread
\_ J Qid they have left? .
A Model Output N ,._{A Model Output | N
: : The bakers started with 200 loaves

loaves baked = 200

loaves sold morning = 93
The answer is 62. x loaves sold afterncon = 39
AN _./J loaves returned = 6
The answer is
answer = loaves baked - loaves scld morning

- loaves sold afterncon + loaves returned

>>> print(answer)|
N Y,




Q‘\o Wang et al., “A Survey on Large Language Model based
" Autonomous Agents”, 2024.

LMS as Agents

J\\o
Q& @ Cf:l D @ ;;3 @
' n 'd \ N\ ( N
Profile ( Memory ) ( Planning | [ Action |
3 m ’ 7' | | . ° I'I “.‘ %
@ .. aﬂA 4 4}_..““ —
Profile Contents Memory Structure Planning w/o Feedback Action Target
. . » Unified Memory » TaskCompletion » Exploration
> Eemogr?phllcflnforn?atlon > Hybrid Memory » Single-path Reasoning > Communication
& ersona Iyl c-»rmatlon VYl R > Multi-path Reasoning Action Production
» Social Information y > External Pl » Memory Recollection
» languages » Databases xternat Flanner > Plan Following
Generation Strategy > Embeddings > Lists Planning w/ Feedback Action Space
» Handcrafting Method Mer:\ﬂory Oser:t'on > Environment Feedback » Tools » Self-Knowledge
» LLM-Generation Method 2 W] el > Human Feedback Action Impact

» Memory Writing

> Dataset Alignment Method » Environments » New Actions
g » Memory Reflection > Model Feedback » Internal States

\. J/ . J \ S . J

Fig.2 A unified framework for the architecture design of LLM-based autonomous agent.

16
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LLN?S as Agents

4\o“" Promptlng/PIannmg with feedback
‘0 .

<2 s (1d) ReAct (Reason + Act) ~

- A

Thought 1: I need to search Apple Remote and find the

program it was originally designed to interact with.

Act 1: Search[Zpple Remcte]

Obs 1: The Apple Remote is a remote control introduced in

October 2005 by Apple .. originally designed to control the
program ..

Thought 2: Apple Remote was originally designed to control
the Front Row media center program. I need to search
- next and find what other device can control it.
Act 2: Search|[Front Row]
Obs 2: Could not find [Front Row]. Similar: ['Front Row
Seat to Earth', 'Front Row Motorsports',

vy

Thought 3: Front Row is not found. I need to search -

Act 3: Search]| ]
Obs 3: Front Row is a discontinued media center software ..

Yao et al., “ReAct: Synergizing Reasoning and

T Acting in Language Models”, 2023.
So the answer is

keyboard function keys.

Act 4: Finish|[Keyboarditunceionikeys|]
. \// 17
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LMS as Agents

"* Autogen, LangChain, AutoGPT, Langroid, OpenAgents, ..

O
&
Conversable agent T T o iy Ea:
: € : G2
B I | - | € > - :
. @ | g Es.
I
I - :
' Multi-Agent Conversations
@ ARM '
rey - e
= =Rl ) 9.
@ | . @ | N VN
! - . . - | @ @ @ |
I I I I = | e | =
() () & C3J
I @ l l | [ o o =,
Autogen: :_ _ __ _ _: :_ _: Joint chat Hierarchical chat

Agent Customization Flexible Conversation Patterns

18
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LLN?S as Agents: Challenges

Q%m https://www.promptingguide.ai/research/lim-agents:

Role-playing capability: LLM-based agents typically need to adapt a role to effectively complete tasks in a domain. For roles that the LLM
doesn't characterize well, it's possible to fine-tune the LLM on data that represent uncommon roles or psychology characters.

Long-term planning and finite context length: planning over a lengthy history remains a challenge that could lead to errors that the
agent may not recover from. LLMs are also limited in context length they can support which could lead to constraints that limit the
capabilities of the agent such as leveraging short-term memory.

Generalized human alignment: it's also challenging to align agents with diverse human values which is also common with standard LLMs.
A potential solution involves the potential to realign the LLM by designing advanced prompting strategies.

Prompt robustness and reliability: an LLM agent can involve several prompts designed to power the different modules like memory and
planning. It's common to encounter reliability issues in LLMs with even the slightest changes to prompts. LLM agents involve an entire
prompt framework which makes it more prone to robustness issues. The potential solutions include crafting prompt elements through
trial and error, automatically optimizing/tuning prompts, or automatically generating prompts using GPT. Another common issue with
LLMs is hallucination which is also prevalent with LLM agents. These agents rely on natural language to interface with external
components that could be introducing conflicting information leading to hallucination and factuality issues.

Knowledge boundary: similar to knowledge mismatch issues that could lead to hallucination or factuality issues, it's challenging to
control the knowledge scope of LLMs which can significantly impact the effectiveness of simulations. Concretely, an LLM's internal
knowledge could introduce biases or utilize user-unknown knowledge that could affect the agent's behavior when operating in specific
environments.

Efficiency: LLM agents involve a significant amount of requests that are handled by the LLM which could affect the efficiency of agent
actions because it would depend heavily on the LLM inference speed. Cost is also a concern when deploying multiple agents.

19



o) Input Indexing
$  —1
(j(r ’________[ Query ] _______ ) @ , —
! :  —
oo 1 1 How do you evaluate the fact : Documents E
\* User J ~ . that OpenAl's CEQ, Sam Altman, f - o -
) 1 - ' Chunks{Vectors
Oo T ! went through a sudden dismissal !
N\ » by the board in just three days, :
‘OQ l OUtpLIt E and then was rehired by the E + [EmbeddingsJ
| iy company, resembling a real-life |
. version of "Game of Thrones” in : .
' terms of power dynamics? : Retrieval
L N T e = [] i (o]

[ Relevant Documents J

...l am unable to provide comments on

future events. Currently, | do not have f

any information regarding the dismissal )« 1‘;}5 LLM o GEﬂErﬂtiD

and rehiring of OpenAl's CEO .., i 6ty giol . pmmmmmmmmm e e -
Question :

Chunk 1: "Sam Altman Retumns to
OpenAl as CED, Silicon Valley Drama
Resambles the 'Zhen Huan' Comedy"

How do you evaluate the fact that the
OpenAls CEQ, ... ... dynamics?

i
i
!
i
I
Please answer the above questions :
1
1
L}
I
[}
i
i
i

...... This suggests significant internal
disagreements within OpenAl regarding

the company’s future direction and based on the following information ©

Chunk 2: "The Drama Concludes? Sam

!
i
' . - : k1: "
\ 1 strategic decisions. All of these twists gﬂﬂ:k Y Altman to Retumn as CEOQ of '?:De”ﬂ*l-
' | and turns reflect power struggles and Shunk 3 Board to Undergo Restructuring
| | Corporate governance issues within ' . .
1 ' OpenAl... b . - = ) hunk 3: "The Personnel Turmoil at
! " ‘ Combine Context ‘ : Dp;m: Cfme-? to an End: Who Won
Tt R T - an o Lost?
{ Answer J and Prompts :
LY #

Gao et al., “Retrieval-Augmented Generation for
Large Language Models: A Survey”, 2024.
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Fig€tuning an LLM
o"\*
Q;'\‘o * Parameter-efficient Finetuning (vs. Full Finetuning)
* Update a subset of parameters

* LoRA, LoRA+

e LASER (not finetuning actually)

21



60\’ Hu et al., “LORA: LOW-RANK ADAPTATION OF LARGE
() LANGUAGE MODELS”, 2021.

N\
Q‘é Weight update in regular finetuning Weight update in LoRA

LoRA matrices A and B
approximate the weight / \
update matrix AW +

Pretrained

weights L——!  Theinner dimension r
is a hyperparameter

Pretrained
weights

Target: Attention blocks
Fig: https://magazine.sebastianraschka.com/p/practical-tips-for-finetuning-lims 22



Abstract

In this paper, we show that Low Rank Adaptation
(LoRA) as originally introduced in (Hu et al.,
2021) leads to suboptimal finetuning of models
with large width (embedding dimension). This
is due to the fact that adapter matrices A and
B in LoRA are updated with the same learning
rate. Using scaling arguments for large width
networks, we demonstrate that using the same
learning rate for A and B does not allow
efficient feature learning. We then show that this
suboptimality of LoRA can be corrected simply
by setting different learning rates for the LoRA
adapter matrices A and B with a well-chosen
fixed ratio. We call this proposed algorithm
LoRA+. In our extensive experiments, LoORA+
improves performance (1% — 2% improvements)
and finetuning speed (up to ~ 2X SpeedUp), at
the same computational cost as LoRA.

Hayou et al., “LoRA+: Efficient Low Rank Adaptation
of Large Models”, 2024.

LoRA LoRA+
g
= Pretrained
£ Weights
g B | x A
£ W e R™"
5
A
z A+~ A—nxGy A+—A—nxGy
g
5 B+ B—nxGp B+ B—AnxGp
A>1

Figure 1. The key difference between standard LoRA and
LoRA+ is in how learning rates are set (the matrices G 4 and
G p are ‘effective’ gradients from AdamW) With standard LoRA,
the learning rate is the same for A and B, which provably leads
to suboptimal learning when embedding dimension is large. In
LoRA+, we set the learning rate of B to be Ax that of A, where
A > 1 is fixed. We later provide guidelines on how to set A
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Fineéuﬁ’ing an LLM: Challenges

1.

3.

4.

8.

9.

er s poorly on unseen data. This risk is particularly pronounced when the task-specific dataset is small or not representative of the

&

Overfﬁ' Sﬁg: Fine-tuning can be prone to overfitting, a condition where the model becomes overly specialized on the training data and
ade

r context.

. @%atastrophic Forgetting: During fine-tuning for a specific task, the model may forget previously acquired general knowledge. This
4\

phenomenon, known as catastrophic forgetting, can impair the model's adaptability to diverse tasks.

Bias Amplification: Pre-trained models inherit biases from their training data, which fine-tuning can inadvertently amplify when applied to
task-specific data. This amplification may lead to biased predictions and outputs, potentially causing ethical concerns.

Generalization Challenges: Ensuring that a fine tuned model generalizes effectively across various inputs and scenarios is challenging. A
model that excels in fine-tuning datasets may struggle when presented with out-of-distribution data.

Data Requirements: Fine-tuning necessitates task-specific labelled data, which may not always be available or clean. Inadequate or noisy
data can negatively impact the model's performance and reliability.

Hyperparameter Tuning Complexity: Selecting appropriate hyper||:)a rameters for fine-tuning can be intricate and time-consuming. Poor
choices may result in slow convergence, overfitting, or suboptimal performance.

Domain Shift Sensitivity: Fine-tuning data significantly different from the pre-training data can lead to domain shift issues. Addressing this
problem often requires domain adaptation techniques to bridge the gap effectively.

Ethical Considerations: Fine tuned Iar%](.e language models may inadvertently generate harmful or inappropriate content, even when
designed for benign tasks. Ensuring ethical behaviour and safety is an ongoing challenge, necessitating responsible Al practices.

Resource Intensiveness: Fine-tuning large models demands substantial computational resources and time, posing challenges for smaller
teams or organizations with limited infrastructure and expertise.

10.Unintended Outputs: Fine-tuning cannot guarantee that the model consistently produces correct or sensible outputs. It may generate

plausible but factually incorrect responses, requiring vigilant post-processing and validation.

11.Model Drift: Over time, a fine tuned model's performance can deteriorate due to changes in data distribution or the evolving environment.

Regular monitoring and re-fine-tuning may become necessary to maintain optimal performance and adapt to evolving conditions.

From: https://www.lakera.ai/blog/lIm-fine-tuning-guide 24



The Batch

I DON'T KNOW HOW
YOU CAN READ THAT STUFF
WITHOUT FALLING ASLEEP!

https://www.deeplearning.ai/the-batch/issue-276/
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Today

* VVision Models
* Vision Transformers
* Swin Transformers
* Fast/Faster ViTs
* Pretraining



Administrative Notes

* New quiz this week
e Deadline: Tomorrow midnight

* Time plan for the projects

2. Milestone (December 8, midnight)
* The results of the first experiment
3. Milestone (January 5, midnight)
* Final report (Readme file)
* Repo with all code & trained models
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Published as a conference paper at ICLR 2021

AN IMAGE IS WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy* ', Lucas Beyer*, Alexander Kolesnikov*, Dirk Weissenborn*,
Xiaohua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby*-'
*equal technical contribution, Tequal advising
Google Research, Brain Team
{adosovitskiy, neilhoulsby}@google.com

Vision Transformers (ViT
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VIT: Motivation

* NLP:

e Successful results of Transformers
 De facto architecture

* Vision:
* CNNs are dominantly used

* Prior work

 Self-attention among pixels. Limit attention to local regions to reduce
complexity (Parmar et al., 2018)

 Self-attention among blocks of different sizes (Weissenborn et al., 2019)
 Self attention between 2x2 patches (Cordonnier et al., 2020)



VIT: Motivation

* Prior work
 Self attention between 2x2 patches (Cordonnier et al., 2020)

. . N
4 Multi-Head Self-Attention Layer
Dy,
A[]]
.EI @ X Dy,
W
Dy,
(1) - ,
X Ay MHSA(X)
S
Y W D
------- w
) =
& X T = <
(2) 5 7777777 :1
" Woa 5 X = O
o IS H
[_; A(qz) 8  f--eooo-
I .
akey pixel the query pixel . . * W,
at position k& at position g -
1
B\A‘:) Wi
AWVa) Z X :Aqk  Filter matrices
q,: k' c[W]x[H]
Attention maps for pixel
\ p pixel q /

Figure 1: Illustration of a Multi-Head Self-Attention layer applied to a tensor image X. Each head h

attends pixel values around shift A and learn a filter matrix W,((l?) We show attention maps

computed for a query pixel at position q.
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VIT: Motivation

e Contributions

e Use plain transformers without modifications

* Compared to Cordonnier et al. (2020):
* ViT shows strong results with large datasets & pretraining
* ViT works with larger patches (generalizes better)

e Challenges in using Transformers with images:
* How to convert an image into tokens?
* How to encode position?
* Transformers lack translation invariance and locality
e Spoiler: They underperform on “small” datasets



Applied to classification tasks only!

ViT: Architecture

Vision Transformer (ViT)

MLP
Head

Transformer Encoder

l
e LT LLLT LT

* Extra learnable
[class] embedding Lmear PI‘O] ection of Flattened Patches

| | |
I

Transformer Encoder

er

[ Multi-Head |

Attention

Norm

Patches

F Embedded ]
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VIT: Pretraining

e Supervised pretraining on large datasets and finetuning on smaller
downstream tasks

* Higher resolutions:

* The whole network can easily be applied to longer sequences (= higher
resolutions)

* Learned position embeddings are interpolated



ViT: Results

Ours-JFT Ours-JFT Ours-121k BiT-L Noisy Student
(ViT-H/14)  (ViT-L/16)  (ViT-L/16) (ResNet152x4) (EfficientNet-L2)
ImageNet 88.55+0.04 87.76+0.03 85.30+0.02 87.54 +0.02 88.4/88.5*
ImageNet Real 90.72+0.05 90.54+0.03 88.62+0.05 90.54 90.55
CIFAR-10 99.50+0.06 99.42+0.03 99.15+0.03 99.37 +0.06 —
CIFAR-100 94.55+0.04 93.90+005 93.25+0.05 93.51 +0.08 —
Oxford-IIIT Pets 97.56+0.03 97.32+011 94.67+0.15 96.62 +0.23 —
Oxford Flowers-102  99.68+0.02 99.74+0.00 99.61+0.02 99.63 +0.03 —
VTAB (19 tasks) T7.63+023 76.284+0.46 72.72+0.21 76.29 £ 1.70 —
TPUv3-core-days 2.5k 0.68k 0.23k 9.9k 12.3k
90 —
x - =70 —=
- B .
8 85 1 I ﬁ .
é i 2 60
3] Z e
= 80 g %
= £ 50
: E
Z 75 BiT ViT-L/32 % 0] ¥
& ViT-B/32 ViT-L/16 2 ViT-L/16 -e-ViT-B/32 - ResNet50x1 (BiT)
E ViT-B/16 ViT-H/14 2 - ViT-L/32 -+ ViT-b/32 -#ResNet152x2 (BiT)
704 ; : 5 30
ImageNet ImageNet-21k JFT-300M IOIM 301M ' 106 M 306 M

Pre-training dataset Number of JFT pre-training samples
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Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
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Swin Transformer vl Layer | Laer 141

A local window to
perform self-attention

\ 4

* Motivation:
* ViT is promising but limited to A patch
classification

* Challenges in using Tranformers:
 |arge variations in scales of visual entities, ~ segmentation : .f y
 more pixels compared to words in text classification detection ... asSLication

» Existing Transformers use fixed token & ——r
. o 16x o 16x
size across layers /é/z////y ////{// /

e Contributions: 277 ///%
* Limit self-attention to non-overlapping B ——
windows while allowing cross-window £ 7Z—"“Z"2"-"% /{////Z//A

attention o 4 '
* Change token size across layers (a) Swin Transformer (ours) (b) ViT
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Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with
Eq. (3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively.
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sformer Blocks (notagfion presented with
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A local window to
perform self-attention
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Swin Transformer vl

Relative position bias In computing self-attention, we
follow [47, I, 22, 27] by including a relative position bias
B € RM* XM (g each head in computing similarity:

Attention(Q, K, V) = SoftMax(QK T /v/d + B)V, (4)

where Q, K,V € RM %4 are the query, key and value ma-
trices; d is the querylkey dimension, and M? is the number
of patches in a window. Since the relative position along
each axis lies in the range [ M + 1, M — 1], we parameter-
ize a smaller-sized bias matrix B € R@M—1)x(2M—1) a4
values in B are taken from B.

Plot from https://arxiv.org/pdf/2107.14222:

0 -7
1 -6
2 -5
3 -4
4 -3
5 -2
Sy 6 &y -11
71 0]
81 11
9 21
10+ 3
11 4
12 5
13 6
012345678 910111213 7-6-5-4-3-2-10123456
Ox Ox
(a) top-left (b) center

Figure 6: Visualization of Euclidean method. The red star
% presents the reference position. Different color means
different bucket. The relative positions with the same color
share the same encoding.
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Swin Transformer vl

Relative position bias In computing self-attention, we
follow [+, 1, 2, 77] by including a relative position bias
B € RM*XM” {5 each head in computing similarity:

Attention(Q, K, V) = SoftMax(QK” /vd + B)V, (4)

where Q, K,V € RM “xd are the query, key and value ma-
trices; d is the query/key dimension, and M? is the number
of patches in a window. Since the relative position along
each axis lies in the range [ M + 1, M — 1], we parameter-
ize a smaller-sized bias matrix B € RCM-1)x(2M—1) ap4
values in B are taken from B.

ImageNet COCO ADE20k
top-1 top-5 | AP*™ AP™¥ | mloU
w/o shifting 80.2 95.1 | 477 415 433
shifted windows | 81.3 95.6 | 50.5 43.7 46.1
no pos. 80.1 949 | 492 426 43.8
abs. pos. 80.5 952 | 490 424 43.2
abs.+rel. pos. 813 956 | 502 434 44.0
rel. pos. w/oapp. | 79.3 947 | 482 419 44.1
rel. pos. 81.3 95.6 | 505 43.7 46.1

Table 4. Ablation study on the shifted windows approach and dif-
ferent position embedding methods on three benchmarks, using
the Swin-T architecture. w/o shifting: all self-attention modules
adopt regular window partitioning, without shifting; abs. pos.: ab-
solute position embedding term of ViT; rel. pos.: the default set-
tings with an additional relative position bias term (see Eq. (4));
app.: the first scaled dot-product term in Eq. (4).
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Swin Transformer v1: Results

(a) Regular ImageNet-1K trained models

method irr@ge #param. FLOPs tl'lroughput ImageNet

size (image / s) [top-1 acc.
RegNetY-4G [11][224% 2IM 4.0G 1156.7 80.0
RegNetY-8G [44] | 224> 39M 8.0G  591.6 81.7
RegNetY-16G [14]| 224> 84M 160G  334.7 82.9
ViT-B/16[ '] [384° 86M 554G  85.9 77.9
VIT-L/16 [19] |384% 307M 190.7G  27.3 76.5
DeiT-S [17] 224> 22M  4.6G 9404 79.8
DeiT-B [©7] 224> 86M 17.5G  292.3 81.8
DeiT-B[°/] |384® 86M 554G 859 83.1
Swin-T 224> 20M 45G 7552 81.3
Swin-S 2242 50M 8.7G  436.9 83.0
Swin-B 224 88M 154G  278.1 83.5
Swin-B 384> 88M 47.0G 84.7 84.5

(b) ImageNet-22K pre-trained models

method imgge #param. FLOPs tl}roughput ImageNet

size (image / s) [top-1 acc.
R-101x3 [/] [384% 388M 204.6G - 84.4
R-152x4 [*/] |480° 937M 840.5G - 85.4
VIT-B/16[1©] [384% 86M 554G  85.9 84.0
VIT-L/16 [ 1] |[384% 307M 190.7G  27.3 85.2
Swin-B 224° 88M 154G  278.1 85.2
Swin-B 384 88M 47.0G 84.7 86.4
Swin-L 384 197M 103.9G 42.1 87.3

Table 1. Comparison of different backbones on ImageNet-1K clas-
sification. Throughput is measured using the GitHub repository

of [¢”] and a V100 GPU, following [>"].

(a) Various frameworks

Method  Backbone|AP™™ AP2Z* AP3S* |#param. FLOPs FPS
Cascade R-50 |463 643 50.5| 82M 739G 18.0
Mask R-CNN Swin-T | 50.5 69.3 54.9| 86M 745G 15.3
ATSS R-50 |435 619 470 32M 205G 283
Swin-T |47.2 66.5 51.3| 36M 215G 22.3

RepPointsV?2 R-50 [46.5 646 503 | 42M 274G 13.6
Swin-T | 50.0 68.5 54.2 | 45M 283G 12.0

Sparse R-50 [445 634 432[ 106M 166G 21.0
R-CNN  Swin-T |47.9 673 523 | 110M 172G 18.4

(b) Various backbones w. Cascade Mask R-CNN
paramFLOPsFPS

box box box
AP APsy* AP75

APmask APIS%aSk API7115ask

DeiT-S'|48.0 67.2
R50 |46.3 64.3
Swin-T | 50.5 69.3

51.7
50.5
54.9

41.4
40.1
43.7

64.2 443
61.7 434
66.6 47.1

80M 889G 10.4
82M 739G 18.0
86M 745G 15.3

X101-32/48.1 66.5
Swin-S | 51.8 70.4

524
56.3

41.6
44.7

639 452
67.9 485

10IM 819G 12.8
107M 838G 12.0

X101-64|/48.3 66.4
Swin-B | 51.9 70.9

52.3
56.5

41.7
45.0

64.0 45.1

140M 972G 10.4

684 48.7

145M 982G 11.6

(c) System-level Comparison
mini-val

Method

APbox APmask

test-dev

APbox APmask

#param. FLOPs

RepPointsV2* [ 17]
GCNet* [/]
RelationNet++* [ 1 7]
DetectoRS* [47]
YOLOv4 P7* [4]
Copy-paste [7]

559 47.

52.1

51.8 44.7 |52.3 454

527 -
55.7 485
558 -
2 1560 474

185M

1041G

1440G

X101-64 (HTC++)

523 4e6.

ol - -

155M

1033G

Swin-B (HTC++)
Swin-L (HTC++)
Swin-L. HTC++)*

564 49.
57.1 49.

58.0

11 - -
51577 50.2

504 | 58.7 51.1

160M
284M
284M

1043G
1470G

Table 2. Results on COCO object detection and instance segmen-
tation. Tdenotes that additional decovolution layers are4used to
produce hierarchical feature maps. * indicates multi-scafé testing.



Swin Transformer v2

Motivation:

e “Large-scale NLP models have been shown to significantly improve the
performance on language tasks with no signs of saturation”.

* “They also demonstrate amazing few-shot capabilities like that of human beings”
Contribution:

* “Explore large-scale models in computer vision”

* Three major issues & solutions:

* Training stability: “1) a residual-post-norm method combined with cosine attention to
improve training stability”

* resolution gaps between pre-training and fine-tuning: “2) A log-spaced continuous position
bias method to effectively transfer models pre-trained using low-resolution images to
downstream tasks with high-resolution inputs”

* hunger on labelled data: “3) A self-supervised pretraining method, SimMIM, to reduce the

needs of vast labeled images” .



Swin Transformer v2

e |ssues with v1

* “An instability issue when scaling up

model capacity.”

* “Degraded performance when
transferring models across window

resolutions.”

1.2

0.8
0.6
0.4
0.2

Training Loss

H-Pre (SSL)

H-Post (SSL)

100 200

>

300 400 800

Epoch

500 600 700

Figure 3. SwinV1-H versus SwinV2-H in training [/ ”].

Trained on Tested/Finetuned on Finetuned on

ImageNet* ImageNet' COCO ADE20k
method W8, 1256 |W12,1384 | W16, 1512 | W20, 1640 | W24,1768 | W16 | W32 | W16 | W20 | W32
top-1 acc | top-1acc | top-1acc | top-1acc | top-1acc | AP* | AP* | mIoU | mIoU | mIoU
Parameterized position bias [/ (] 81.7 79.4/82.7 | 77.2/83.0 | 73.2/83.2 | 68.7/83.2 | 50.8 | 50.9 | 45.5 | 45.8 | 44.5
Linear-Spaced CPB 81.7 82.0/82.9 | 81.2/83.3 | 79.8/83.6 | 77.6/83.7 | 50.9 | 51.7 | 47.0 | 474 | 47.2
(+0.0) (+2.6/40.2) | (+4.0/+0.3) | (+6.6/+0.4) | (+8.9/+0.5) | (+0.1) | (+0.8) | (+1.5) | (+1.6) | (+2.7)
Log-Spaced CPB 81.8 82.4/83.2 | 81.7/83.8 | 80.4/84.0 | 79.1/84.2 | 51.1 | 51.8 | 47.0 | 47.7 | 47.8
(+0.1) (+3.0/4+0.5) | (+4.5/+0.8) | (+7.2/+0.8) | (+10.4/+1.0) | (+0.3) | (+0.9) | (+1.5) | (+1.9) (+3.3)




Swin Transformer v2

Scaling up model capacity

* Residual post normalization:
Prevents output to diverge

e Scaled cosine attention:

* learnt attention maps of some
blocks and heads are frequently
dominated by a few pixel pairs,
especially in the res-post-norm
configuration => cosine yields
values in a smaller range

V1

V2

X

- ¥ 1A
| : P
| l

MLP

| , I
| I
I T\ qkT I | Layer Norm I
I b | D
I q k v | €/
I B we wk wv |4—| Attention |
I Parameterized 1 1 | Layer Norm
R —Zz = a—
xl
___________ - k
r | D
| I L/
I Softmax I | Layer+Norm |
: () cosine(q,k)/t : L me |
b any
I flog we wk wv | | Layer Norm |
| Ax, Ay 1 1 Iq— Attention
Logch® __ __ __ __ __Z __ ____ —
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Scaling Up Window Resolution

e Continuous relative position bias

B(Az, Ay) = G(Az, Ay),

3)

where G is a small network, e.g., a 2-layer MLP with a
ReLU activation in between by default.

The meta network G generates bias values for arbitrary
relative coordinates, and thus can be naturally transferred
to fine-tuning tasks with arbitrarily varying window sizes.

Log-spaced coordinates

Log-spaced coordinates When transferring across
largely varying window sizes, a large portion of the relative
coordinate range needs to be extrapolated. To ease this

issue, we propose using log-spaced coordinates instead of
the original linear-spaced ones:

Az = sign(z) - log(1 + |Az|),
Ay = sign(y) - log(1 + |Ay]),

@

where Az, Ay and 5}, &/ are the linear-scaled and log-
spaced coordinates, respectively.

Trained on Tested/Finetuned on Finetuned on

ImageNet* ImageNet' COCO ADE20k
W8, 1256 |W12,1384 | W16, 1512 | W20, 1640 | W24,1768 | W16 | W32 | W16 | W20 | W32
method top-1 acc | top-1acc | top-1acc | top-1acc | top-1acc | AP* | AP* | mIoU | mIoU | mIoU
Parameterized position bias [/ (] 81.7 79.4/82.7 | 77.2/83.0 | 73.2/83.2 | 68.7/83.2 | 50.8 | 50.9 | 45.5 | 45.8 | 44.5
Linear-Spaced CPB 81.7 82.0/82.9 | 81.2/83.3 | 79.8/83.6 | 77.6/83.7 | 50.9 | 51.7 | 47.0 | 474 | 47.2
(+0.0) (+2.6/40.2) | (+4.0/+0.3) | (+6.6/+0.4) | (+8.9/+0.5) | (+0.1) | (+0.8) | (+1.5) | (+1.6) | (+2.7)
Log-Spaced CPB 81.8 82.4/83.2 | 81.7/83.8 | 80.4/84.0 | 79.1/84.2 | 51.1 | 51.8 | 47.0 | 47.7 | 47.8
(+0.1) (+3.0/4+0.5) | (+4.5/+0.8) | (+7.2/+0.8) | (+10.4/+1.0) | (+0.3) | (+0.9) | (+1.5) | (+1.9) (+3.3)




Swin Transformer v2

| s b
- - £, loss
Self-Supervised Pre-training w4 3
* Prior work used JFT-3B L

One-layer Prediction Head

Encoder
(e.g., ViT, Swin)

e Use SIMmMMIM to train 3B-size Swin
Transformer

Figure 1. An illustration of our simple framework for masked lan-
guage modeling, named SimMIM. It predicts raw pixel values of
the randomly masked patches by a lightweight one-layer head, and
performs learning using a simple ¢; loss.

From SimMIM paper.
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Moethod param pre-train pre-train  pre-train pre-train fine-tune ImageNet-1K-V1 ImaegNet-1K-V2

images length (#im) 1im size time 1m size top-1 acc top-1 acc

SwinV1-B 88M IN-22K-14M 1.3B 2242 <307 384° 86.4 76.58

SwinV1-L 197M  IN-22K-14M 1.3B 2242 <107 3842 87.3 77.46

VIiT-G [] 1.8B JFT-3B 164B 2242 >30k 5182 90.45 83.33
V-MoE [57]  14.7B* JFT-3B - 2242 16.8k 5182 90.35 -
CoAtNet-7[17] 2.44B JFT-3B - 2242 20.1k 5122 9(0.88 -

SwinV2-B 88M IN-22K-14M 1.3B 1927 <307 3842 87.1 78.08

SwinV2-L 197M  IN-22K-14M 1.3B 1922 <207 3842 87.7 78.31

SwinV2-G 3.0B IN-22K-ext-70M 3.5B 1922 <05k 640° 90.17 84.00

Table 2. Comparison with previous largest vision models on ImageNet-1K V1 and V2 classification. * indicates the sparse model; the
“pre-train time” column is measured by the TPUv3 core days with numbers copied from the original papers. { That of SwinV2-G is
estimated according to training iterations and FLOPs.

Method train I(W) size  test (W) size views top-1

ViViT [/] -(5) () 4x3 84.8
SwinV1-L[17] |480(12)?x16(8) 480(12)?x16(8) 10x5 84.9
TokenLearner [ 7]|256(8)* x64(64) 256(8)*x64(64) 4x3 85.4
320(20)*x8(8) 1x1 83.2
Video-SwinV2-G | 320(20)%> x8(8) 384(24)?>x8(8) 1x1 83.4
384(24)?x8(8) 4x5 86.8

Table 5. Comparison with previous best results on Kinetics-400
video action classification.
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ConvNeXt vl

e “Modernized” ResNet

ImageNet-1K Acc.

a0
88
86 ConvNeXt
Swin Transformer
(2021) ConvNeXt
84 Swin Transformer
R DeiT VIiT (2021)
et (2020) (2020)
82 . @
Diameter
S T Y I
80 4 8 16 256 GFLOPs
o
78 ImageNet-1K Trained ImageNet-22K Pre-trained

Figure 1. ImageNet-1K classification results for e ConvNets and

vision Transformers. Each bubble’s area is proportional to FLOPs
of a variant in a model family. ImageNet-1K/22K models here
take 224%/3842 images respectively. ResNet and ViT results were

obtained with improved training procedures over the original papers.

We demonstrate that a standard ConvNet model can achieve the
same level of scalability as hierarchical vision Transformers while
being much simpler in design.
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GFLOPs

ResNet-50/200

— stage ratio

4.5 # of blocks in each stage from [3,4,6,3] to [3,3,9,3]
7x7 conv with stride 2 + max-pool (4x downsamp) => 4x4 conv with stride 4

Macro

Design | “patchify” stem

ResNeXt

Inverted . . . ’ . .
gottenec_ ™o e[S _f#o_ _Increase embeddingdim ___ _ [EEEZEC
— move 1 d. conv )!14.1
1 d3x3, 96—96 d3x3, 384384 1x1, 96384
kernel sz. - 5 % 4.1
: [ 1x1,06-384 |
P ] —-— - — 1%x1, 964384 1x1, 384—96 1x%1, 38496
Large ',l"_ io |

| kernelsz. - 7

Kernel — e —_ ;_ — (@) (b) )
kernel sz. » 9 // 1’4-2 Figure 3. Block modifications and resulted specifications. (a) is
) a ResNeXt block; in (b) we create an inverted bottleneck block and
— kernel sz. — 11 ).4»4.3

in (c) the position of the spatial depthwise conv layer is moved up.
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ConvNeXt v2 %00 +1.1%

X 84.0 +0.9% i
.. : 9) 1 Ao 198M
* Training ConvNeXt v1 with S e 17 89M
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Masked AE performs poorly < +0.8% 28M
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inter-channel competition
Figure 1. ConvNeXt V2 model scaling. The ConvNeXt V2

model, which has been pre-trained using our fully convolutional
masked autoencoder framework, performs significantly better than

the previous version across a wide range of model sizes.
55



ConvNeXt v2

* Training ConvNext v1 with
Masked AE performs poorly

* Introduce

* fully convolutional masked
autoencoder framework and

* a new Global Response
Normalization to enhance
inter-channel competition
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Figure 1. ConvNeXt V2 model scaling. The ConvNeXt V2
model, which has been pre-trained using our fully convolutional
masked autoencoder framework, performs significantly better than
the previous version across a wide range of model sizes. -



ConvNeXt v2

Fully Convolutional Masked
Autoencoder

e Encoder:

e Sparse conv to prevent simple
copy-paste of input (not a problem
in MAE with transformers)

* Consider image as a 2D array of
pixels

e Decoder: ConvNeXt block

w/o Sparse conv. w/ Sparse conv.
79.3 83.7

input ‘ target
$ P
L9 oy
oo % el e .}‘j
M T o3 T
”" l,ﬂl}qp+| ’ﬂ“g»
g2 > [ [T > > ge”
hierarchical plain
encoder decoder

Figure 2. Our FCMAE framework. We introduce a fully con-
volutional masked autoencoder (FCMAE). It consists of a sparse
convolution-based ConvNeXt encoder and a lightweight Con-
vNeXt block decoder. Overall, the architecture of our autoencoder
is asymmetric. The encoder processes only the visible pixels, and
the decoder reconstructs the image using the encoded pixels and
mask tokens. The loss is calculated only on the masked region.
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ConvNeXt V1 ConvNeXt V2

ConvNeXt v2

Global Response Normalization

* Feature collapse: many
dead/saturated feature maps
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ConvNeXt v2

Global Response Normalization

* Inspiration from lateral inhibition
in brain

* Three steps:
1. global feature aggregation,
2. feature normalization, and
3. feature calibration.

Algorithm 1 Pseudocode of GRN in a PyTorch-like style.

# gamma, beta: learnable affine transform parameters
# X: input of shape (N,H,W,C)

gx = torch.norm(X, p=2, dim=(1,2), keepdim=True)
nx = gx / (gx.mean(dim=-1, keepdim=True)+le-6)
return gamma * (X » nx) + beta + X

First, we aggregate a spatial feature map X into a vector
gz with a global function G(-):

G(X) =X € REXWXC _, gz € RC. (1)

Next, we apply a response normalization function N/ (+)
to the aggregated values. Concretely, we use a standard di-
visive normalization as follows,

Xil|
NUIXID = | X;ll € R — | €R, ()
(11 X:[) = 1[X:l| >it...c Xl

where || X;|| is the L2-norm of the i-th channel. ' Intu-

Finally, we calibrate the original input responses using
the computed feature normalization scores:

X; =X; *.N’(Q(X)t) ERHKW (3)
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ConvNeXt v2

Global Response Normalization

case ft

g.avg. 83.7
L1 84.3
L2 84.6

(a) Global aggregation G(-). L2 Norm-based
aggregation function produces the best result.

case ft

LRN [26] 83.2
BN [22] 80.5
LN [1] 83.8
GRN 84.6

(d) Feature normalization. GRN outperforms
other normalizations through global contrasting.

case ft

(Xl = w)/o 84.5
1/ > 11X 83.8
X/ 22 11Xl 84.6

(b) Normalization operator, N (-). Divisive normaliza-
tion is an effective channel importance calibrator.

case ft #param
SE [19] 84.4 109M
CBAM [48] 84.5 109M
GRN 84.6 39M

(e) Feature re-weighting. GRN does effective and effi-
cient feature re-weighting without parameter overhead.

case ft
w/o skip  84.0
w/ skip 84.6

(c) Residual connection helps with GRN op-
timization and leads to better performance.

case ft

drop at ft. 78.8
add at ft. 80.6
both 84.6

(f) GRN in pre-training/fine-tuning. To be
effective, GRN should be used in both stages.

Table 2. GRN ablations with ConvNeXt-Base. We report fine-tuning accuracy on ImageNet-1K. Our final proposal is marked in gray .
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ConvNeXt v2

Backbone Method #param  FLOPs Val acc.
ConvNeXt V1-B Supervised 8OM 154G 83.8
ConvNeXt V1-B  FCMAE 8OM 154G  83.7
ConvNeXt V2-B Supervised 8OM 15.4G  84.3 (+0.5)
ConvNeXt V2-B  FCMAE 8OM 154G 84.6
ConvNeXt V1-L Supervised 198M 344G 843
ConvNeXt V1-L. FCMAE 198M 344G 844
ConvNeXt V2-L Supervised 198M 344G 84.5(40.2)
ConvNeXt V2-L. FCMAE 198M 344G  85.6

Table 3. Co-design matters. When the architecture and the learn-
ing framework are co-designed and used together, masked image
pre-training becomes effective for ConvNeXt. We report the fine-
tuning performance from 800 epoch FCMAE pre-trained models.
The relative improvement is bigger with a larger model.

Backbone Method #param PTepoch  FT acc.

ViT-B BEiT 88M 800 83.2
ViT-B MAE 88M 1600 83.6
Swin-B SimMIM 88M 800 84.0
ConvNeXt V2-B  FCMAE 8OM 800 84.6
ConvNeXt V2-B FCMAE 89M 1600 84.9
ViT-L BEiT 307M 800 85.2
ViT-L MAE 307M 1600 859
Swin-L SimMIM 197M 800 85.4
ConvNeXt V2-L. FCMAE 198M 800 85.6
ConvNeXt V2-L. FCMAE 198M 1600 85.8
ViT-H MAE 632M 1600 86.9
Swin V2-H SimMIM 658M 800 85.7
ConvNeXt V2-H FCMAE 659M 800 85.8
ConvNeXt V2-H FCMAE 659M 1600 86.3

Table 4. Comparisons with previous masked image modeling
approaches. The pre-training data is the IN-1K training set. All
self-supervised methods are benchmarked by the end-to-end fine-
tuning performance with an image size of 224. We underline the
highest accuracy for each model size and bold our best results.
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Fast VIT
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Figure 2: (a) Overview of FastViT architecture which decouples train-time and inference-time architecture. Stages 1, 2, and
3 have the same architecture and uses RepMixer for token mixing. In stage 4, self attention layers are used for token mixing.
(b) Architecture of the convolutional stem. (c) Architecture of convolutional-FFN (d) Overview of RepMixer block, which

reparameterizes a skip connection at inference.



Faster VIT

Figure 2: Visualization of the proposed Hierarchical
Attention 1n the feature space. By performing local win-
dow attention and hierarchical attention we can achieve
global information propagation at reduced costs.
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Figure 1: Comparison of image throughput and
ImageNet-1K Top-1 accuracy. Throughput is mea-
sured on A100 GPU with batch size of 128.
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Masked Autoencoders
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Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches (e.g., 75%) is masked out. The
encoder is applied to the small subset of visible patches. Mask
tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens 1s processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder is discarded and the encoder is applied to uncorrupted
images (full sets of patches) for recognition tasks.

MSE loss between pixels for masked tokens only!

Masked Autoencoders Are Scalable Vision Learners

Kaiming He*! Xinlei Chen* Saining Xie Yanghao Li Piotr Dolldr Ross Girshick
*equal technical contribution 1‘pmjecl lead

Facebook Al Resecarch (FAIR) CVP R 20 22

original mask 75% mask 85% mask 95%

Figure 4. Reconstructions of ImageNet validation images using
an MAE pre-trained with a masking ratio of 75% but applied on
inputs with higher masking ratios. The predictions differ plausibly
from the original images, showing that the method can generalize.
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Masked Autoencoders Are Scalable Vision Learners

Kaiming He*! Xinlei Chen* Saining Xie Yanghao Li Piotr Dollir Ross Girshick

Masked Autoencoders T e

blocks ft lin dim ft lin case ft lin FLOPs
1 84.8 65.5 128 84.9 69.1 encoder w/ [M] 84.2 59.6 33X
2 84.9 70.0 256 84.8 71.3 encoder w/o [M] 84.9 735 1x
4 84.9 71.9 512 84.9 73.5
8 84.9 73.5 768 84.4 73.1
12 84.4 73.3 1024 843 73.1
(a) Decoder depth. A deep decoder can im- (b) Decoder width. The decoder can be nar- (c) Mask token. An encoder without mask to-
prove linear probing accuracy. rower than the encoder (1024-d). kens is more accurate and faster (Table 2).
case ft lin case ft lin case ratio ft lin
pixel (w/o norm) 84.9 73.5 none 84.0 65.7 random 75 849 735
pixel (w/ norm) 854 73.9 crop, fixed size 84.7 73.1 block 50 839 723
PCA 84.6 72.3 crop, rand size 84.9 73.5 block 75 82.8 639
dVAE token 85.3 71.6 crop + color jit 84.3 71.9 grid 75 84.0 66.0
(d) Reconstruction target. Pixels as recon- (e) Data augmentation. Our MAE works with (f) Mask sampling. Random sampling works
struction targets are effective. minimal or no augmentation. the best. See Figure 6 for visualizations.

Table 1. MAE ablation experiments with ViT-L/16 on ImageNet-1K. We report fine-tuning (ft) and linear probing (lin) accuracy (%). If
not specified, the default is: the decoder has depth 8 and width 512, the reconstruction target is unnormalized pixels, the data augmentation
is random resized cropping, the masking ratio is 75%, and the pre-training length is 800 epochs. Default settings are marked in gray .
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Masked Autoencoders
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Figure 8. MAE pre-training vs. supervised pre-training, evalu-
ated by fine-tuning in ImageNet-1K (224 size). We compare with
the original ViT results [16] trained in IN1K or JFT300M.

Masked Autoencoders Are Scalable Vision Learners

Kaiming He*! Xinlei Chen* Saining Xie Yanghao Li Piotr Dollir Ross Girshick

*equal technical contribution J‘proj ect lead

Facebook Al Resecarch (FAIR) CVPR 2022
method pre-traindata ViT-B  ViT-L ViT-H ViT-Hygg
DINO [5] IN1IK 82.8 - - -
MoCo v3 [9] IN1K 83.2 84.1 - -
BEIT [2] INIK+DALLE 83.2 85.2 - -
MAE IN1K 83.6 85.9 86.9 87.8

Table 3. Comparisons with previous results on ImageNet-
1K. The pre-training data is the ImageNet-1K training set (ex-
cept the tokenizer in BEIiT was pre-trained on 250M DALLE data
[50]). All self-supervised methods are evaluated by end-to-end
fine-tuning. The ViT models are B/16, L/16, H/14 [16]. The best
for each column is underlined. All results are on an image size of
224, except for ViT-H with an extra result on 448. Here our MAE
reconstructs normalized pixels and is pre-trained for 1600 epochs.
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SImMIM

|

One-layer Prediction Head

Encoder
(e.g., ViT, Swin)

Figure 1. An illustration of our simple framework for masked lan-
guage modeling, named SimMIM. 1t predicts raw pixel values of
the randomly masked patches by a lightweight one-layer head, and
performs learning using a simple £; loss.

SimMIM: a Simple Framework for Masked Image Modeling
CVPR 2022

Zhenda Xie'* Zheng Zhang?®  Yue Cao*’
Yutong Lin®  Jianmin Bao?® Zhuliang Yao! Qi Dai?> Han Hu**
ITsinghua University  ?Microsoft Research Asia  3Xi’an Jiaotong University

{tfzhxie, zhez, yuecao, t-yutonglin, jianmin.bao,t-zhuyao,gid, hanhu}@microsoft .com

Input| Fine-tuning Linear eval Pre-training
Size [Top-1 acc (%) Top-1 acc (%)  costs
Sup. baseline [/]|224° 81.8

Methods

DINO['] [224? 82.8 78.2 2.0x
MoCo v3 [7] [2242 83.2 76.7 1.8x
ViT [19] 3842 79.9 - ~4.0%
BEIiT [ ] 2242 83.2 56.7 1.5xT
Ours 2242 83.8 56.7 1.0x

Table 6. System-level comparison using ViT-B as the encoder.
Training costs are counted in relative to our approach. T BEiT re-
quires an additional stage to pre-train dVAE, which is not counted.
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DINO vl & v2 (ICCV'21 & TMLR’24)

Figure 1: Self-attention from a Vision Transformer with 8 x 8 patches trained with no supervision. We look at the self-attention of
the [CLS] token on the heads of the last layer. This token is not attached to any label nor supervision. These maps show that the model
automatically learns class-specific features leading to unsupervised object segmentations.
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DINO vl & v2 (ICCV'21 & TMLR’24)

loss:
@ - p2 log p1 @
| softmax |

5g

centering
|

ema
student ggs —> | teacher gg

Figure 2: Self-distillation with no labels. We illustrate DINO in
the case of one single pair of views (x1, x2) for simplicity. The
model passes two different random transformations of an input
image to the student and teacher networks. Both networks have
the same architecture but different parameters. The output of the

teacher network is centered with a mean computed over the batch.

Each networks outputs a K dimensional feature that is normalized
with a temperature softmax over the feature dimension. Their
similarity is then measured with a cross-entropy loss. We apply a
stop-gradient (sg) operator on the teacher to propagate gradients
only through the student. The teacher parameters are updated with
an exponential moving average (ema) of the student parameters.

Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

# gs, gt: student and teacher networks
# C: center (K)
# tps, tpt: student and teacher temperatures

# 1; m:

network and center momentum rates

gt.params = gs.params
for x in loader: # load a minibatch x with n samples

x1,

sl,
j 1 Y8

X2 = augment (x), augment (x) # random views

s2
t2

gs(x1), gs(x2) # student output n-by-K
gt (x1), gt (x2) # teacher output n-by-K

loss = H(tl, s2)/2 + H(t2, sl)/2
loss.backward() # back-propagate

# student, teacher and center updates
update (gs) # SGD
gt.params = lxgt.params + (1l-1)*gs.params

C = mxC + (1-m)xcat ([tl, t2]) .mean(dim=0)
def H(t, s):
t = t.detach() # stop gradient
s = softmax(s / tps, dim=1)
t = softmax((t - C) / tpt, dim=1) # center + sharpen
return - (t * log(s)) .sum(dim=1) .mean()

71



ViViT: A Video Vision Transformer

Anurag Arnab* Mostafa Dehghani* Georg Heigold Chen Sun  Mario Lu&i¢’ Cordelia Schmid®

[ ] L]
Google Research
I I {aarnab, dehghani, heigold, chensun, lucic, cordelias}@google.com ICCV 2021

1 1
1 1
1 1
1 1
] Factorised : Factorised | Factorised
. 1
Transformer Encoder Encoder | Self-Attention ! Dot-Product
Position + Token ( i i 4
Embedding N ) N %
1
- N \ : \ : P \
| 1 ! 1 i '
Csr— X Temporal ! ' Temporal , : :[ Fuse )
- : :: Pl vl ! !
|, | i ! ' ' | Seatial || Temporal |
= (o) || ||
= NN | 1 1R I o —
- I 1 oee
1
= Embed to —»8—» PO v | \ ! (T | “““““ \
- ' r ! 1 ! ! 1 H
= ks O 1| | =
= [ 1 I ! : i
. : i B E i i Spatial ][Temporal]:
E Spatial : | Spatial ' I ! Y i
@D e — S J S S .
: . J : (. / : \ J
1 1
1 1
: e - | -
1 1

v

Figure 2: Uniform frame sampling: We simply sample n: frames,
and embed each 2D frame independently following ViT [12].

Figure 3: Tubelet embedding. We extract and linearly embed non-
overlapping tubelets that span the spatio-temporal input volume.
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Table 1: Comparison of input encoding methods using ViViT-B
and spatio-temporal attention on Kinetics. Further details in text.

Top-1 accuracy

Uniform frame sampling 78.5
Tubelet embedding

Random initialisation [25] 73.2
Filter inflation [¥] 77.6
Central frame 79.2

ViViT: A Video Vision Transformer

Anurag Arnab* Mostafa Dehghani* Georg Heigold Chen Sun  Mario Lu&i¢’ Cordelia Schmid®
Google Research

{aarnab, dehghani, heigold, chensun, lucic, cordelias}@gccgle.com

Factorised
Encoder

Factorised
Self-Attention

—
®
3
H =
18
.

.................

Temporal

N

Spatial

Table 2: Comparison of model architectures using ViViT-B as the
backbone, and tubelet size of 16 x 2. We report Top-1 accuracy on
Kinetics 400 (K400) and action accuracy on Epic Kitchens (EK).

Runtime is during inference on a TPU-v3.

Factorised
Dot-Product

( Fuse )

FLOPs Params Runtime
K400 EK (x10%)  (x10%) (ms)
Model 1: Spatio-temporal 80.0 43.1 455.2 88.9 58.9
Model 2: Fact. encoder 78.8 437 284.4 115.1 17.4
Model 3: Fact. self-attention 77.4  39.1 372.3 117.3 31.7
Model 4: Fact. dot product 763 395 277.1 88.9 22.9
Model 2: Ave. pool baseline  75.8  38.8 283.9 86.7 17.3
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Figure 1: VideoMAE performs the task of masking random cubes and reconstructing the missing ones
with an asymmetric encoder-decoder architecture. Due to high redundancy and temporal correlation
in videos, we present the customized design of tube masking with an extremely high ratio (90% to
95%). This simple design enables us to create a more challenging and meaningful self-supervised
task to make the learned representations capture more useful spatiotemporal structures.
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