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Abstract Many cognitive scientists now agree that ar-

tificial cognition might be probably achieved develop-

mentally, starting from a set of basic-level premature

capabilities and incrementally self-extending itself with

experience through discrete or continuous stages bred

with experience. Although we are still far from see-

ing an artificial full-fledged self-extending cognitive sys-

tem, the literature has provided promising examples

and demonstrations. Nonetheless, not much thought is

given to the modeling of how an artificial vision system,

an important part of a developing cognitive system, can

develop itself in a similar manner. In this article, we

dwell upon the issue of a developing vision system, the

relevant problems and possible solutions whenever pos-

sible.

Keywords Vision System · Developmental · Embodi-
ment

1 Introduction

Vision is the process of understanding scenes from their

2D projections, which are in the form of a set of im-

ages. The intensity values in an image are formed by

one or more of the following factors: (1) the geometry,

and the illumination of the environment, (2) the spa-

tiotemporal states of the objects and the viewer, (3)

the reflectance of the surfaces, and (4) the type of the

medium that light travels. By definition, this makes vi-

sion an ill-posed1 inverse problem (Bertero et al, 1987).
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1 According to Hadamard (1923), a problem is well-posed
if (1) a solution exists, (2) the solution is unique, and (3) it

An important mechanism used by the human visual

system to deal with the ambiguities and the missing

information that is due to the ill-posed nature of the

problem is to make use of the regularities in images. It

is proposed that the human visual system is adapted to

the statistics of the retinal projections of the environ-

ment, in order to make use of the regularities or the re-

dundancy of information in the environment. With the

availability of computational and technological means,

it has been possible to prove such claims (Krüger, 1998;

Wagemans et al, 2012), and the results of such inves-

tigations have proven to be useful in several computa-

tional vision problems (Elder et al, 2003; Pugeault et al,

2004; Zhu, 1999) - see Simoncelli (2003) for a review.

Another important mechanism to deal with the ill-

posed nature of the problem is to make the problem

well-posed. One such mechanism is to collect more data

from the scene, which can easily be achieved if the cam-

era is integrated on an embodied agent interacting with

the environment. The motivation for this comes from

active perception studies, which showed that, for ex-

ample, with an actively moving camera, ill-posed prob-

lems such as structure from motion, shape from shad-

ing become well-posed (Aloimonos and Rosenfeld, 1994;

Aloimonos, 1990).

These mechanisms suggest that a vision system should

be embodied and it should utilize regularities of the en-

vironment. By doing so, we claim that one can talk

about an artificial vision system that initially starts

with only few vision capabilities, and develops itself

gradually, by interacting with the environment and con-

stantly self-extending itself by exploiting the regulari-

ties of the environment.

depends continuously on the data. A problem is ill-posed if it
is not well-posed.
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Piecemeal efforts have shown that, e.g., grouping

can be demonstrated to be the manifestation of the ex-

ploitation of the regularities in the environment (Elder

et al, 2003; Pugeault et al, 2004; Zhu, 1999). More-

over, with frameworks exploiting important principles

like sparsity and slowness (such as sparse autoencoders

and slow feature analysis), features can be discovered

from a large collection of visual input - see, e.g., (Ben-

gio, 2009; Bengio et al, 2013; Schmidhuber, 2014). In

this paper, we claim that we need a unified system that

can bring together such principles and mechanisms to

enable a vision system to develop itself with experience

such that it can go beyond grouping of low-level fea-

tures, recognition of events or objects towards a system

that can learn new relations, cues, associations to solve

high-level tasks such as depth perception and scene un-

derstanding. For this end, we first review and discuss

the embodied approach to cognition and the impor-

tance of (statistical) regularities for vision and cogni-

tion in general. Then, we discuss some of the important

aspects that a developing vision system should address,

and provide guidelines whenever possible.

2 Developmental Approaches to Cognition and

Intelligence

There is not an absolute recipe for creating a cogni-

tive, intelligent system. Since ancient times, humanity

has tried understanding the process of problem solving

and logical thinking. However, millenniums have past

and still, the underlying mechanisms of cognition and

intelligence are largely unknown.

Inspired by the mathematical logic, the main ap-

proaches to artificial intelligence are (i) rule-based sys-

tems manipulating symbols for solving problems (Fikes

and Nilsson, 1972; Newell and Simon, 1976; Fodor, 1981)

in which the environment or the problem setup is ex-

pressed in terms of symbols and the rule-based system

tries to find a valid derivation from the current state

to the goal state; or (ii) learning-based where super-

vised and unsupervised mechanisms (see, e.g., (Self-

ridge, 1958; Minsky, 1963; Samuel, 2000; Boden, 2006))

are used to learn a mapping from inputs to outputs.

However, such systems can work only in very specific

environments and they lack the ability to acquire new

abilities and solve problems which their designers did

not anticipate.

Developmental approaches to artificial intelligence

is a promising alternative to classical artificial intelli-

gence approaches (Asada et al, 2009; Lungarella et al,

2003; Cangelosi et al, 2010; Overton, 2003). It is promis-

ing because we have a working example: us, humans.

Putting aside the problems of differences in embodi-

ment, by endowing an artificial agent with similar de-

velopmental abilities, one can aim to achieve a cogni-

tive system given sufficient time for development. In a

sense, instead of fishing for the agents, we build them

with fishing abilities. In the most general definition,

there are two types of what can develop: (1) trans-

formation and (2) variation (Overton, 2003). Transfor-

mational changes happen in the form, organization or

structure of a system (e.g., formation of new neuron

connections in the brain, new tissue, organs etc.). Vari-

ational changes, on the other hand, represent degree

of deviation from a standard or simply adaptation of a

system (e.g., adjusting weights of a neural network, bet-

ter motor control accuracy of an infant, etc.). Transfor-

mational changes are important because they provide

emergence of new abilities whereas variational changes

provide improving those new abilities. Hence, a good

developmental system should exhibit both transitional

and variational changes.

The aim of the developmental approaches to cogni-

tion and intelligence is to provide developmental tools

which start with simple and low-level abilities and trans-

form into complex and high-level abilities. Garrett (1946)

states that intelligence changes in its organization from

a general ability into a more organized group of abilities

as time passes. The developmental nature of infant cog-

nition and intelligence has been shown and claimed by

many (Fry and Hale, 1996; Kirkham et al, 2002; König

and Krüger, 2006). Such developmental approaches are

also used in machine learning studies (Elman, 1993).

However, achieving a theory of developmental cognition

and intelligence is not a straightforward work.

There are many theories inspiring for developmental

cognition and perception. As reviewed by (Cohen and

Cashon, 2003), Piagetian theory, Gibsonian theory, dy-

namical systems and connectionist modeling are influ-

ential theories of cognition and perception. Addition-

ally, nativism, cognitive neuroscience and information

processing are approaches to understand and provide

computational models of cognition and perception.

Among these theories, the Gibsonian theory is no-

table since it has been very influential in cognitive robotics

since 2000s. The Gibsonian theory relies on the con-

cept of affordances, which connects agents to the en-

vironment through what the environment provides to

the agents and emphasize the importance of an agent’s

embodiment (Gibson, 1977). In the Gibsonian theory,

a developing agent (or an infant) performs two things;

(1) it discovers new affordances, i.e., the opportunities

provided by the environment, and (2) it learns to dif-

ferentiate relevant information from non-relevant infor-

mation based on the affordances (Gibson and Gibson,
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1955; Gibson, 1969). Experiments show that infants in-

teract with the environment and learn new affordances

and how to differentiate information to improve their

behaviors (Gibson and Walk, 1960; Adolph et al, 1993).

Artificial cognitive systems have made significant

progress using developmental approaches. Many studies

pointed out that developmental approaches are impor-

tant and beneficiary for robotics (Thelen and Smith,

1994; Ferrell and Kemp, 1996; Brooks, 1997; Sandini,

1997; Asada et al, 2009; Lungarella et al, 2003; Can-

gelosi et al, 2010). Robotics systems with developmen-

tal properties are able to acquire new abilities as they

interact with their environment. These systems use their

interaction experiences to further develop their percep-

tion and cognitive abilities to solve new problems. See

(Asada et al, 2009; Lungarella et al, 2003; Cangelosi

et al, 2010; Kraft et al, 2010) for detailed reviews.

3 Statistical Regularities of the Environment

Our environment, even nature without man-made struc-

tures, has structure, or regularities: objects, their shape,

their texture, their locations, their behaviors etc. have

certain patterns, or regularities. A good proof of this is

the fact that we can recognize objects, events or scenes

when we see them; we can recognize things because they

have distinctive characteristics, structure, regularities

that allow us to distinguish them.

We, humans, perceive the regularity in the environ-

ment with our limited senses. Our neuronal processing

mostly relies on linking a neuron to the frequently fir-

ing neurons in its receptive field, in a sense, basing its

activity on the statistics of the firing activities in its

receptive field. From this, it is not far-fetched to claim

that our neuronal machinery is designed for capturing

regularities via statistical mechanisms, and we call them

statistical regularities in this paper.

Statistical regularities are important for a cogni-

tive entity facing real-world problems since they are

used for learning, adaptation, inference, etc. (Vapnik,

2000). Statistical regularities enable a learning system

to make the transition from low-level rapidly changing

information to high-level, more stable symbols or con-

cepts (König and Krüger, 2006) which are considered

as the grounding of cognition, logical thinking and in-

telligence (Harnad, 1990; Rocha, 1997; Glenberg and

Robertson, 2000). Hence, detecting statistical regular-

ities is a necessary ability for any cognitive/intelligent

system.

In fact, it has been shown and claimed by many that

our brain is adapted to exploit statistical regularities in

the environment (Saffran et al, 1996; Barlow, 2001; Al-

tamura et al, 2014). It has also been shown that our

brains constantly seek statistical regularities in the en-

vironment even when we do not pay attention to such

regularities (Turk-Browne et al, 2009, 2010; Barakat

et al, 2013), for vision (Fiser and Aslin, 2002; Kirkham

et al, 2002; Kellman and Arterberry, 1998; Brunswik

and Kamiya, 1953), speech and language (Tomasello,

2009; Saffran, 2003; Smith and Yu, 2008), touch, the-

ory formation, etc. (Gopnik and Schulz, 2004; Conway

and Christiansen, 2005).

3.1 Statistical Regularities of the Environment and

Vision System

The amount of images that can be observed in nature

is a very small subset of the possible images that can

be constructed using arbitrary combinations of inten-

sity values (Field, 1994). This suggests that the natural

images bear intrinsic regularities which are believed to

be exploited by our visual system for perceiving the en-

vironment (see, e.g., Krüger and Wörgötter (2004)), es-

pecially for resolving ambiguities inherent in local pro-

cessing of various visual modalities.

For example, it is widely acknowledged that Gestalt

principles for perceptual organization are manifesta-

tions of our visual system’s adaptation to the statis-

tical regularities in natural scenes. This hypothesis was

first pointed out by Brunswik and Kamiya (1953), but

could not be tested or justified until 90s due to insuf-

ficient computational means. Field et al (1993) used

computer-generated randomly-oriented data to develop

a theory of contour grouping in the human visual sys-

tem, called the association field. In 1998, Krüger (1998)

used natural images instead of computer generated data

to prove the relation between grouping mechanisms and

the natural image statistics. Such investigations were

extended in (Elder and Goldberg, 2002; Geisler et al,

2001; Krüger and Wörgötter, 2002), and the results

were utilized in several computer vision tasks, including

contour grouping, object recognition and stereo (see,

e.g., Elder et al (2003); Pugeault et al (2004); Zhu

(1999)).

Statistical regularities of natural images also helped

researches to understand the principles of sensory cod-

ing in the early stages of visual processing. It was shown

that Independent Component Analysis and Principle

Component Analysis of image patches from natural im-

ages produce Gabor-wavelet like responses which are

believed to be what the V1 cells in the human visual

system are doing (see, e.g., Simoncelli and Ohlshausen

(2001); Simoncelli (2003) for a review).

Availability of relatively cheap range scanners made

it possible to analyze the statistical properties of the

3D world together with its 2D image projections. Such
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analyses are important (1) for quantifying and under-

standing the assumptions that the vision researchers

have been making and (2) for understanding the intrin-

sic properties of the 3D world. In (Yang and Purves,

2003; Huang et al, 2000; Potetz and Lee, 2003), the

correlation between the properties of the 3D surfaces

(like roughness, 3D orientation, distance, size, curva-

ture etc.) and the intensity of the images are analyzed.

Such studies mainly justify assumptions made by shape

from shading studies and confirm that natural scene

geometry is quite regular and less complex than lumi-

nance images. In (Kalkan et al, 2006), a higher-order

representation of the 2D local image patches and the

3D local patches were considered, and the probability

of observing a certain kind of the 3D structure given

its 2D projection is provided. Similarly, Kalkan et al

(2007) studied the predictability of depth at constant-

intensity image regions from the depth available at the

edges, and showed that, using a co-planarity constraint,

depth at constant-intensity image regions can be pre-

dicted, modulated by the distance to the edge segments.

Moreover, range image statistics allow explanation of

several visual illusions (Howe and Purves, 2002, 2004).

Krüger and Wörgötter (2004) provide a summary

of the evidences from developmental psychology which

suggest that depth extraction based on statistical reg-

ularities used in perceptual organization develops at

a later stage than depth extraction based on stereop-

sis and motion. In particular, it is discussed that per-

ceptual organization based on edge structures are in

place after approximately 6 months of visual experi-

ence but not before (Kellman and Arterberry, 1998;

Spelke, 1990). As we have mentioned before (Kalkan

et al, 2007):

“This indicates that experience may play an im-

portant role in the development of these cues,

i.e., that we have to understand depth percep-

tion as a statistical learning problem (Knill and

Richards, 1996; Purves and Lotto, 2002; Rao

et al, 2002). A step towards such an understand-

ing is the investigation and use of the statistical

relations between the local image structures and

the underlying 3D structure for each of these

depth cues (Knill and Richards, 1996; Purves

and Lotto, 2002; Rao et al, 2002).”

4 Statistical Regularities in Computer Vision

Statistical regularities of the environment that we dis-

cussed in the previous section are exploited in Com-

puter Vision literature to a certain extent. Gestalt laws

and grouping are good examples for this. For example,
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Fig. 1 Depth predictability using co-planarity of edge seg-
ments. (a) On planar surfaces, co-planarity of edge segments
could be used for predicting the depth at an homogeneous im-
age region. (b) Such a cue might not work on round surfaces
directly since the boundaries are not coplanar with the sur-
face. (c) If we look at how much co-planarity account for the
predictability of depth from the boundaries (plotted against
distance from the boundaries), we see that it is very high
closer to the boundaries (Source: Kalkan et al (2007)).

Elder and Goldberg (2002) used the statistics of images

to learn Gestalt laws and studied the contour extrac-

tion problem using the Gestalt grouping rules learned

from statistics of edge segments in images (see, e.g.,

(Sarkar and Boyer, 1993) for a review on alternative

approaches).

Another example is the utilization of the analysis

of the depth structure in relation to the corresponding

2D image. In this line, Kalkan et al. studied the pre-

dictability of depth at constant-intensity image regions

from the depth available at the edges, showed that, us-

ing a coplanarity constraint, depth at constant-intensity

image regions can be predicted, modulated by the dis-

tance to the edge segments (Kalkan et al, 2007) (see

also Figure 1) and then used these results to inspire a

computational model that predicted depth at constant-

intensity image regions using the coplanarity constraint

(Kalkan et al, 2008) - see also Figure 2.

A more prominent example for the utilization of the

statistics of the environment started with the discov-

ery that the independent components of natural im-
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(a)

(b)

Fig. 2 Using the results in (Kalkan et al, 2007) (see Figure 1)
as inspiration, one can predict depth at homogeneous image
regions using coplanarity of edge segments even on round
surfaces. (a) Input stereo pair. (b) The predictions of our
model as a disparity map. (Source: (Kalkan, 2008))

ages resemble V1-like cells in visual cortex (Olshausen

and Field, 1997; Hyvärinen and Hoyer, 2001; Hyvärinen

et al, 2009). This discovery ignited a line of research,

called feature or representation learning, that led to
many successful applications in Computer Vision. In

this line of work, a neural network is (generally) trained

to predict its input first, through which, in hidden lay-

ers, it learns a representation of what is common in

the input - see Figure 3. In this approach, the neu-

ral network learns how to encode the input itself in

a lower-dimensional space using sparsity as a princi-

ple - hence, the method is called sparse auto-encoding.

The sparseness principle, the slowness principle (Berkes

and Wiskott, 2005) and similar “transformation to a

lower dimensional space for representation learning”

approaches are abundant in the literature and a very

trendy research topic in Computer Vision these days -

see, e.g., Scalzo and Piater (2005); Fidler and Leonardis

(2007); Franzius et al (2008); Ciresan et al (2012); Le-

Cun et al (1998); Hinton et al (2006); Salakhutdinov

and Hinton (2009); Rifai et al (2012). For reviews on

this emerging approach, please refer to (Bengio, 2009;

Bengio et al, 2013; Schmidhuber, 2014). As an example,

see Figure 4 and (Firat et al, 2014), where, for recog-
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Fig. 3 (a) Generally, in feature learning, first a sparse repre-
sentation of the input is learned. (b) After learning the “fea-
tures” relevant for the problem, the output layer is replaced
with neurons that predict class labels.

nizing landing lanes in airports, a set of features are

learned and used.

These successful applications in Computer Vision

inspired from vision system’s adaptation to statistical

regularities of the environment are very promising, but

limited to recognition and classification tasks. We pro-

pose that inspiration from vision system’s adaptation

to statistical regularities of the environment should be

tailored towards building a vision system that develop

itself to not only recognize objects but also solve the

high-level vision tasks that we, humans, can solve.

5 Aspects for a developing vision system

It has been suggested that our vision system starts only

with few premature vision capabilities (e.g., motion de-

tection, depth from motion, stereopsis - (Kellman and

Arterberry, 1998)) and through extensive interactions

with the environment and experience, develops new ca-

pabilities, not only for recognizing and categorizing ob-

jects, scenes or events but also for spatio-temporal un-

derstanding of scenes, events, and eventually a 3D in-
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(a)

(b)

Fig. 4 A feature learning example in a sparse auto-encoding
network. (a) A set of features, i.e., basis functions, learned
from a set of airport images from remote sensing data. (b)
The thresholded responses of the features in (a) on a sample
image. [Taken from (Firat et al, 2014) with authors’ permis-
sion]

terpretation of the scene. Development of vision capa-

bilities is achieved in stages of learning new features and

new relations between features that explain the regu-

larities of the environment as well as the predictions of

the agent (Cohen and Cashon, 2003). In the following,

we cover the aspects that should be addressed by such

a developing vision system.

5.1 Embodiment, interaction, movement: Active vision

As discussed before, vision is an ill-posed problem by

definition. However, ill-posed vision problems become

well-posed once interaction with the environment or

the object provides more observations (Aloimonos and

Rosenfeld, 1994; Aloimonos, 1990). For example, shape

from shading, structure from motion or shape from tex-

ture become well-posed once the observer is allowed to

interact with the environment. The approaches that use

this aspect is called active vision in the literature and

has led to many successful applications - see Aloimonos

(2013) for a review.

However, there is more to what acting in an environ-

ment can provide, in addition to reducing ambiguities.

Through action, our vision system is provided with op-

portunities to discover new regularities, leading to the

development of new features and relations that allow

us to predict the consequences of our actions as well as

the affordances of the environment (Cohen and Cashon,

2003; Gibson, 2000). In fact, as mentioned by Gibson

(2000), one can relate the learning or development of

perception with the discovery of the affordances of the

environment.

In this direction, we have previously used a robot’s

interactions with the environment to eliminate irrele-

vant features in an unsupervised manner and discover

object concepts (Atil, 2010) - see Figure 5. In that

study, the robot applied its behaviors on the objects in

the environment and in an unsupervised fashion, clus-

tered the kind of effects it can generate with these be-

haviors. Then, by looking at which perceptual property

of objects best explains the different effects on the dif-

ferent objects, it could learn the relevant features and

from them, build first-level object concepts.

5.2 Relation learning and feature learning

As discussed in Section 4, the Computer Vision commu-

nity working on feature or representation learning has

been making use of the statistical regularities of the en-

vironment successfully. The literature has seen perfor-

mances better than hand-crafted features on state-of-

the-art datasets - see (Bengio, 2009; Bengio et al, 2013;

Schmidhuber, 2014) for reviews. Unfortunately, such

exploitation of the statistical regularities has been lim-

ited to only recognition or classification tasks - classifi-

cation and recognition of objects, scenes, faces, speech

etc.

However, there is more to the vision problem than
recognition and classification that requires more than a

feature-learning system. One important example is the

monocular depth perception using cues, such as famil-

iar size, texture gradient, atmospheric effect, occlusion,

shading, shadow, etc. Utilization of these cues requires

learning relations between features at different levels

of representation at different scales: For example, for

texture gradient, relations (gradient) between low-level

filter responses might be sufficient but, for others, e.g.,

familiar size and occlusion, relations between object-

level representations should be used.

In this regard, Cohen and Cashon (2003) provided

an information processing perspective to the develop-

ment of perception in infants and mentioned that de-

velopment of features and relations are the key aspects

that can explain many findings in Psychology. They

propose that, at stages, an infant develops new features,

from which new relations are discovered, and the new

relations lead to newer features - as a sketch of the basic

idea, see Figure 6.
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Fig. 5 An unsupervised learning system to discover ob-
ject concepts (e.g., big-small, round-cornered, heavy-light)
through a robot’s interaction with the environment. (a) The
system is able to select the relevant feature (i.e., the statisti-
cal regularity) explaining why different objects cause different
effects. For example, the system detects object height feature
as the relevant information (regularity) for the grasping be-
havior. (b) The selected object height feature is successfully
able to separate graspable and non-graspable objects. Hence,
the object height feature can be used to form concepts of ob-
jects (e.g., graspable objects and non-graspable objects for
the example of grasping) in an unsupervised manner (using
Robust Growing Neural Gas as the clustering algorithm -
(Qin and Suganthan, 2004)). (c) By using the selected fea-
ture, object appearances are clustered into object concepts of
small, medium and big which are all relative (embodied) to
the robot. These concepts create a grounding to predict the
effects of different behaviors.

5.3 Cues that provide regularities

Relations can be discovered as abstractions of consis-

tent spatial and temporal configurations of features or

Features 
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as combinations 

of old features  

Discover  

new relations from  

new from new features 

for stage 𝑠𝑖  

Fig. 6 A developing vision system can be explained by a
mechanism which constantly updates features and relations
between features.
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Fig. 7 Using sparsity or slowness principle allows learning
simple features from images (a) or complex ones from sim-
ple features. Learning features can benefit from interactions
with the environment, which provide masking mechanisms
to reduce the search space for looking consistencies between
features (c).
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entities, by looking out for second-order, third-order

or even higher-order co-occurrences in many visual as-

pects, such as orientation, distance, color, etc. Discov-

ered relations might be updated over time with how

best they explain future observations or interactions,

and as such, spurious relations might be filtered out

easily. We can illustrate this in Figure 7(a) and (b),

which correspond to what the current feature learning

literature has achieved: By constraints or principles of

sparsity or slowness, one can discover feature detectors

(Figure 7(a)); by repeatedly using such principles, one

can learn more complex detectors, even those that can

detect objects (Figure 7(b)).

However, checking configurations of many-orders be-

tween features amounts to checking consistencies in mil-

lions of combinations of features even in a small image.

Considering also that discovered relations might be spu-

rious and they need to be updated over time, this com-

binatorial explosion becomes an important issue in re-

lation learning. In the case of an embodied agent, inter-

actions with the environment provide “masking” mech-

anisms to reduce the size of the combinatorial search.

For example, if you touch an object, you would discover

that only a subset of low-level features has moved con-

sistently and the rest of the features stayed as they are.

As another example, one can consider monocular depth

cues: You can walk on a planar surface (floor) and look

for the features that give you the walking affordance.

Such mechanisms can be used as a masking mechanism

to limit the combinatorial search problem - Figure 7(c).

5.4 Principles

The literature has shown that sparsity and slowness

have accounted well for development of representations

for classification and recognition tasks. An important

question for a developing vision system is whether or

not such principles are sufficient for a full-fledged devel-

oping vision system, especially for its relation-learning

aspect. Could there be a unified principle governing the

development of a vision system? How can we relate in-

variance, affordances, sparsity and slowness together in

a developing vision system?

6 Conclusion

In this article, we argued that a full-fledged vision sys-

tem should be embodied and developmental, and it

should constantly exploit the regularities of the envi-

ronment. We propose that such a system can develop

itself starting from basic-level vision capabilities and

self-extending its capabilities by discovering new fea-

tures and relations from its interactions with the en-

vironment. More importantly, we discussed the main

aspects that need to be addressed for such a developing

vision system.

The article could be considered as research agenda,

providing a direction for the biologically-motivated vi-

sion community. As such, it has skipped many technical

details and minor aspects that such a developing vision

system will need to tackle.

Our motivation comes from developmental robotics

and cognitive science studies which have shown that an

agent can learn many complex abilities developmentally

starting from simpler ones, by exploiting its sensorimo-

tor interactions with the environment.
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