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Abstract

Introduction of RGB-D sensors together with the efforts on open-source point-cloud processing tools boosted research
in both computer vision and robotics. One of the key areas which have drawn particular attention is object recognition
since it is one of the crucial steps for various applications. In this paper, two spatially enhanced local 3D descriptors
are proposed for object recognition tasks: Histograms of Spatial Concentric Surflet-Pairs (SPAIR) and Colored SPAIR
(CoSPAIR). The proposed descriptors are compared against the state-of-the-art local 3D descriptors that are available in
Point Cloud Library (PCL) and their object recognition performances are evaluated on several publicly available datasets.
The experiments demonstrate that the proposed CoSPAIR descriptor outperforms the state-of-the-art descriptors in both
category-level and instance-level recognition tasks. The performance gains are observed to be up to 9.9 percentage points
for category-level recognition and 16.49 percentage points for instance-level recognition over the second-best performing
descriptor.
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1. Introduction

Object recognition is an important problem in com-
puter vision and robotics. With the introduction of RGB-
D sensors, there have been a boost in the performance of
many applications in these fields. The main catalyst of5

this boost is that the RGB-D sensors, among which Mi-
crosoft’s Kinect and Asus’s Xtion are very popular, allow
capturing depth and color information at the same time.
Combined together, these two types of complementary in-
formation provide the necessary rich source of 2D and 3D10

information for recognizing objects, or activities.
The performance of object recognition is directly de-

pendent on the descriptors used, and there have been tremen-
dous effort in developing 3D descriptors. Many global and
local descriptors, based on the size of the support with15

respect to a key point, have been proposed in the liter-
ature [1]. The global descriptors in the literature are ei-
ther histogram-based (e.g., [2, 3, 4, 5]), transform-based
(e.g., [6]), 2D view-based (e.g., [7, 8]) or graph-based [9],
whereas local descriptors are histogram-based (e.g., [10,20

11, 12]), signature-based (e.g., [13]) or a hybrid of these
(e.g., [14, 15, 16]).

Among these aforementioned descriptors, only a few
utilize shape and texture/color information together to
take advantage of the data obtained from the RGB-D sen-25

sors; the MeshHOG proposed by Zaharescu et al. [14], the
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colored version of the Point Feature Histograms (PFH),
called PFHRGB [11, 17], and the color/texture enhanced
version of Signature of Histograms of Orientations (SHOT),
called CSHOT, proposed by Tombari et al. [16].30

Object recognition can be performed at two different
levels: at the category level or the instance level. In
category-level object recognition, an object is classified
into pre-defined categories such as cereal box or soda can,
whereas in instance-level recognition, specific instances of35

the objects such as “Cheerios” or “Pepsi can” are recog-
nized. While promising results have been reported for
category-level object recognition, instance-level recogni-
tion remains a more challenging problem [18, 19, 20].

In this article, we propose two novel local 3D descrip-40

tors: The first one is Histograms of Spatial Concentric
Surflet-Pairs (SPAIR), which is a shape-only descriptor
suitable for category-level recognition. The second de-
scriptor, Color-SPAIR (CoSPAIR), extends and enhances
SPAIR with the color information. By taking advantage of45

color information from the RGB-D sensor data, CoSPAIR
is particularly suitable for instance-level recognition. In
both descriptors, the support-radius is divided into regions
from which histograms of 3D relations are accumulated.
We have compared SPAIR and CoSPAIR against the state-50

of-the-art descriptors available in the Point Cloud Library
on three publicly available datasets: namely, the RGB-
D Object dataset [18], the recently introduced BigBIRD
dataset [20] and the object scans used in the Amazon Pick-
ing Challenge at ICRA 2015 [21].55

Preprint submitted to Robotics and Autonomous Systems July 16, 2015

*Manuscript

Click here to view linked References



2. Related Work

A comparative evaluation of 3D descriptors available in
Point Cloud Library (PCL) [17] was presented by Alexan-
dre [19]. According to this analysis, CSHOT [16] and
PFHRGB [17] which use color information in addition to60

shape, are the best performing descriptors, followed by the
shape-only SHOT [15, 22], PFH [11] and FPFH [19]. It
was also shown that PFHRGB and CSHOT are the best
performing descriptors for object recognition using RGB-
D data [22]. Due to their prominence, these local 3D de-65

scriptors are detailed and compared with the descriptors
proposed in this article. Furthermore, it should be noted
that the proposed descriptors are based on surflet-pair re-
lations [23] similar to PFH, PFHRGB and FPFH; there-
fore, these descriptors are further detailed for the sake of70

completeness and clarity.

2.1. Point Feature Histograms (PFH)

Point Feature Histograms (PFH) was introduced by
Rusu et al. in 2008 as a local descriptor for searching cor-
respondences in 3D point clouds [11]. It is a pose-invariant75

feature based on geometrical relations of a point’s near-
est k -neighbours. The geometrical relations are computed
from relative orientations of surface normals between point
pairs. The main steps for computing a PFH descriptor are:

• For each point p at which a descriptor is to be ex-80

tracted, the k -neighbouring points within a sphere
of a radius r are selected.

• For every pair of points in the sphere, 3 surflet-pair-
relation features [23] are calculated (although there
are 4 features defined in [23], the fourth feature,85

the distance between the pairs, is not used since it
changes with the viewpoint).

• Histograms of the relations are calculated. Each of
the 3-relations is summarized into a 5-bin histogram,
and their joint-histogramming yields 53 bins in total.90

Since PFH considers surflet-pair-relations for every pair
of points inside a sphere with radius r, the computational
complexity isO(k2). In other words, for dense point clouds,
the time required for extracting PFH descriptors is pro-
hibitively high for practical applications [12, 19, 22].95

2.2. Colored Point Feature Histogram (PFHRGB)

PFHRGB is an extension of PFH with color informa-
tion. It includes three more histograms in addition to those
in PFH. These additional histograms represent the ratio
between color channels of point pairs, thus bringing the100

total size of the descriptor to 250 [17]. Adding color in-
formation has been shown to increase the performance of
PFH [19] but PFHRGB suffers from the same drawback
as PFH, i.e., being computationally expensive.

2.3. Fast Point Feature Histograms (FPFH)105

Fast Point Feature Histograms is an improvement over
PFH for reducing the computational complexity down to
O(k) from O(k2) [12]. This is achieved by generating the
histograms from the relations between only a point and its
k-neighbouring points inside the support radius r, instead
of analyzing relations between all pairs in the sphere. This
is called Simplified Point Feature Histogram (SPFH). To
re-compensate for the missing connections (compared to
PFH where all the point-pairs contribute to the descrip-
tor), the SPFHs extracted at the neighbours of a point p
are weighted and summed according to their spatial dis-
tance:

FPFH(p) = SPFH(p) +
1

k

k
∑

i=1

1

wi

· SPFH(pi), (1)

where the weight wi represents the distance between source
/ query point p and a neighbour point pi. It should be
noted that SPFH values should be calculated for all the
points in the dataset and the effective radius implicitly
becomes 2r since additional point pairs outside the r radius110

are also included in FPFH. Although being significantly
faster than PFH and PFHRGB [19], FPFH was shown to
be an order of magnitude slower than its alternatives, e.g.,
SHOT [22]. Moreover, FPFH lacks color information.

2.4. Signature of Histograms of Orientations (SHOT)115

Signature of Histograms of Orientations (SHOT) was
introduced by Tombari et al. [15, 22]. For extracting a
SHOT descriptor, first, a robust, unique and repeatable
3D Local Reference Frame (LRF) is calculated around the
source/query point. Then, a spherical grid that consists 32120

volume segments (8 divisions along the azimuth, 2 along
the elevation, and 2 along the radius) is centered at the
point. For each of these volume segments, histogram of the
angle between the normal of the source/query point and
the points inside the segment is calculated. Finally, all125

the 32 histograms are concatenated to create the descrip-
tor. SHOT descriptors have been shown to be rotation
invariant and robust to noise [15, 22].

2.5. Color-SHOT (CSHOT)

Color-SHOT (CSHOT) combines shape information ex-130

tracted by SHOT with a texture signature [16] in order
to incorporate the color information. To extract texture,
the L1 − norm of the color triplets are binned into his-
tograms. For this, CIELab color space was chosen over
RGB since it is perceptually more uniform than the RGB135

space. CSHOT has been reported to perform better than
SHOT due to the extra color information [19, 22].

3. The Proposed Descriptors: SPAIR and CoSPAIR

In this paper, two new descriptors are proposed. The
first one utilizes only shape information and is called His-140

tograms of Spatial Concentric Surflet-Pairs, whereas the
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second one utilizes shape and color information together
and is called Colored Histograms of Spatial Concentric
Surflet-Pairs.

3.1. Histograms of Spatial Concentric Surflet-Pairs (SPAIR)145
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Figure 1: Concentric spherical regions and stitching of the his-
tograms to construct SPAIR descriptor. [Best viewed in color]

Histograms of Spatial Concentric Surflet-Pairs (SPAIR)
is based on surflet-pair-relations similar to PFH and FPFH
where a surflet is defined as an oriented surface point, and
surflet-pair-relations as geometric relations between two
surflets by Wahl et al. [23].150

As described in Section 2.3, Rusu et al. used a method
called Simplified Point Feature Histogram (SPFH) that re-
lies on the comparison of source/query point/surflet with
only the direct k -neighbours inside a sphere (not all the
pairs). Furthermore, in order to add spatial information, a155

special weighting scheme was used in FPFH as formulated
in Equation 1.

With SPAIR, we aimed for a simpler thus faster method
which requires less point-pair comparisons while adding
more spatial information by encoding the geometrical prop-160

erties of a point’s neighbourhood according to distance
from the point.

As shown in Figure 1, in our approach, the support
radius r is divided into N equal size (r1, r2, ..., rN ) re-
gions. The resulting 3D grid can be visualized as N con-165

centric spheres. For each distinct spherical shell (i.e., the
region between two adjacent spheres), which we name as
a level (L1, L2, ..., LN ), the surflet-pair-relations between
the points inside a level and the source/query point (see
Figure 2) are calculated as follows [12, 23]:170

• Let ps be the source/query point that SPAIR is to
be extracted for, pt be one of the target points inside
a level and ~ns, ~nt the corresponding normals.
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Figure 2: Influence region diagram for SPAIR/CoSPAIR. [Best
viewed in color]

• A fixed reference coordinate uvw frame is defined as
shown in Figure 3, following [3]:

~u = ~ns, (2)

~v = (pt − ps)× ~u, (3)

~w = ~u× ~v. (4)
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Figure 3: The reference coordinate uvw frame and the angular rela-
tions between surflets (adapted from [3])

• Using the reference frame defined above, the angular
relations between surflets are calculated as follows:

α = ~v · ~nt, (5)

φ =
~u · (pt − ps)

‖pt − ps‖
, (6)

θ = arctan (~w · ~nt, ~u · ~nt) , (7)

where α ∈ [−1, 1] represents ~nt as the cosine of a
polar angle, φ ∈ [−1, 1] is the direction of the trans-175

lation from ps to pt, θ ∈ [−π, π] corresponds to ~nt

as an azimuthal angle.
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Then, the three values for the angles (α, φ, θ) in Equa-
tions 5, 6, 7 are binned into separate histograms:

H l
α(b) =

∑

pt

δ

(⌊

1

2
α(pt,ps)B

⌋

− b

)

, (8)

H l
φ(b) =

∑

pt

δ

(⌊

1

2
φ(pt,ps)B

⌋

− b

)

, (9)

H l
θ(b) =

∑

pt

δ

(⌊

1

2π
θ(pt,ps)B

⌋

− b

)

, (10)

where l is the level for which the histogram is being com-
puted, δ() is the Kronecker delta function, b is the bin
index of a histogram, and B is the total number of bins.
When calculations are finalized for all the defined surflet-
pairs, the histograms H l

α, H
l
φ and H l

θ are normalized using
the number of distinct points in each level :

Ĥ l
α(b) =

1

Cl
H l

α(b), (11)

Ĥ l
φ(b) =

1

Cl
H l

φ(b), (12)

Ĥ l
θ(b) =

1

Cl
H l

θ(b), (13)

where Cl is the number of points in level l.
The resulting SPAIR descriptor vSPAIR is the concate-

nation of all the histograms in an order based on their
distances to the center point:

vSPAIR = Ĥ0

α ⊕ Ĥ0

φ ⊕ Ĥ0

θ ⊕ ...ĤN
α ⊕ ĤN

φ ⊕ ĤN
θ , (14)

where ⊕ denotes concatenation. Figure 1 illustrates the
levels inside the concentric sphere borders and stitching of180

the corresponding histograms.

3.2. Colored Histograms of Spatial Concentric Surflet-Pairs
(CoSPAIR)

It has been reported that adding color/texture infor-
mation improves the performance of various descriptors185

considerably [18, 19, 22, 24].With this motivation, we up-
date SPAIR such that it encodes color as well as shape, and
call it Colored Histograms of Spatial Concentric Surflet-
Pairs (CoSPAIR).

In CoSPAIR, color/texture and shape information is
encoded at each level of the SPAIR descriptor as shown in
Figure 4. In our experiments, three different color spaces;
RGB, HSV and CIELab have been tested. Additionally,
for each color space, two variants have been evaluated: (i)
Using simple color histogram of each color channel. (ii)
Using histogram of L1−norm of point pairs for each color
channel. Our experiments (see Table 1) indicated that the
best results are obtained by using simple color histograms
in the CIELab color space for each channel at each level.
This resulted in a descriptor that has 3 sub-features for
both shape and color for each level :

vCoSPAIR = Ĥ0

α ⊕ Ĥ0

φ ⊕ Ĥ0

θ ⊕ Ĥ0

L ⊕ Ĥ0

a ⊕ Ĥ0

b ⊕ ...

ĤN
α ⊕ ĤN

φ ⊕ ĤN
θ ⊕ ĤN

L ⊕ ĤN
a ⊕ ĤN

b .
(15)

where ⊕ denotes concatenation and L, a, b denotes the190

CIELab color components.
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Figure 4: Concentric spherical regions and the stitching of shape
and color histograms for the extraction of CoSPAIR. [Best viewed in
color]

Table 1: Average accuracy results for the evaluated color contribu-
tions. The tests are conducted in Dataset 1 (see Section 4.1.1).

Category Level Instance Level

RGB 93.63 81.76
RGB-L1 91.74 82.64
HSV 91.40 76.31
HSV-L1 86.46 64.61
CIELab 94.34 83.10

CIELab-L1 86.25 64.23

4. Experiments and Results

We compare the proposed descriptors against the state-
of-the-art local 3D descriptors that are publicly available
in the Point Cloud Library (PCL) [17]: PFH [11], PFHRGB195

[17], FPFH [12], SHOT [15, 22] and CSHOT [16]. The
same testing procedure, which is summarized in Figure 5,
is used for evaluating the descriptors.

Keypoint 

Extraction

Descriptor 

Extraction

Reference 

Scans

Matching and 

Voting

Query 

Scan

Reference 

Descriptor 

Database

Keypoint 

Extraction

Descriptor 

Extraction

Figure 5: Test pipeline.

For all the conducted tests/experiments, the surface
normals are estimated with a search radius of 1 cm as in200

[19]. Then, the datasets used in the tests are split into a
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query set and a reference set depending on the test sce-
nario. In this paper, two different scenarios that are pro-
posed in [18] are used:

1. Leave-sequence-out : Test and train sets are chosen205

to be from scans with different camera heights.

2. Alternating contiguous frames: The video sequences
from different heights are divided into 3 contiguous
sequences of equal length. Since there are 3 heights
(videos) for each object in the datasets used, this210

gives 9 video sequences for each object. 7 of these
are randomly selected for training and the remaining
2 for test. 10 trials are performed and the results are
averaged.

At the matching phase, the query descriptors are brute-
force matched to the nearest descriptor in the reference
descriptor database (see Figure 5) using Euclidean norm
(L2− norm) and the final decision is made via a majority
rule [25] as follows:

D(X) = argmax
C

K
∑

i=1

I(fi(X) = C), (16)

where C is the class label, X is the object to be classified,
f is a keypoint, K is the total number of keypoints on the
query object and D is the final decision. For the Matching
and Voting stage, OpenCV library [26] is used whereas
for all the remaining stages, Point Cloud Library [17] is
used. The performance of the descriptors are calculated as
average accuracy, the average per-class effectiveness [27]:

1

L

L
∑

i=1

TPi + TNi

TPi + FPi + FNi + TNi

, (17)

where L is the total number of class labels and TP , TN ,215

FP , FN are true positives, true negatives, false positives
and false negatives, respectively. For extracting/detecting
the keypoints, we have chosen the Intrinsic Shape Sig-
natures 3D (ISS3D) method [28], which is available in
the PCL library. ISS3D has recently been shown to be220

among the top performing methods and it was reported to
stand out for its performance, repeatability and efficiency
[29, 30]. Our experiments also confirm these findings as
detailed in Section 4.3.

4.1. The Datasets225

The experiments were conducted on three different ob-
ject recognition datasets in four configurations. The first
dataset is the well known RGB-D Object Dataset intro-
duced by Lai et al. in 2011 [18]. This dataset was used
in two different configurations: the first configuration is a230

subset that had been used by Luis A. Alexandre [19]. This
subset is used for optimization and comprehensive analy-
sis. The second configuration of this dataset consists of
all the objects and were used for complementary analysis.
The second dataset is the recently introduced BigBIRD235

((Big) Berkeley Instance Recognition Dataset) by Singh
et al. [20]. The third dataset is the object scans used in
the Amazon Picking Challenge at ICRA 2015 [21].

4.1.1. Dataset 1: Subset of the RGB-D Object Dataset

The RGB-D Object Dataset [18] consists of 300 com-240

mon household objects in 51 categories. The objects were
scanned with an RGB-D camera with 640 × 480 resolu-
tion from different angles and the total number of RGB-D
images are around 250, 000.

As a first step in our experiments, a subset of this large245

dataset which contains 48 objects in 10 categories is cho-
sen. The chosen subset was used by Luis A. Alexandre
in a comprehensive evaluation of various descriptors that
are available in PCL [19] and it contains the following cat-
egories: apple, ball, banana, bell pepper, binder, bowl,250

calculator, camera, cap and cell phone. Examples of seg-
mented scans for each category are given in Figure 6.

In this subset, a total of 1421 point clouds are cho-
sen as in [19]. The leave-sequence-out and alternating
contiguous frames scenarios are applied for both category255

and instance-level recognition experiments. As in [18] and
[19], for leave-sequence-out, in the query set, the camera
is mounted 45◦ above the horizontal axis relative to the
turntable whereas in the reference set it is mounted 30◦

and 60◦ above. We refer to [31] for more details on the260

setup and query scans.

Figure 6: Examples of point clouds from the chosen 10 category
subset of the RGB-D Object Dataset [18].

4.1.2. Dataset 2: RGB-D Object Dataset - All Objects

As our second dataset, the RGB-D Object Dataset
with all 300 objects in 51 categories is used. Since the to-
tal number of images in the dataset as well as the number265

of scans per object is high, the scans in azimuth are sub-
sampled by taking every twentieth sample. This yielded
an average of 10 scans for each object for each video se-
quence (whole rotation on the turntable) from different
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camera heights resulting a total of 9944 point clouds for270

test and training in total.
As in Dataset 1, for the leave-sequence-out scenario,

the camera positions are chosen as 45◦ for the query set
and 30◦ and 60◦ above the horizontal axis of the turntable
for the reference set.275

4.1.3. Dataset 3: BigBIRD Dataset

BigBIRD is a recently introduced instance-level object
recognition dataset introduced by Singh et al. [20] which is
publicly available [32]. The RGB-D data was collected by a
Carmine 1.09 sensor. The resolution of the RGB-D scans is280

the same as in Dataset 1, i.e., 640×480. The initial version
of the dataset contains 100 objects and the dataset is being
updated. At the time the tests were being performed, the
dataset included a total of 123 objects. However, in our
tests, we excluded the transparent objects1 due to their285

poor quality point clouds, as also stated in [20]. With the
removal of the transparent objects, the resulting dataset
contains 105 different objects.

BigBIRD is a very challenging dataset due to the ex-
treme similarity between object instances. Not only many290

objects are similar in shape and size, but also product va-
rieties of the same brand are labeled as different object
instances - see Figure 7 for some samples.

Figure 7: Sample RGB images from the BigBIRD dataset [20], each
from different object instance.

In the BigBIRD dataset, the objects were scanned from
5 different polar angles and 120 azimuthal angles with a295

total of 600 images and point clouds per instance. The

1The transparent objects are: aunt jemima original syrup,
bai5 sumatra dragonfruit, coca cola glass bottle, listerine,
palmolive (two instances), softsoap (five instances), vo5 (three in-
stances), whiterain (three instances) and windex.

polar angles are named as NP1, NP2,...,NP5 where NP1 cor-
responds to a position where the sensors are located 0◦

with respect to the horizontal axis of the turntable, NP5
corresponds to 90◦ and NP2, NP3, NP4 located on a quarter300

circular arc in between [21]. In our experiments, for both
test scenarios, we have used the poses similar to the exper-
iments in the previous datasets. We have chosen the data
obtained from positions NP2,NP3 and NP4 and for leave-
sequence-out scenario, we have used NP3 for the query and305

NP2 and NP4 for the reference sets. Additionally, not all
azimuthal scans are used. The scans are sub-sampled by
taking every tenth, resulting in approximately 12 scans per
object. With the chosen views and sub-sampling of scans,
a total of 3746 point clouds are used in experiments.310

4.1.4. Dataset 4: The Amazon Picking Challenge Dataset

The dataset was collected for the first Amazon Picking
Challenge at ICRA 2015 using the same system setup as
in the BigBIRD Dataset [20], [33] and is publicly available
[21]. The dataset is composed of 26 different objects. Al-315

though some of the objects such as safety works safety

glasses, munchkin white hot duck bath toy and first
years take and toss straw cups have significantly below-
average quality models, they are not excluded from the
tests since they are not high in number. Some of the ob-320

jects from the dataset including the challenging ones that
have transparent parts are given in Figure 8. The same
procedure used for the BigBIRD dataset (Section 4.1.3) is
followed for choosing the scans for the experiments. This
resulted a total of 949 point clouds to be used in the ex-325

periments.

4.2. Tuning SPAIR/CoSPAIR: Choosing Number of Bins
and Concentric Levels

There are two parameters in our descriptors: the num-
ber of concentric levels and the number of bins used for330

each sub-feature (angular relations given in Equations 5,
6, 7 for SPAIR; both angular relations and additional color
histograms for CoSPAIR). To set these parameters, vari-
ous experiments were conducted on Dataset 1: Subset of
the RGB-D Object Dataset.335

As the first step, we tested the performance of the
SPAIR and CoSPAIR descriptor for various bin numbers.
For 7 levels and a support radius of 10 cm, accuracy results
are given in Figure 9. We see that 9 bins for each sub-
feature provides the best accuracy considering instance-340

level recognition and second best with a minimal margin
for category-level recognition. A similar analysis for Co-
SPAIR also yields similar results. Therefore, the number
of bins is set to 9 for both SPAIR and CoSPAIR.

The second parameter is the number of the concentric345

levels. As our aim was to have a fixed the number of lev-
els regardless of the chosen support radius, experiments
were conducted for various support radius sizes. The re-
sults are given in Figure 10a for category-level recognition
and in Figure 10b for instance-level recognition. As can350
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Figure 8: Sample RGB images from the Amazon Picking Challenge
dataset [21], each from different object.
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Figure 9: Leave-sequence-out average accuracy of SPAIR versus
number of bins used in each level for each sub-feature where sup-
port radius is 10 cm and the number of levels is 7.

be observed from these figures, there is not a single par-
ticular number of levels where the accuracy is the highest
for all support radius sizes. The performance is fairly sta-
ble after 4 levels with peak performances at around 7 and
8 levels. A similar analysis for CoSPAIR also reveals the355

same results. Therefore, the number of concentric levels
was chosen to be 7 for all support radius sizes for both
SPAIR and CoSPAIR.

Based on these choices, the size of the SPAIR descrip-
tor becomes 189 due to 7 levels where each level consists of360

3 histograms with 9 bins each. On the other hand, the size
of the CoSPAIR descriptor is 378, i.e., double the size of
the SPAIR descriptor due to the color histograms. In the
remainder of the paper, the parameters of SPAIR and Co-
SPAIR are fixed and no further optimization is performed365

for Datasets 2, 3 and 4.
It should be noted that the parameters of the other

compared descriptors are fixed in the Point Cloud Library
at their best values and cannot be directly modified. There-
fore, we used them as they are provided in the Point Cloud370

Library.
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Figure 10: Leave-sequence-out average accuracy of SPAIR vs number
of concentric levels used to extract the descriptor: a) Category-level,
b) Instance-level.

4.3. Effect of Keypoint Detection Methods

The performances of all the descriptors were also eval-
uated for various keypoint detection methods; ISS3D [28],
Harris3D [17] and uniform sampling using a 3D voxel grid375

with a leaf size of 1 cm. The average accuracy results are
given in Table 2. It can be observed that the keypoint de-
tection methods affect all the tested descriptors similarly.
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Therefore, it is possible to choose a single extractor for all
the descriptors. According to our evaluation, ISS3D per-380

forms better than Harris3D and its performance is very
close to uniform sampling. Since ISS3D has been reported
to stand out for its performance, repeatability and effi-
ciency [29, 30] we used it as the keypoint detection method
in our experiments.385

Table 2: Leave-sequence-out average accuracy results of descriptors
for different keypoint extraction methods where support radius is 10
cm.

Category Level Instance Level

ISS3D H3D Uni. ISS3D H3D Uni.
SPAIR 89.73 68.76 89.94 70.44 38.99 68.55
FPFH [12] 80.29 66.88 81.93 51.36 37.53 51.05
SHOT [22] 90.15 80.92 90.97 61.84 50.31 65.55

CoSPAIR 95.39 87.00 96.23 84.91 72.75 86.16
CSHOT [16] 92.03 85.95 94.54 79.66 68.76 82.35

4.4. Results on Dataset 1: RGB-D Subset

The average accuracy, average per class recall and pre-
cision results are given in Table 3 for category-level recog-
nition and Table 4 for instance-level recognition. In ad-
dition, leave-sequence-out average accuracies are shown in390

Figure 11 to visualize the performance trend with respect
to the support radius size.

Results show that, in this small dataset, CoSPAIR
slightly outperforms the second best performer CSHOT in
category-level recognition, except for the Alternating con-395

tiguous frames methodology for low support radius sizes.
CoSPAIR outperforms CSHOT with a higher margin in
instance-level recognition using both methodologies (leave-
sequence-out and alternating-contiguous-frames). In the
leave-sequence-out methodology, CoSPAIR achieves 85.53%400

average accuracy at 12 cm whereas CSHOT achieves 79.66%
at 10 cm; in the alternating-contiguous-frames methodol-
ogy, CoSPAIR achieves 91.96% average accuracy at 10 cm
compared to CSHOT’s 87.20% at 8 cm.

Among the shape only descriptors, SPAIR performs405

slightly better for larger support radius sizes whereas SHOT
performs better for smaller support radius sizes.

4.5. Results on Dataset 2: RGB-D All Objects

Next, we evaluate the methods on the whole RGB-D
Object Dataset (with all the available 300 objects in 51410

categories), which is much more challenging than Dataset
1. The average accuracy, average per class recall and pre-
cision results are given in Table 5 for category-level recog-
nition and Table 6 for instance-level recognition. In ad-
dition, leave-sequence-out average accuracies are shown in415

Figure 12 to visualize the performance trend with respect
to the support radius size. It should be noted that PFH
and PFHRGB are excluded from this experiment because
of these descriptors’ prohibitively long extraction times on
such a big dataset (see Section 4.8).420
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Figure 11: Leave-sequence-out average accuracy results for 10 cat-
egory subset of RGB-D Object Dataset: a) Category-level, b)
Instance-level.

In this dataset, for all support radius sizes and for
both test scenarios, CoSPAIR outperforms all other de-
scriptors in both category and instance-level recognition.
For the leave-sequence-out scenario, CoSPAIR achieves an
average accuracy of 86.21% for a support radius of 12 cm425

in category-level recognition and 74.46% in instance-level
recognition for a support radius of 10 cm whereas the sec-
ond top performer CSHOT achieves 76.31% in category-
level recognition for a support radius of 10 cm and 57.97%
in instance-level recognition for a support radius of 8 cm,430

leading to 16.49 percentage points (pp) performance dif-
ference. It is even higher if the same support radius is
considered for all the descriptors; resulting up to 17.41 pp
difference at 12 cm. For the alternating-contiguous-frames
scenario, CoSPAIR outperforms competitors as well but435

with a slightly lower margin. CoSPAIR achieves an av-
erage accuracy of 96.15% for a support radius of 12 cm
in category-level recognition and 90.09% in instance-level
recognition for a support radius of 12 cm whereas the sec-
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Table 3: Category-level average accuracy, average recall and average precision results for the 10 category subset of RGB-D Object Dataset

sr = 5cm sr = 8cm sr = 10cm sr = 12cm

Leave-sequence-out

Acc. Rec. Prec. Acc. Rec. Prec. Acc. Rec. Prec. Acc. Rec. Prec.
SPAIR 76.52 74.85 78.95 85.95 84.58 84.12 89.73 88.90 88.87 90.99 90.26 90.72
FPFH [12] 78.99 78.15 76.31 80.29 79.90 77.08 80.29 80.35 77.13 79.66 80.00 76.99
SHOT [22] 83.23 81.07 82.17 89.94 88.63 87.53 90.15 88.66 87.92 89.73 88.63 88.18
PFH [11] 74.37 74.31 71.33 77.36 77.08 74.89 73.79 74.18 73.28 69.60 70.48 73.07
CoSPAIR 92.45 92.01 92.73 93.29 92.90 92.01 95.39 95.30 94.96 95.81 95.68 95.44

CSHOT [16] 90.57 89.89 90.89 90.57 89.15 89.77 92.03 91.48 92.29 91.40 90.95 91.45
PFHRGB [17] 85.08 84.72 84.60 86.58 85.98 85.99 82.18 82.00 83.36 84.28 83.37 82.72

Alternating contiguous frames

SPAIR 78.54 75.67 78.20 88.25 86.17 86.76 90.27 88.57 88.79 91.26 89.66 90.29
FPFH [12] 81.25 79.46 78.48 82.92 81.39 80.92 81.34 80.31 79.60 80.38 79.52 79.17
SHOT [22] 87.89 85.74 86.97 92.52 91.01 91.11 93.39 91.78 92.13 93.36 92.21 92.68
PFH [11] 78.58 76.92 76.81 78.57 77.10 77.97 74.78 74.47 77.48 72.76 72.59 76.57
CoSPAIR 96.45 95.46 96.23 97.09 96.29 96.84 97.98 97.42 97.61 97.82 97.14 97.43

CSHOT [16] 97.02 96.48 96.85 97.76 97.38 97.75 97.44 97.07 97.22 97.14 96.69 96.89
PFHRGB [17] 92.98 91.72 92.35 93.96 92.88 93.45 91.15 89.99 90.62 92.37 91.01 91.62

Table 4: Instance-level average accuracy, average recall and average precision results for the 10 category subset of RGB-D Object Dataset

sr = 5cm sr = 8cm sr = 10cm sr = 12cm

Leave-sequence-out

Acc. Rec. Prec. Acc. Rec. Prec. Acc. Rec. Prec. Acc. Rec. Prec.
SPAIR 52.41 52.55 51.10 64.36 64.62 66.09 70.44 70.54 72.75 68.97 69.25 70.81
FPFH [12] 52.52 52.62 48.89 49.48 49.76 48.00 51.36 51.71 48.58 50.10 50.44 45.46
SHOT [22] 57.44 57.58 59.81 63.10 63.66 63.01 61.84 62.36 62.16 61.43 61.89 64.18
PFH [11] 47.69 47.85 45.51 44.23 44.51 44.16 41.09 41.39 40.65 38.99 39.26 40.13
CoSPAIR 78.41 78.59 76.88 80.92 81.16 79.29 84.91 85.28 86.64 85.53 85.90 86.06

CSHOT [16] 75.47 76.02 74.20 76.31 76.88 76.24 79.66 80.17 77.85 78.20 78.75 75.99
PFHRGB [17] 71.43 71.64 69.95 68.55 68.80 66.91 62.89 63.06 63.29 65.83 66.04 64.84

Alternating contiguous frames

SPAIR 55.45 55.07 55.98 65.11 64.98 65.85 66.87 66.76 67.56 66.76 66.69 67.42
FPFH [12] 56.21 55.95 55.64 57.14 56.99 56.00 56.73 56.63 55.01 56.51 56.38 55.36
SHOT [22] 62.62 62.54 64.72 65.71 65.78 67.75 66.12 66.18 68.62 65.85 65.87 68.09
PFH [11] 52.18 52.02 50.94 49.69 49.60 48.32 47.50 47.45 48.46 46.68 46.72 48.90
CoSPAIR 90.82 90.63 91.07 91.64 91.52 92.15 91.96 91.85 92.42 91.64 91.51 91.98

CSHOT [16] 87.16 87.08 88.11 87.20 87.19 88.73 86.15 86.12 87.71 85.87 85.84 87.26
PFHRGB [17] 81.86 81.69 83.29 82.91 82.77 83.76 77.73 77.55 79.78 81.19 81.20 82.73

Table 5: Category-level average accuracy, average recall and average precision results for the RGB-D Object Dataset

sr = 5cm sr = 8cm sr = 10cm sr = 12cm

Leave-sequence-out

Acc. Rec. Prec. Acc. Rec. Prec. Acc. Rec. Prec. Acc. Rec. Prec.
SPAIR 46.16 48.61 51.63 63.77 64.31 66.93 67.84 67.11 69.29 68.93 67.85 69.83
FPFH [12] 44.94 46.21 45.51 51.66 51.16 51.29 52.11 51.66 52.18 51.66 51.01 50.97
SHOT [22] 61.28 63.06 64.92 72.85 72.86 73.13 74.49 73.90 74.25 73.70 73.03 73.08
CoSPAIR 77.59 77.40 78.56 83.75 83.42 83.72 85.97 85.43 84.79 86.21 85.44 84.97

CSHOT [16] 73.55 72.74 74.59 75.95 74.71 77.03 76.31 74.86 77.54 75.55 74.14 76.10
Alternating contiguous frames

SPAIR 55.52 54.19 55.57 70.26 68.22 68.69 73.44 71.17 71.83 74.97 72.55 73.09
FPFH [12] 55.97 53.45 52.45 61.60 58.47 58.82 62.40 59.10 58.96 62.48 59.12 59.03
SHOT [22] 74.49 72.89 72.93 78.97 76.98 77.12 80.78 78.98 78.99 79.99 78.01 78.02
CoSPAIR 92.88 91.98 92.84 94.98 94.30 94.43 95.68 95.03 95.20 96.15 95.49 95.63

CSHOT [16] 90.53 89.45 89.75 90.36 89.42 89.81 91.15 90.21 90.44 90.57 89.44 89.88
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Table 6: Instance-level average accuracy, average recall and average precision results for the RGB-D Object Dataset

sr = 5cm sr = 8cm sr = 10cm sr = 12cm

Leave-sequence-out

Acc. Rec. Prec. Acc. Rec. Prec. Acc. Rec. Prec. Acc. Rec. Prec.
SPAIR 27.88 28.46 27.81 41.36 41.90 42.00 42.82 43.44 44.42 43.67 44.28 45.19
FPFH [12] 26.42 27.22 25.10 26.91 27.34 26.29 26.39 26.99 25.49 25.78 26.44 25.12
SHOT [22] 39.57 39.92 41.51 46.01 46.13 47.26 45.40 45.44 46.43 43.46 43.53 45.39
CoSPAIR 65.56 64.26 64.54 71.79 70.42 69.23 74.46 73.22 72.46 74.01 72.79 71.66

CSHOT [16] 57.85 56.65 55.67 57.97 56.71 56.44 57.15 55.96 55.89 56.60 55.48 55.31
Alternating contiguous frames

SPAIR 36.88 36.87 36.10 49.45 49.10 48.58 51.83 51.44 51.28 52.18 51.74 51.27
FPFH [12] 37.13 36.97 34.55 41.56 41.21 39.40 41.71 41.37 39.17 41.66 41.29 39.28
SHOT [22] 50.89 50.67 51.74 53.69 53.31 54.77 55.09 54.80 55.84 54.29 53.95 54.76
CoSPAIR 87.52 86.41 88.01 89.26 88.21 89.30 89.89 88.90 90.14 90.09 89.10 90.29

CSHOT [16] 81.17 80.28 81.76 78.57 77.73 79.92 79.95 79.15 81.08 79.12 78.24 80.03
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Figure 12: Leave-sequence-out average accuracy results for the whole
RGB-D Object Dataset: a) Category-level, b) Instance-level.

ond top performer CSHOT achieves 91.15% in category-440

level recognition for a support radius of 10 cm and 81.17%
in instance-level recognition for a support radius of 5 cm.

Among the shape-only descriptors, in both category-
level and instance-level recognition, SHOT performs slightly
better than SPAIR, where the performance margin is larger445

for lower support radii and smaller for larger support radii.
Among the tested descriptors, FPFH has the least perfor-
mance for all support radius sizes in both category-level
and instance-level recognition.

4.6. Results on Dataset 3: The BigBIRD Dataset450

Since the BigBIRD dataset is an instance-level dataset
and no category information is specified, only the instance-
level recognition results are reported for this dataset. The
average accuracy, average per class recall and precision
results are given in Table 7. In addition, leave-sequence-455

out average accuracies are shown in Figure 13 to visualize
the performance trend with respect to the support radius.
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Figure 13: Leave-sequence-out instance-level average accuracy re-
sults for the BigBIRD dataset.

Since this dataset is instance-level, and the difference
between many instances are in texture/color (see Figure 7)
shape-only descriptors perform extremely poor. However,460

the shape + texture/color descriptors perform fairly well
considering the challenging nature of this dataset. The
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Table 7: Instance-level average accuracy, average recall and average precision results for the BigBIRD dataset.

sr = 5cm sr = 8cm sr = 10cm sr = 12cm

Leave-sequence-out

Acc. Rec. Prec. Acc. Rec. Prec. Acc. Rec. Prec. Acc. Rec. Prec.
SPAIR 13.27 13.14 12.34 17.91 17.75 18.61 22.38 22.17 22.24 21.66 21.45 20.86
FPFH [12] 9.59 9.51 8.78 9.67 9.58 8.21 8.39 8.32 7.89 8.23 8.15 6.43
SHOT [22] 20.94 20.77 24.18 20.46 20.29 22.11 18.79 18.63 19.93 17.19 17.05 16.16
PFH [11] 8.31 8.21 6.43 8.87 8.79 7.35
CoSPAIR 64.11 63.58 67.08 68.51 67.96 73.00 68.75 68.57 72.39 68.19 68.02 70.13

CSHOT [16] 62.99 62.48 64.85 46.36 46.00 50.07 41.25 41.31 46.79 37.89 37.59 40.39
PFHRGB [17] 50.36 49.95 50.63 46.28 45.93 46.60

Alternating contiguous frames

SPAIR 24.31 24.14 27.43 33.61 33.43 35.72 36.79 36.70 38.82 37.96 37.86 40.13
FPFH [12] 24.36 24.16 26.36 30.41 30.19 33.13 31.35 31.14 33.31 31.79 31.57 33.75
SHOT [22] 35.88 35.65 38.35 42.27 42.19 43.25 43.52 43.39 44.56 43.88 43.77 45.00
PFH [11] 21.85 21.71 24.67 23.41 23.22 25.98
CoSPAIR 81.29 80.83 83.36 81.46 81.20 83.32 81.18 80.94 83.46 79.86 79.51 82.08

CSHOT [16] 64.93 64.54 67.80 62.44 62.12 65.88 61.96 61.67 65.30 61.55 61.21 64.71
PFHRGB [17] 75.42 74.78 76.90 71.44 70.88 73.84

best performing descriptor is CoSPAIR for both test sce-
narios. For the leave-sequence-out case, CoSPAIR achieves
68.75% average accuracy for support radius of 10 cm whereas465

the second best performer CSHOT achieves 62.99% for
support radius of 5 cm. For the alternating-contiguous-
frames scenario, CoSPAIR outperforms competitors. It
achieves 81.46% average accuracy at 8 cm whereas the
second top performer PFHRGB achieves 75.42% for 5cm.470

Although the best achieved scores can be considered close,
the performance gap increases with the increasing support
radii. For the leave-sequence-out case, although the per-
formance gap between CoSPAIR and CSHOT is 1.12 pp
at 5 cm, the gap increases up to 30.3 pp at 12 cm. Lastly,475

for the alternating-contiguous-frames scenario, the perfor-
mance gap is lowest, 16.36 pp at 5 cm and highest, 19.22
pp at 10 cm.

4.7. Results on Dataset 4: The Amazon Picking Challenge
Dataset480

Like the BigBird, this dataset is an instance-level dataset
and no category information is specified Thus, only the
instance-level recognition results are reported. For both
scenarios, CoSPAIR performs better than the competitors
for all the tested support radii. For leave-sequence-out, Co-485

SPAIR achieves 90.71% average accuracy for support ra-
dius of 12 cm whereas the second best performer CSHOT
achieves 85.90% for the same support radius. For alternat-
ing contiguous frames scenario, CoSPAIR achieves 91.63%
average accuracy at 12 cm whereas the second top per-490

former CSHOT achieves 87.36% for 10 cm.

4.8. Extraction and Matching Times

For evaluating the extraction times, only a single scan
for each category in the Dataset 1 with 1 cm uniform sam-
pling is used. As a result, the query set for extraction495

times consists of 10 clouds with 3023 keypoints.
The average extraction times for a single keypoint/query

point for 3 different support radius sizes are given in Table
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Figure 14: Leave-sequence-out instance-level average accuracy re-
sults for the Amazon Picking Challenge dataset.

9. As can be observed from the results, SHOT and CSHOT
are very fast to extract whereas PFH and PFHRGB are500

prohibitively slow to use in practical applications. More-
over, while SPAIR and CoSPAIR are slower than SHOT,
they are significantly faster than FPFH, PFH and PFHRGB.
The main reason behind the speed of SHOT and CSHOT
despite being longer is to use a single reference frame505

for each descriptor whereas SPAIR, CoSPAIR, PFH and
RGBPFH fit a reference axis for each pair of points be-
tween which angular relations are computed.

And lastly, the brute-force matching times together
with the size of the descriptors are given in Table 10. In510

this test, the full reference and query sets in the Dataset
1 were used where the query set contains 78,442 keypoints
from 475 objects and the reference set contains 143,234
keypoints from 946 objects, thus the total number of com-
parisons were over 11 billion. Since the same matching515

method is used for all descriptors, the matching time is
mainly related to the type and the length of the descrip-
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Table 8: Leave-sequence-out instance-level average accuracy, average recall and average precision results for the Amazon Picking Challenge
Dataset

sr = 5cm sr = 8cm sr = 10cm sr = 12cm

Leave-sequence-out

Acc. Rec. Prec. Acc. Rec. Prec. Acc. Rec. Prec. Acc. Rec. Prec.
SPAIR 44.55 42.66 39.14 56.41 54.15 54.09 58.97 56.73 55.61 62.18 59.81 59.80
FPFH [12] 41.67 40.14 42.83 43.27 41.62 43.27 41.67 40.10 38.36 39.74 38.31 36.21
SHOT [22] 53.53 51.61 51.32 67.63 65.19 68.43 67.63 65.25 67.71 66.35 64.01 68.46
PFH [11] 43.91 42.25 45.07 37.50 36.06 31.97 36.22 34.83 33.26 34.62 33.33 31.39
CoSPAIR 82.69 79.88 83.50 87.50 84.38 88.04 90.38 87.22 88.97 90.71 87.65 88.42

CSHOT [16] 81.73 78.95 81.16 83.97 81.05 82.20 84.29 81.36 82.13 85.90 82.90 83.72
PFHRGB [17] 66.35 63.81 70.58 63.14 60.92 59.41 63.46 61.33 61.84 63.46 61.33 63.24

Alternating contiguous frames

SPAIR 46.18 45.29 49.17 60.49 59.45 62.80 64.89 63.80 65.57 67.10 66.05 68.07
FPFH [12] 40.86 40.03 42.41 45.36 44.42 46.39 47.24 46.33 48.22 45.70 44.77 46.60
SHOT [22] 62.51 61.59 63.56 75.00 74.02 76.22 75.82 74.73 76.63 76.06 75.03 76.40
PFH [11] 42.45 41.67 41.44 42.83 42.15 44.07 42.07 41.35 43.33 40.44 39.95 41.65
CoSPAIR 89.47 88.30 89.32 91.97 90.83 91.61 91.39 90.22 91.05 91.63 90.44 91.08

CSHOT [16] 84.06 82.99 84.45 86.88 85.79 86.68 87.36 86.26 87.58 87.02 85.92 87.12
PFHRGB [17] 80.57 79.50 81.49 79.76 78.70 81.53 79.42 78.41 81.30 81.10 80.06 82.42

Table 9: Average extraction times (ms) of the descriptors for a single
keypoint/query point. (Platform: i5 4670 CPU using a single core)

sr=5cm sr=10cm sr=12cm

SPAIR 4.37 11.98 15.23
FPFH [12] 16.83 49.22 63.53
SHOT [22] 1.27 2.55 3.10
PFH [11] 506.50 5456.31 9409.57

CoSPAIR 5.37 14.27 18.22
CSHOT [16] 1.45 3.96 5.04
PFHRGB [17] 918.67 10049.05 17304.95

tors. As all the descriptors are of type float, descriptor
length is the only factor affecting the matching perfor-
mance. This can be directly seen from the results that520

FPFH, being the shortest descriptor, is the fastest to match
and CSHOT, being the largest, is the slowest to match.

Table 10: Lengths and matching times (seconds) of the descriptors.
(Platform: i5 4670 CPU utilizing all 4 cores)

Length Matching Time (s)

SPAIR 189 119
FPFH [12] 33 34
SHOT [22] 392 170
PFH [11] 125 88

CoSPAIR 378 197
CSHOT [16] 1344 581
PFHRGB [17] 250 136

5. Conclusion and Future Work

In this paper, we have proposed two new local 3D de-
scriptors. In our descriptors, the support radius is divided525

into concentric spherical shells. We have demonstrated
that such partitioning of space allows encoding enhanced
spatial information more effectively.

We have compared the proposed descriptors with the
state-of-the-art local 3D descriptors that are available in530

the Point Cloud Library. The shape only descriptor, SPAIR
is shown to be one of the best in its class (shape only) while
CoSPAIR is shown to outperform the tested state-of-the-
art descriptors both for category-level and instance-level
object recognition. We have observed up to 9.9 percent-535

age points gain in category-level recognition and 16.49 per-
centage points gain in instance-level recognition over the
second-best performing descriptor in the RGB-D dataset.

5.1. Future Work

The descriptors proposed in this article can be im-540

proved in a number of ways in the future. One of them is
the way the spatial information is integrated into the de-
scriptors. In the proposed descriptors, the support radius
is divided into equally-sized shells. Since the contribution
of the central shells and the outer shells may be differ-545

ent, one may consider shells having varying thicknesses
and learning the optimal division of the support radius
into the shells. Another similar line of work that is to
extend the system to use a weighted combination of the
histograms coming from different shells.550

In addition to these, the information extracted in each
shell can be extended by other 3D or 2D information, such
as, local 3D curvature, local 3D shape category via the
method of shape index, 2D textural features. These can
enrich the representation in each shell.555
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